Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jin, B.; Sung, G.W.; Jang, Y.J. Binding Mode of Proflavine to DNA Probed by Polarized Light Spectroscopy. J. Chin. Chem. Soc. 2019, 66, 391–395. [Google Scholar] [CrossRef]
- Kožurková, M.; Sabolová, D.; Kristian, P. A Review on Acridinylthioureas and Its Derivatives: Biological and Cytotoxic Activity. J. Appl. Toxicol. 2017, 37, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Calberg-Bacq, C.M.; Siquet-Descans, F.; Piette, J.; Van de Vorst, A. Free Radical Induction in Bacteriophage øX174 DNA after Exposure to Proflavine and Visible Light. Biochim. Biophys. Acta BBA Nucleic Acids Protein Synth. 1977, 477, 239–249. [Google Scholar] [CrossRef]
- Piette, J.; Lopez, M.; Bacq, C.M.C.; Van de Vorst, A. Mechanism for Strand-Break Induction in DNA-Proflavine Complexes Exposed to Visible Light. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1981, 40, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Piette, J.; Decuyper, J.; Machiroux, R.; Calberg-Bacq, C.M.; Van de Vorst, A.; Lion, Y. Visible-Light-Induced OH Radicals in DNA-Proflavine Complexes: An e.p.r. and Spin Trapping Study. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1982, 42, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Gatasheh, M.K.; Kannan, S.; Hemalatha, K.; Imrana, N. Proflavine an Acridine DNA Intercalating Agent and Strong Antimicrobial Possessing Potential Properties of Carcinogen. Karbala Int. J. Mod. Sci. 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Ferguson, L.R.; Denny, W.A. The Genetic Toxicology of Acridines. Mutatation Res. 1991, 258, 123–160. [Google Scholar] [CrossRef]
- Tsankov, N.; Kazandjieva, J.; Drenovska, K. Drugs in Exacerbation and Provocation of Psoriasis. Clin. Dermatol. 1998, 16, 333–351. [Google Scholar] [CrossRef]
- Demeunynck, M. Antitumor Acridines. Expert Opin. Ther. Pat. 2004, 14, 55–70. [Google Scholar] [CrossRef]
- Goodell, J.R.; Madhok, A.A.; Hiasa, H.; Ferguson, D.M. Synthesis and Evaluation of Acridine- and Acridone-Based Anti-Herpes Agents with Topoisomerase Activity. Bioorgan. Med. Chem. 2006, 14, 5467–5480. [Google Scholar] [CrossRef]
- Tonelli, M.; Vettoretti, G.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Busonera, B.; Ouhtit, A.; Farci, P.; Blois, S.; et al. Acridine Derivatives as Anti-BVDV Agents. Antivir. Res. 2011, 91, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Lerman, L.S. Structural Considerations in the Interaction of DNA and Acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Aslanoglu, M. Electrochemical and Spectroscopic Studies of the Interaction of Proflavine with DNA. Anal. Sci. 2006, 22, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, I.B.; Finkelstein, I.H. Proflavine Inhibition of Protein Synthesis. J. Biol. Chem. 1967, 242, 3757–3762. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Chaires, J. Analysis of Drug-DNA Binding Data. Methods Enzymol. 2000, 321, 353–369. [Google Scholar] [PubMed]
- Prasher, P.; Sharma, M. Medicinal Chemistry of Acridine and Its Analogues. Medchemcomm 2018, 9, 1589–1618. [Google Scholar] [CrossRef]
- Ananthanarayanan, K.; Selvaraju, C.; Natarajan, P. Novel Excited State Proton Transfer Reaction Observed for Proflavine Encapsulated in the Channels of Modified MCM-41. Microporous Mesoporous Mater. 2007, 99, 319–327. [Google Scholar] [CrossRef]
- Ananthanarayanan, K.; Natarajan, P. Fabrication and Photophysical Studies of Phenosafranine and Proflavine Dyes Encapsulated in Mesoporous MCM-41 along with Titanium Dioxide Nanoparticles. Microporous Mesoporous Mater. 2009, 124, 179–189. [Google Scholar] [CrossRef]
- Ghosh, T.; Slanina, T.; Konig, B. Visible Light Photocatalytic Reduction of Aldehydes by Rh(iii)-H: A Detailed Mechanistic Study. Chem. Sci. 2015, 6, 2027–2034. [Google Scholar] [CrossRef] [Green Version]
- Tokumura, K.; Matsushita, Y. Triplet-Sensitized Deoxygenation Reaction of 6-Cyanophenanthridine 5-Oxide in Ethanol. J. Photochem. Photobiol. A Chem. 2001, 140, 27–32. [Google Scholar] [CrossRef]
- Strauss, G.; Broyde, S.B.; Kurucsev, T. Concentration Quenching of Proflavine Hydrochloride in Dry Films of Sodium Deoxyribonucleate and Poly(Vinyl Alcohol). J. Phys. Chem. 1971, 75, 2727–2733. [Google Scholar] [CrossRef]
- Ramstein, J.; Ehrenberg, M.; Rigler, R. Fluorescence Relaxation of Proflavin-Deoxyribonucleic acid Interaction. Kinetic Properties of a Base-Specific Reaction. Biochemistry 1980, 19, 3938–3948. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.G.; Netz, P.A. Docking Studies on DNA-Ligand Interactions:Building and Application of a Protocol to Identify the Binding Mode. J. Chem. Inf. Model. 2009, 49, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Disteche, C.; Bontemps, J.; Houssier, C.; Frederic, J.; Fredericq, E. Quantitative Analysis of Fluorescence Profiles of Chromosomes. Influence of DNA Base Composition on Banding. Exp. Cell Res. 1980, 125, 251–264. [Google Scholar] [CrossRef]
- Jain, S.S.; LaFratta, C.N.; Medina, A.; Pelse, I. Proflavine–DNA Binding Using a Handheld Fluorescence Spectrometer: A Laboratory for Introductory Chemistry. J. Chem. Educ. 2013, 90, 1215–1217. [Google Scholar] [CrossRef]
- Qu, X.; Chaires, J.B. Hydration Changes for DNA Intercalation Reactions. J. Am. Chem. Soc. 2001, 123, 1–7. [Google Scholar] [CrossRef]
- Jain, S.S.; Anet, F.A.; Stahle, C.J.; Hud, N.V. Enzymatic Behavior by Intercalating Molecules in a Template-Directed Ligation Reaction. Angew. Chem. Int. Ed. 2004, 43, 2004–2008. [Google Scholar] [CrossRef]
- Sutherl, B.M.; Sutherland, J.C. Mechanisms of Inhibition of Pyrimidine Dimer Formation in Deoxyribonucleic Acid by Acridine Dyes. Biophys. J. 1969, 9, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Setlow, R.B.; Carrier, W.L. Formation and Destruction of Pyrimidine Dimers in Polynucleotides by Ultra-Violet Irradiation in the Presence of Proflavine. Nature 1967, 213, 906–907. [Google Scholar] [CrossRef]
- Kumar, K.S.; Selvaraju, C.; Malar, E.J.; Natarajan, P. Existence of a New Emitting Singlet State of Proflavine: Femtosecond Dynamics of the Excited State Processes and Quantum Chemical Studies in Different Solvents. J. Phys. Chem. A 2012, 116, 37–45. [Google Scholar] [CrossRef]
- Kumar, V.; Sengupta, A.; Gavvala, K.; Koninti, R.K.; Hazra, P. Spectroscopic and Thermodynamic Insights into the Interaction between Proflavine and Human Telomeric G-Quadruplex DNA. J. Phys. Chem. B 2014, 118, 11090–11099. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Li, J.; Huang, G.; Yan, L.; Ma, J. Interacting Mechanism of Benzo(a)pyrene with Free DNA In Vitro. Int. J. Biol. Macromol. 2021, 167, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Pan, H.-F.; Xu, J.-H.; Chen, J.-Q. Long Chain Fatty Acid Affects Excited State Branching in Bilirubin-Human Serum Protein Complex. Chin. J. Chem. Phys. 2021, 34, 621–627. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.-Y.; He, X.-X.; Chen, J.-Q. Ultrafast Excited State Dynamics of Biliverdin Dimethyl Ester Coordinate with Zinc Ions. Chin. J. Chem. Phys. 2020, 33, 69–74. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Lv, M.; Zhou, Z.; Pan, H.; Chen, J. Direct Observation of a Singlet ππ* and nπ* Equilibrium State in 2-Amino-1,3,5-Trainzine Solution. Chin. J. Chem. Phys. 2022, 35, 747–753. [Google Scholar]
- MoradpourHafshejani, S.; Hedley, J.H.; Haigh, A.O.; Pike, A.R.; Tuite, E.M. Synthesis and Binding of Proflavine Diazides as Functional Intercalators for Directed Assembly on DNA. RSC Adv. 2013, 3, 18164–18172. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Jia, Y.; Wang, X.; Jia, M.; Pan, H.; Sun, Z.; Chen, J. Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex. Molecules 2022, 27, 8157. https://doi.org/10.3390/molecules27238157
Zhou J, Jia Y, Wang X, Jia M, Pan H, Sun Z, Chen J. Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex. Molecules. 2022; 27(23):8157. https://doi.org/10.3390/molecules27238157
Chicago/Turabian StyleZhou, Jie, Yanyan Jia, Xueli Wang, Menghui Jia, Haifeng Pan, Zhenrong Sun, and Jinquan Chen. 2022. "Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex" Molecules 27, no. 23: 8157. https://doi.org/10.3390/molecules27238157
APA StyleZhou, J., Jia, Y., Wang, X., Jia, M., Pan, H., Sun, Z., & Chen, J. (2022). Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex. Molecules, 27(23), 8157. https://doi.org/10.3390/molecules27238157