Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzyme Selection
2.2. Determination of the Optimal Hydrolysis Process
2.2.1. Single-Factor Experiments
2.2.2. Orthogonal Experiments
2.3. LC-MS/MS Screening to Identify the Structure of the ACE Inhibitory Peptide
2.4. Toxicity and Allergenicity Prediction of Peptides
2.5. Molecular Docking of the ACE Inhibitory Peptide
2.6. In Vitro Inhibition Rate Activity of the Synthetic Peptides
2.7. Synthetic Peptide Anti-Gastrointestinal Enzyme Stability
3. Materials and Methods
3.1. Materials and Reagents
3.2. Screening of Hydrolytic Enzymes
3.3. Isolation of Crude Protein Extract
3.4. Process Optimization for the Proteolytic Hydrolysis of XSM
3.4.1. Hydrolysis Determination
3.4.2. ACE Inhibitory Activity Assay
3.4.3. Single-Factor Experiments
3.4.4. Orthogonal Experiments
3.5. Identification and Screening of the Structure of Potential Peptides from XSM by LC-MS/MS
3.5.1. Sample Preparation
3.5.2. Chromatographic Analysis
3.5.3. Data Acquisition
3.6. Toxicity and Allergenicity Prediction of Peptides
3.7. Molecular Docking of ACE Binding Sites
3.8. Peptide Synthesis
3.9. Stability of ACE Inhibitory Peptides during In Vitro Simulated Digestion
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ngo, D.H.; Vo, T.S.; Ryu, B.M.; Kim, S.K. Angiotensin-i-converting enzyme (ace) inhibitory peptides from pacific cod skin gelatin using ultrafiltration membranes. Process Biochem. 2016, 51, 1622–1628. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem. 2018, 256, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Wang, S.; Jing, L.; Yao, D. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chem. 2016, 211, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Bougatef, A.; Nedjar-Arroume, N.; Ravallec-Ple, R.; Leroy, Y.; Guillochon, D.; Barkia, A.; Nasri, M. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 2008, 111, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Véronique, L.; Karine, R.; Taupin, L.; Haras, D.; Allaume, P. A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem. 2010, 118, 870–875. [Google Scholar] [CrossRef]
- Ferreira, I.M.P.L.V.O.; Pinho, O.; Mota, M.V.; Tavares, P.; Pereira, A.; Gon Alves, M.P. Preparation of ingredients containing an ace-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Dairy J. 2007, 17, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Wanezaki, K.; Kawato, A.; Imayasu, S. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotechnol. Biochem. 1994, 58, 1767–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Liu, Y.; Li, Y.; Wang, X.; Zheng, Y.; Xu, J.; Sang, S.; Liu, Y. A Novel Antihypertensive Pentapeptide Identified in Quinoa Bran Globulin Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability against Different Food-Processing Conditions. Nutrients 2022, 14, 2420. [Google Scholar] [CrossRef]
- Maruyama, S.; Suzuki, H. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of Casein. J. Agric. Chem. Soc. Jap. 1982, 46, 1393–1394. [Google Scholar]
- Venegas-Calerón, M.; Ruíz-Méndez, M.V.; Martínez-Force, E.; Garcés, R.; Salas, J.J. Characterization of Xanthoceras sorbifolium Bunge seeds: Lipids, proteins and saponins content. Ind. Crops Prod. 2017, 109, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, X.; Wei, X.; Wang, M.; Chen, L.; Cao, S. Triterpenoid saponins from Xanthoceras sorbifolia Bunge and their inhibitory activity on human cancer cell lines. Bioorg. Med. Chem. Lett. 2012, 22, 5232–5238. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xue, S.; Yu, Z.; Ding, L.; Li, J.; Liu, J. Novel ACE inhibitors derived from soybean proteins using in silico and in vitro studies. J. Food Biochem. 2019, 43, e12975. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Fu, X.; Li, S.; Wei, J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 2017, 75, 93–99. [Google Scholar] [CrossRef]
- Kim, H.S.; Je, J.G.; Ryu, B.M.; Kang, N.; Fernando, I.P.S.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Oh, J.; Lee, G.T.; Jeon, Y. Antioxidant and angiotensin-I converting enzyme inhibitory peptides from Hippocampus abdominalis. Eur. Food Res. Technol. 2019, 245, 479–487. [Google Scholar] [CrossRef]
- Chen, J.B.; Yu, X.D.; Chen, Q.Z.; Wu, Q.Y.; He, Q.T. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem. 2022, 370, 131070. [Google Scholar] [CrossRef] [PubMed]
- Panjaitan, F.C.A.; Gomez, H.L.R.; Chang, Y.W. In Silico Analysis of Bioactive Peptides Released from Giant Grouper (Epinephelus lanceolatus) Roe Proteins Identified by Proteomics Approach. Molecules 2018, 23, 2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbernón, B.; Serrano, A.; Bueno-Crespo, A.; Abellán, J.L.; Pérez-Sánchez, H.; Cecilia, J.M. METADOCK 2: A high-throughput parallel metaheuristic scheme for molecular docking. Bioinformatics 2021, 37, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Alzeyoudi, S.A.R.; Almutawa, S.A.; Alnajjar, A.N.; Al Dhaheri, Y.; Vijayan, R. Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An In Silico and In Vitro Study. Biomolecules 2020, 10, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Wang, X.; Zhuang, Y.; Li, Y.; Tian, H.; Shi, P.; Li, G. Isolation of Novel ACE-Inhibitory and Antioxidant Peptides from Quinoa Bran Albumin Assisted with an In Silico Approach: Characterization, In Vivo Antihypertension, and Molecular Docking. Molecules 2019, 24, 4562. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.Y.; Feng, X.W.; Cheng, Q.L.; Zhao, X.H.; Li, G.M.; Gu, R.Z. Identification and action mechanism of low-molecular-weight peptides derived from Atlantic salmon (Salmo salar L.) skin inhibiting angiotensin I-converting enzyme. LWT 2021, 150, 111911. [Google Scholar] [CrossRef]
- Dadzie, R.G.; Ma, H.; Abano, E.E.; Qu, W.J.; Mao, S.Y. Optimization of process conditions for production of angiotensin I-converting enzyme (ACE) inhibitory peptides from vital wheat gluten using response surface methodology. Food Sci. Biotechnol. 2013, 22, 1531–1537. [Google Scholar] [CrossRef]
- Guo, Y.X.; Pan, D.D.; Tanokura, M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem. 2008, 114, 328–333. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Arya, S.S. Citrullus lanatus protein hydrolysate optimization for antioxidant potential. Food Meas. 2017, 11, 1834–1843. [Google Scholar] [CrossRef]
- Deng, J.J.; Sun, T.; Cao, W.; Fan, D.D.; Cheng, N.; Wang, B.N.; Gao, H.; Yang, H.X. Extraction Optimization and Functional Properties of Proteins from Kiwi Fruit (Actinidia chinensis Planch.) Seeds. Int. J. Food Prop. 2014, 17, 1612–1625. [Google Scholar] [CrossRef]
- Huang, Q.; Li, S.G.; Teng, H.; Jin, Y.J.; Ma, M.H.; Song, H.B. Optimizing preparation conditions for Angiotensin-I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of ovalbumin. Food Sci. Biotechnol. 2015, 24, 2193–2198. [Google Scholar] [CrossRef]
- Sun, H.J.; Chen, Z.; Wen, P.; Lei, H.; Shi, J.; Huang, M.; Wang, J. Optimization of Enzymatic Hydrolysis Conditions for Preparation of Gingko Peptides from Ginkgo Nuts. Int. J. Food Eng. 2012, 8, 1–15. [Google Scholar] [CrossRef]
- Tian, L.; Liu, J.; Ma, L.; Zhang, L.; Wang, S.; Yan, E.; Zhu, H. Isolation and Purification of Antioxidant and ACE-Inhibitory Peptides from Yak (Bos grunniens) Skin. J. Food Process. Preserv. 2017, 41, e13123. [Google Scholar] [CrossRef]
- Paisansak, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). J. Food Sci. Technol. 2021, 58, 85–97. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointesti-nal protease hydrolysate of silkworm pupa (Bombyx mori) protein:Biochemical characterization and molecular docking study. Peptides 2015, 68, 17–24. [Google Scholar] [CrossRef]
- Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 2003, 421, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Glowacki, E.D.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N.S. Hydrogen-bonds in molecular solids from biological systems to organic electronics. J. Mater. Chem. B 2013, 1, 3742–3753. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yin, R.; Howell, K.; Zhang, P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1150–1187. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mora, P.; Martin-Martinez, M.; Bonache, M.A.; GonzalezMuniz, R.; Penas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Li, B. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innov. Food Sci. Emerg. Technol. 2012, 16, 341–348. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.A.; Ramos, M.; Recio, I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int. Dairy J. 2004, 14, 1075–1080. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, C.; Sun-Waterhouse, D.; Zhao, T.; Waterhouse, G.I.N.; Zhao, M.; Su, G. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein Isolate: Their production conditions and in silico molecular docking with ACE. Food Chem. 2021, 345, 128855. [Google Scholar] [CrossRef]
- He, Z.Q.; Liu, G.; Qiao, Z.J.; Cao, Y.; Song, M.Y. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated from Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. Front. Nutr. 2021, 646, 746113. [Google Scholar] [CrossRef]
- Li, X.D.; Niu, Z.X.; Zhang, B.L. Comparison of three methods for determining the degree of hydrolysis of whey protein hydrolysate. Zhonggue Rupin Gongye 2006, 34, 59–62. [Google Scholar]
- Zhao, M.M.; Lai, C.R.; Cui, C. Improved Method for High-performance Liquid Chromatography Assay of Angiotensin I Converting Enzyme Inhibitory Activity. Xiandai Shipin Keji 2013, 29, 2742–2746. [Google Scholar]
Enzyme Protein | 2SS_SOYBN 1 | ALB1_SOYBN 2 | ALB1_PSOTE 3 | |||
---|---|---|---|---|---|---|
DH 4 (%) | AE 5 | DH (%) | AE | DH (%) | AE | |
Alkaline protease | 25.58 | 0.0227 | 16.19 | 0.0115 | 24.35 | 0.0155 |
Pepsin | 11.54 | - | 9.25 | - | 8.29 | 0.0052 |
V-8 protease | 3.88 | - | 9.83 | 0.0057 | 4.17 | - |
Trypsin | 7.52 | - | 13.87 | 0.0015 | 11.40 | 0.0052 |
Plasmin | 6.98 | - | 13.95 | 0.0116 | 11.40 | 0.0052 |
Sequence | Scores | Theor m/z (Da) | Retention Times | Peak Areas | Toxicity | Allergenicity | Docking Energies (Kcal/mol) |
---|---|---|---|---|---|---|---|
AEQPPLFDGT | 96.3 | 537.7587 | 30.951 | 3611.79 | Non-Toxin | Non-allergen | 18.86 |
GMVRELIVNVG | 57.4 | 396.2253 | 35.259 | 2180.64 | Non-Toxin | Non-allergen | 22.38 |
LCLELVNGVI | 52.4 | 358.2072 | 32.474 | 19,001.02 | Non-Toxin | Allergen | 6.79 |
GGLPGFDPA | 25.8 | 415.7058 | 33.917 | 4160.98 | Non-Toxin | Non-allergen | −0.53 |
VTYPIIADPN | 29.9 | 551.7926 | 33.584 | 23,527.62 | Non-Toxin | Non-allergen | 12.27 |
IMAVLAIVL | 50.9 | 471.8065 | 38.362 | 2554.76 | Non-Toxin | Non-allergen | −5.38 |
INPILLPK | 31.6 | 454.3024 | 31.137 | 2336.7 | Non-Toxin | Non-allergen | −1.73 |
ETYFIVR | 32.1 | 464.2504 | 31.709 | 3716.81 | Non-Toxin | Non-allergen | −3.38 |
TVWPGIQPN | 27.1 | 506.2665 | 31.287 | 9670.05 | Non-Toxin | Allergen | 4.11 |
IAICNGVL | 19.6 | 401.7282 | 10.161 | 9542.85 | Non-Toxin | Non-allergen | −5.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Liu, D.; Xie, H.; Zhang, X.; Han, X.; Lv, Z. Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method. Molecules 2022, 27, 8792. https://doi.org/10.3390/molecules27248792
Mu Y, Liu D, Xie H, Zhang X, Han X, Lv Z. Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method. Molecules. 2022; 27(24):8792. https://doi.org/10.3390/molecules27248792
Chicago/Turabian StyleMu, Yihan, Dongwei Liu, Huaping Xie, Xinyu Zhang, Xue Han, and Zhaolin Lv. 2022. "Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method" Molecules 27, no. 24: 8792. https://doi.org/10.3390/molecules27248792
APA StyleMu, Y., Liu, D., Xie, H., Zhang, X., Han, X., & Lv, Z. (2022). Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method. Molecules, 27(24), 8792. https://doi.org/10.3390/molecules27248792