Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Polyphenolic Content
2.2. Antioxidant Activity
2.3. Polyphenolic Profile
2.4. Correlation Analysis
3. Material and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of the Plant Extracts
3.4. Determination of the Total Polyphenolic Content
3.5. Antioxidant Activity
3.5.1. DPPH•Radical-Scavenging Activity
3.5.2. Ferric-Reducing Antioxidant Power (FRAP)
3.6. Identification and Quantification of Polyphenolic Compounds by HPLC
3.7. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main componentes. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Hong, C.O.; Lee, G.P.; Kim, C.T.; Lee, K.W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem. Toxicol. 2013, 55, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selima, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 1996, 73, 645–652. [Google Scholar] [CrossRef]
- Jordan, M.J.; Martinez, R.M.; Martinez, C.; Moňino, I.; Sotomayor, J.A. Polyphenolic extract and essential oil quality of Thymus zygis ssp gracilis shrubs cultivated under different catering levels. Ind. Crops Prod. 2009, 29, 145–153. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Gammoh, S.; Al-Mahasneh, M.A.; Tranchant, C.C.; Rawshdeh, M. Pharma-ceutical, Nutraceutical and Therapeutic Properties of Selected Wild Medicinal Plants: Thyme, Spearmint, and Rosemary. In Therapeutic, Probiotic, and Unconventional Foods; Academic Press: Cambridge, MA, USA, 2018; pp. 275–290. [Google Scholar]
- Jovanović, A.A.; Djordjević, V.B.; Petrović, P.M.; Pljevljakušić, D.S.; Zdunić, G.M.; Šavikin, K.P.; Bugarski, B.M. The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100328. [Google Scholar] [CrossRef]
- Gautam, V.S.; Singh, A.; Kumari, P.; Nishad, J.H.; Kumar, J.; Yadav, M.; Bharti, R.; Prajapati, P.; Kharwar, R.N. Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch. Microbiol. 2022, 204, 140–152. [Google Scholar] [CrossRef]
- Jordan, M.J.; Martinez, R.M.; Martinez, C.; Moňino, I.; Sotomayor, J.A. Polyphenolic extract and essential oil quality of Thymus zygis subsp. gracilis shrubs cultivated under different catering levels. Ind. Crops Prod. 2009, 29, 145–153. [Google Scholar] [CrossRef]
- Msaada, K.; Tammar, S.; Salem, N.; Bachrouch, O.; Sriti, J.; Hammami, M.; Selmi, S.; Azaiez, S.; Hadj-Brahim, A.; Al Sane, K.; et al. Chemical Composition and Antioxidant Activities of Tunisian Thymus capitatus L. Methanolic Extr. Int. J. Food Prop. 2016, 19, 1381–1390. [Google Scholar] [CrossRef] [Green Version]
- Tammar, S.; Salem, N.; Bettaieb Rebey, I.; Sriti, J.; Hammami, M.; Khammassi, S.; Marzouk, B.; Ksouri, R.; Msaada, K. Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J. Essent. Oil Res. 2018, 31, 129–137. [Google Scholar] [CrossRef]
- Jabri-Karoui, I.; Bettaieb, I.; Msaada, K.; Hammami, M.; Marzouk, B. Research on the phenolic compounds and antioxidant activities of Tunisian Thymus capitatus. J. Funct. Foods 2012, 4, 661–669. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Ind. Crop. Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Pottier-Alapetite, G. Tunisian Flora. Angiosperms-Dicotyledons Gamopetalaes; Official Printing of the Republic of Tunisia: Tunis, Tunisia, 1979; p. 1074. [Google Scholar]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleirol, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Faleiro, L.; Figueiredo, A.C.; Barroso, J.G.; et al. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Megdiche-Ksouri, W.; Saada, M.; Soumaya, B.; Snoussi, M.; Zaouli, Y.; Ksouri, R. Potential use of wild Thymus algeriensis and Thymus capitatus as source of antioxidant and antimicrobial agents. J. New Sci. Agric. Biotechnol. 2015, 23, 1046–1056. [Google Scholar]
- Gavarić, N.; Kladar, N.; Mišan, A.; Nikolić, A.; Samojlik, I.; Mimica-Dukić, N.; Božin, B. Postdistillation waste material of thyme (Thymus vulgaris L. Lamiaceae) as a potential source of biologically active compounds. Ind. Crop. Prod. 2015, 74, 457–464. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Anahi Dandlen, S.; Majdoub, N.; Lyoussi, B.; Raposo, S.; Dulce Antunes, M.; Gomes, V.; Graça Miguel, M. Antioxidant Activity of Thyme Waste Extract in O/W Emulsions. Antioxidants 2019, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Flerlage, N.; Burillo, J.; Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882–6890. [Google Scholar] [CrossRef]
- Nieto, G.; Huvaere, K.; Skibsted, L.H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. Eur. Food Res. Technol. 2011, 233, 11–18. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Antigoni, O.; Dimitrios, T.; Vassiliki, O. Chapter 15—Extraction of Polyphenols from Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 243–295. [Google Scholar]
- Hcini, K.; Lozano-Pérez, A.A.; Luis Cenis, J.; Quílez, M.; José Jordán, M. Extraction and Encapsulation of Phenolic Compounds of Tunisian Rosemary (Rosmarinus officinalis L.) Extracts in Silk Fibroin Nanoparticles. Plants 2021, 10, 2310. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.d.M.; Zago, M.; García-Martínez, E.; Martínez-Navarrete, N. Free and Bound Phenolic Compounds Present in Orange Juice By-Product Powder and Their Contribution to Antioxidant Activity. Antioxidants 2022, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Prasada Rao, U.J.S. Mango peel dietary fibre: Composition and associated bound phenolics. J. Funct. Foods 2013, 5, 444–450. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Hernández, G.V.; Cruz-Viera, L.; Comet-Rodríguez, R. Influence of operating conditions on the extraction of polyphenols from Moringa Oleifera Lam leaves. Rev. CENIC Cienc. Quím. 2015, 46, 135–145. [Google Scholar]
- Alu’Datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Mahasneh, M.A.; Ereifej, K.; Al-Karaki, G.; Al-Duais, M.; Andrade, J.E.; Tranchant, C.C.; Kubow, S.; et al. Profiles of free and bound phenolics extracted from: Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct. 2017, 8, 3187–3197. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Hcini, K.; Sotomayor, J.A.; Jordan, M.J.; Bouzid, S. Identification and Quantification of Phenolic Compounds of Tunisian Rosmarinus officinalis L. Asian J. Chem. 2013, 25, 9299–9301. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Navarrete, A.; Herrero, M.; Martin, A.; Cocero, M.J.; Ibaňez, E. Valorization of solid wastes from essential oil industry. J. Food Eng. 2011, 104, 196–201. [Google Scholar] [CrossRef]
- Jordan, M.J.; Lax, V.; Rota, M.C.; Loran, S.; Sotomayor, J.A. Relevance of carnosic acid, carnosol and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef] [PubMed]
- Ben Farhat, M.; Jordán, M.J.; Chaouech-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Variations in essential oil, phenolic compounds and antioxidant activity of Tunisian cultivated Salvia officinalis L. J. Agric. Food Chem. 2009, 57, 10349–10356. [Google Scholar] [CrossRef] [PubMed]
- Almela, L.; Sánchez-Muňoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatography-mass spectrometry analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Generalić, I.; Skroza, D.; Ljubenkov, I.; Katalinić, A.; Burčul, F.; Katalinic, V. Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian sage. Food Chem. 2011, 127, 427–433. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Extract Yield (mg DME/g DPW) | Total Phenolic Content (TPC, mg GAE/g PDW) | DPPH (IC50, μg/mL) | FRAP (mMF2+/mg) | |
---|---|---|---|---|
JKK | 123.40 ± 13.27 | 126.7 ± 34.3 | 42.97 ± 2.10 | 50.21 ± 2.40 |
JHK | 123.29 ± 16.55 | 107.84 ± 14.6 | 45.64 ± 2.29 | 42.22 ± 0.69 |
Λ (nm) | RT (min) | Phenolic Compounds (mg/g) | Molecular Formula | JKK | JHK |
---|---|---|---|---|---|
280 | 10 | Salvianolic acid | C26H22O10 | 0.93 ± 0.10 a | 0.93 ± 0.24 a |
330 | 18.81 | Caffeic acid | C9H8O4 | 0.92 ± 0.10 a | 0.61 ± 007 b |
330 | 26.66 | Luteolin-7-O-Neohesperidoside | C27H30O15 | 7.10 ± 1.61 a | 7.25 ± 1.24 a |
330 | 30.77 | Apigenin-7-Neohesperidoside | C27H30O14 | 2.75 ± 0.76 a | 3.13 ±0.90 a |
280 | 32.54 | Diosmin | C28H32O15 | 33.80 ± 15.90 a | 24.26 ± 6.65 a |
330 | 33.3 | Apegenin-7-Glucoronide | C21H18O11 | 6.23 ± 1.31 a | 7.94 ± 2.09 b |
330 | 34.62 | Rosmarinic acid | C18H16O8 | 26.29 ± 3.66 a | 22.01 ± 3.23 b |
330 | 39.81 | 6-hydroxy-apegenin | C15H10O6 | 4.22 ± 2.08 a | 3.97 ± 1.59 a |
280 | 41.26 | Eridictyol | C15H12O6 | 2.62 ± 0.45 a | 2.71 ± 0.42 a |
330 | 42.17 | Quercetin | C15H10O7 | 6.61 ± 0.74 a | 5.81 ± 1.38 a |
330 | 45.52 | Apigenin | C15H10O5 | 1.44 ± 0.31 a | 1.43 ± 0.19 a |
330 | 49.13 | Luteolin-7-methyl-ether | C16H12O6 | 0.76 ± 0.08 a | 0.59 ± 0.16 b |
280 | 50.06 | Olivetol | C11H16O2 | 5.76 ± 1.02 a | 5.26 ±1.00 a |
330 | 52.55 | Genkwanin | C16H12O5 | 0.89 ± 0.20 a | 069 ± 0.15 b |
Phenolic Compounds | DPPH |
---|---|
Salvianolic acid | −0.13 |
Caffeic acid | 0.93 * |
Luteolin-7-O-Neohesperidoside | −0.10 |
Apigenin-7-Neohesperidoside | −0.23 |
Diosmin | 0.60 |
Apegenin-7-Glucoronide | −0.81 * |
Rosmarinic acid | 0.83 * |
6-hydroxy-apegenin | 0.48 |
Eridictyol | −0.31 |
Quercetin | 0.78 |
Apigenin | 0.30 |
Luteolin-7-methyl-ether | 0.82 * |
Olivetol | 0.24 |
Genkwanin | 0.50 |
TPC | 0.86 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hcini, K.; Bahi, A.; Zarroug, M.B.; Farhat, M.B.; Lozano-Pérez, A.A.; Cenis, J.L.; Quílez, M.; Stambouli-Essassi, S.; Jordán, M.J. Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity. Molecules 2022, 27, 8791. https://doi.org/10.3390/molecules27248791
Hcini K, Bahi A, Zarroug MB, Farhat MB, Lozano-Pérez AA, Cenis JL, Quílez M, Stambouli-Essassi S, Jordán MJ. Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity. Molecules. 2022; 27(24):8791. https://doi.org/10.3390/molecules27248791
Chicago/Turabian StyleHcini, Kheiria, Abir Bahi, Monia Bendhifi Zarroug, Mouna Ben Farhat, Antonio Abel Lozano-Pérez, José Luis Cenis, María Quílez, Sondes Stambouli-Essassi, and Maria José Jordán. 2022. "Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity" Molecules 27, no. 24: 8791. https://doi.org/10.3390/molecules27248791
APA StyleHcini, K., Bahi, A., Zarroug, M. B., Farhat, M. B., Lozano-Pérez, A. A., Cenis, J. L., Quílez, M., Stambouli-Essassi, S., & Jordán, M. J. (2022). Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity. Molecules, 27(24), 8791. https://doi.org/10.3390/molecules27248791