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Abstract: A new triazaisotruxene-based porous organic polymer (POP) was designed and successfully
synthesized by a FeCl3-promoted crosslinking reaction. As a result of its porosity and good thermal
stability, the designed POP can be utilized as a promising adsorbent for iodine, not only in the gaseous
phase, but also in organic and aqueous solutions. Compared to its triazatruxene (TN) analogue, the
ITN-based POP shows equal iodine uptake in the gaseous phase and in hexane solution, and better
uptake in aqueous solution.

Keywords: porous organic polymers (POPs); triazaisotruxene; triazatruxene; crosslinking; iodine capture

1. Introduction

Porous organic polymers (POPs), which are composed of lightweight elements linked
by strong covalent bonds, have become a research hotspot in recent years [1–8]. As a result
of their large specific surface area, tunable pore sizes, and good thermal and chemical stabil-
ity, POPs are extensively applied in various fields, such as gas storage and separation [9–12],
pollutant removal [13–17], organic electronics [18–20], heterogeneous catalysis [21–25], etc.
In order to endow them with new functionalities, the design and synthesis of POPs bearing
novel structural motifs, especially polycyclic aromatic cores, is highly desired.

Among various polycyclic aromatic molecules, triazatruxene (TN) is a fully aromatic
compound with a C3h symmetrical structure, which can be regarded as an indole cyclo-
trimer [26,27]. TN and its derivatives have been frequently used in the fields of liquid
crystals [28], non-linear optics [29], organic light-emitting diodes (OLEDs) [30,31], organic
field-effect transistors (OFETs) [32], organic photovoltaic (OPV) cells [33,34], etc. Moreover,
TN has also been applied as a building unit for cage molecules and porous materials [35–38].
As an isomer of TN, triazaisotruxene (ITN) bears a triindole skeleton but features an
asymmetrical structure [39]. Specifically, two NH groups are adjacent to each other, which
result in chelating effects. Compared with the broad research interest in TN, little attention
has been paid to the properties and applications of ITN, although it was first synthesized at
nearly the same time as TN by Bergman et al. about 40 years ago [40]. So far, research on
ITN is essentially an unexplored area.

To overcome the energy shortages and environmental concerns originating from the
burning of fossil fuels, the use of reliable nuclear power has been growing. However,
radioactive substances emitted from nuclear plants are severely hazardous to the natural
environment and to human health. 129I and 131I formed by the fission of uranium atoms
are the two main ingredients of nuclear waste, especially 129I, which has an ultra-long ra-
dioactive half-life (t1/2 = 1.57 × 107 years) [41]. Thus, the search for appropriate adsorbents
to capture iodine with long-term storage is crucial. Although various adsorbents such
as silver zeolites [42,43], activated carbons [44,45], mesoporous silica [46,47], and metal
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organic frameworks (MOFs) [48,49] have been employed for iodine capture, POPs are still
attractive candidates in this field because of their inherent properties [50,51].

Herein, we report the synthesis of a new ITN-based porous organic polymer through
a FeCl3-promoted crosslinking reaction. After structural characterization, a morphological
study, and an assessment of its thermal stability, ITNs potential in iodine capture is fully
investigated. In the meantime, a porous organic polymer with a TN core is synthesized for
comparison. Overall, the ITN-based porous organic polymer shows better or equal iodine
capture ability in various tests.

2. Results and Discussion
2.1. Synthesis and Characterization of ITN-POP and TN-POP

The synthetic routes for ITN-POP are shown in Scheme 1. An ITN monomer was
prepared according to a procedure reported in [52]; then, it was reacted with formalde-
hyde dimethyl acetal (FDA) to obtain a crosslinking polymer. FT-IR analysis and 13C
cross-polarization magic-angle spinning (CP/MAS) NMR measurements verified the suc-
cessful synthesis of ITN-POP. In the FT-IR spectrum (Figure 1a), the peak at approximately
3400 cm−1 corresponded to the N-H stretching mode. The signals at 1670 cm−1, 1590 cm−1,
and 1461 cm−1 were attributed to the stretching vibration of the aromatic ring. Notably, the
saturated C-H vibration signals at around 2900–3000 cm−1 were attributed to the methylene
linkers, indicating that the polymer was highly crosslinked. The CP/MAS NMR spectrum
showed signals at 105–145 ppm assigned to aromatic moieties. Moreover, the broad peaks in
the upfield region could be attributed to the methylene carbons between aryl groups and C
(sp3)-O carbons (Figure 1b). In order to further investigate the elementary composition and
the bonding types of ITN-POP, elemental analysis and X-ray photoelectron spectroscopy
(XPS) measurements were conducted, confirming the existence of C, N, and O elements
(Table S1, Figure 1c). The deconvoluted C 1s core energy spectrum of ITN-POP showed
peaks at 284.80 eV and 285.53 eV that were ascribed to C-H/C-C and C-N. Meanwhile, the
high-resolution C 1s spectrum of ITN-POP displayed the binding energies at 286.47 eV and
290.14 eV, which could be assigned to C-O-C/C-O-H and π–π* excitation (Figure 1d). The
deconvoluted N 1s and O 1s core energy spectrum showed two peaks that were assigned
to C-N and C-O moieties, respectively (Figure 1e,f).
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ITN-POP was measured to be 502.1 m2/g, with a total pore volume of 0.33 cm3/g. Scanning 
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ogy (Figure 2c). Its amorphous structure was further confirmed by its powder X-ray dif-
fraction (PXRD) profile, which did not exhibit any assignable peaks (Figure 2d). 
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Figure 1. (a) FT-IR spectrum of ITN and ITN-POP; (b) Solid-state 13C CP/MAS NMR spectrum
of ITN-POP; (c) XPS survey scan of ITN-POP; (d) C 1s of ITN-POP; (e) N 1s of ITN-POP; (f) O 1s
of ITN-POP.

Thermogravimetric analysis (TGA) showed that ITN-POP was stable up to 406 ◦C
(10% weight loss, Figure 2a). The N2 adsorption and desorption isotherms of ITN-POP
at 77K showed a steep nitrogen gas uptake at a low relative pressure (P/P0 < 0.1) with
hysteresis loops, indicating the presence of a high percentage of micropores and a minor
proportion of mesopores (Figure 2b). The Brunauer–Emmett–Teller (BET) surface area
of ITN-POP was measured to be 502.1 m2/g, with a total pore volume of 0.33 cm3/g.
Scanning electron microscopy (SEM) images demonstrated that ITN-POP has an irregular
morphology (Figure 2c). Its amorphous structure was further confirmed by its powder
X-ray diffraction (PXRD) profile, which did not exhibit any assignable peaks (Figure 2d).
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TN-POP was synthesized and characterized in the same manner as ITN-POP (Schemes 1
and S1, Figures 3 and 4). In the FT-IR spectrum (Figure 3a), the peak at approximately
3400 cm−1 corresponded to the N-H stretching mode. The signals at around 1456 cm−1 and
1600 cm−1 were ascribed to the stretching vibration of the aromatic ring. Moreover, the
saturated C-H vibration signals at around 2900–3000 cm−1 were attributed to methylene
linkers and can also be found as evidence for successful crosslinking. In the CP/MAS
NMR spectrum, the signals at 100–150 ppm can be attributed to aromatic carbons. The
broad peaks in the upfield region could be attributed to the methylene carbons between
aryl groups and C (sp3)-O carbons (Figure 3b). Elemental analysis and X-ray photoelectron
spectroscopy (XPS) measurements demonstrated that TN-POP consists of C, N, and O
elements (Table S1, Figure 3c–f). Thermogravimetric analysis (TGA) showed that TN-
POP was stable up to 387 ◦C (10% weight loss, Figure 4a). From the N2 adsorption
and desorption isotherms of TN-POP (Figure 4b), the BET surface areas and total pore
volumes were calculated to be 354.5 m2/g and 0.41 cm3/g, respectively. Scanning electron
microscopy (SEM) images revealed that TN-POP has an irregular morphology (Figure 4c).
In addition, its amorphous structure was further proven by its powder X-ray diffraction
(PXRD) profile (Figure 4d).

2.2. Iodine Capture of ITN-POP and TN-POP

Considering their porous character and remarkable stability, ITN-POP and TN-POP
could be promising absorbents for iodine. Thus, the iodine vapor-trapping capacities of
these porous polymers were evaluated by gravimetric measurements. First, 20 mg of ITN-
POP and TN-POP samples were placed in separate pre-weighed glass vials and exposed
to a sealed container with excess iodine at 75 ◦C under an ordinary atmosphere, which
are representative reprocessing conditions. As the iodine was captured, the color of the
samples gradually changed from brown to black. The iodine-loaded samples were assessed
by gravimetric measurements at selected time intervals, the results indicated that the iodine
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uptake of ITN-POP and TN-POP increased rapidly in the first 5 h, and the adsorption
equilibrium was reached after 24 h. The equilibrium iodine uptakes for ITN-POP and
TN-POP were measured to be 180 wt% and 170 wt%, respectively (Figure 5a), which are
comparable to some metal–organic frameworks (MOFs) [53], nanoporous organic polymers
(NOPs) [54], and conjugated microporous polymer nanotubes (CMPNs) [55].
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show the color change when ITN-POP and TN-POP were exposed to iodine vapor for 24 h; (b) Iodine
adsorption by ITN-POP and TN-POP in cyclohexane solutions (300 mg L−1); (c,d) Kinetic stud-
ies of iodine adsorption by ITN-POP (c) and TN-POP (d) in cyclohexane solutions with different
concentrations (100–500 mg L−1).

In addition, the iodine adsorption capacities of ITN-POP and TN-POP in an organic
solution were investigated. Five-milligram ITN-POP and TN-POP samples were added
separately to an iodine–hexane solution with a concentration of 300 mg L−1 at room
temperature. UV–Vis spectroscopy was used to evaluate the uptake and removal rate of
iodine. The color of the iodine–hexane solutions gradually faded as the experiments went
on (Figures S1 and S2). From the monitoring data, it was revealed that the adsorption rates
of both POPs were relatively fast in the first 12 h, and then gradually slowed down until
equilibrium (Figure 5b). For the kinetic study, the fractal-like pseudo-first-order (FL-PFO)
model fitted the experimental data perfectly (R2 > 0.9990), revealing that the diffusion
through micropores was the rate-controlling mechanism [56]. The equilibrium adsorption
capacities for ITN-POP and TN-POP were evaluated to be 192.63 mg g−1 and 180.82 mg g−1,
respectively (Figure S3). According to the standard curve (Figure S4), the removal rate was
calculated to be about 60%. Moreover, the effect of different initial concentrations on iodine
adsorption were also explored (Figure 5c,d). For both POPs, a higher iodine concentration
in the solution resulted in a higher uptake value and a lower removal rate (Figure S5), and
it was revealed once again that the iodine adsorption capacity of ITN-POP was similar to
that of TN-POP.

Furthermore, the iodine adsorption capacities of ITN-POP and TN-POP in iodine-
saturated aqueous solution (1.14 mM) were also investigated. First, 10 mg ITN-POP and
TN-POP samples were immersed separately in 5 mL of saturated aqueous iodine solution,
and the adsorption process was monitored by UV–Vis spectroscopy (Figure 6a,b and S7).
During the experiment, an apparent color change in the aqueous iodine solution was
observed from brown to nearly colorless. The absorbance decreased quickly during the
first 1 h, and then gradually slowed down to 5 h (Figure 6c). The iodine removal rates for
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ITN-POP and TN-POP were 91.58% and 75.92%, respectively. The better uptake of ITN-POP
might be attributed to its NH alignment and the resulting chelating effects, through which
the porous material can extract iodine from a low-concentration solution more efficiently.
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Figure 6. (a) The adsorption drops at 461 nm for ITN-POP and TN-POP containing iodine aqueous
solutions; (b) Time-dependent adsorption profiles for ITN-POP and TN-POP in iodine saturated
aqueous solutions (1.14 mM); (c) Photographs showing the color change for iodine aqueous solutions
containing TN-POP (above) and ITN-POP (below).

3. Materials and Methods
3.1. General Information

All reagents and solvents were purchased from Energy Chemical Co., Ltd. (Shanghai,
China) or Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 1H NMR spectra were
recorded on a Bruker instrument (400 MHz) and internally referenced to a tetramethylsi-
lane signal. Fourier-transform infrared spectra were recorded with a Nicolet Is50 FT-IR
spectrophotometer. Solid-state 13C cross-polarization magic-angle spinning (CP/MAS)
nuclear magnetic resonance measurements were performed on a Bruker AVANCE 400 WB
MHz NMR system. X-ray photoelectron spectroscopy (XPS) measurements were performed
on an ESCALAB 250 X-ray photoelectron spectroscope, using Al-Kα X-ray as the excita-
tion source. Thermogravimetric analysis (TGA) profiles were recorded on a METTLER
TGA/SDTA 851 thermal analyzer. The nitrogen adsorption–desorption isotherms at 77 K
were measured using Micromeritics ASAP2460 analyzers, and the BET surface area was
estimated by Brunauer–Emmett–Teller (BET) theory. Scanning electron microscopy (SEM)
images were recorded using a Phenomenon LE electron microscope. Powder X-ray diffrac-
tion (PXRD) was recorded on a PANalytical X’pert PRO X-ray Diffractometer using Cu-Kα

radiation in the 2θ range of 10–90◦. Elemental analysis was calculated using Elementar
Vario EL Cube. UV–Vis absorption spectra were recorded using a SHIMADZU UV-1750
spectrophotometer.

3.2. Synthesis of ITN and ITN-POP

Synthesis of triazaisotruxene (ITN): Nitrosobenzene (11.0 g, 0.103 mol) was dissolved
in 40 mL dichloromethane (DCM) and added dropwise under stirring to the mixture of
indole (12.0 g, 0.102 mol) and chloroacetic acid (9.73 g, 0.103 mol) at room temperature.
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The reaction was kept for 12 h before working up. The resulting mixture was filtered
and washed with DCM to obtain a green solid. Then, the green solid was dissolved in
acetonitrile (30 mL), and phenylhydrazine (1.33 g, 12.3 mmol) was added. The mixture was
stirred at room temperature for 3 h. The resulting precipitate was filtered, washed with
DCM and dried under vacuum, affording ITN as a gray solid (2.42 g, 21% in 2 steps). 1H
NMR (400 MHz, DMSO-d6): δ 11.88 (s, 1H), 11.49 (s, 1H), 11.39 (s, 1H), 8.88–8.79 (m, 3H),
7.83 (m, 3H), 7.51–7.38 (m, 6H).

Synthesis of ITN-POP: Following a reported procedure in the literature [57], ITN
(500 mg, 1.45 mmol) was dissolved in anhydrous 1,2-dichloroethane (15 mL), then formalde-
hyde dimethyl acetal (0.73 mL, 8.69 mmol) and iron (III) chloride (1.41 g, 8.69 mmol) were
added. The mixture was stirred at room temperature for 1 h under nitrogen, and then
heated at 90 ◦C for 47 h. After cooling down to room temperature, methanol (50 mL) was
added. The resulting mixture was stirred for 1 h, and the precipitate was collected by
filtration. After washing with methanol, the obtained solid was vigorously stirred in an
aqueous HCl solution (37%) for 2 h. The suspension was then filtered and washed with
water, methanol, ethanol, acetone, and dichloromethane, in that order. After extraction
with methanol in a Soxhlet extractor for 24 h, and then with tetrahydrofuran for another
24 h, the desired ITN-POP was collected as a brown solid (0.49 g).

3.3. Iodine Adsorption Capacity Measurements
3.3.1. Iodine Vapor Uptake Capacity

First, 20 mg of ITN-POP or TN-POP was loaded into a glass vial, which was previously
weighed and located in a sealed container with excess solid iodine kept at the bottom. The
container was kept at 348.15 K at ambient pressure. After certain time intervals, the vial was
taken out and weighed, and then loaded back into vapor of iodine to continue adsorption.
The weight percentage of captured iodine was calculated through the following equation:

α = (m2 − m1)/m1 × 100%

where α represents the adsorption capacity, and m1 and m2 are the mass of ITN-POP or
TN-POP sample before and after iodine intake, respectively.

3.3.2. Iodine Adsorption from Solution

To evaluate the adsorption of dissolved iodine in cyclohexane, 5 mg of ITN-POP or
TN-POP was immersed in 5 mL of n-hexane solution (300 mg L−1) containing iodine for
48 h. The adsorption process of iodine was monitored by UV–Vis spectroscopy. Similarly,
for the iodine-saturated aqueous solution, 10 mg of ITN-POP or TN-POP was immersed
in the solution, and other operations were performed as previously described. The iodine
removal efficiency (%) was calculated through the following equation:

Iodine removal efficiency (%) = (C0 − Ct)/C0 × 100%

where C0 and Ct represent the concentration of iodine before and after adsorption, respec-
tively, which are proportional to absorbance.

4. Conclusions

In summary, we have synthesized a new triazaisotruxene-based porous organic poly-
mer (POP) and explored its potential for iodine capture. Compared to its triazatruxene
(TN) analogue, the ITN-based POP shows equal iodine uptake in the gaseous phase and in
hexane solution and better uptake in an aqueous solution. To the best of our knowledge,
this is the first example of a triazaisotruxene-based porous material. The research of its
applications in other fields, especially heterogeneous photocatalysis, is now ongoing in our
laboratory.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248722/s1. Scheme S1: Synthesis of TN and TN-
POP; Table S1: Elemental analysis of TN-POP and ITN-POP; Figure S1: UV-vis spectra of iodine
n-hexane solution containing TN-POP and ITN-POP (5 mg) at various times; Figure S2: Photographs
of iodine capture in iodine n-hexane solution; Figure S3: Non-linear plots for iodine capture process in
iodine n-hexane solution by fractal-like pseudo-first-order (FL-PFO) model: qt = qe (1 − exp(−ktα)).
P1, P2 and P3 represent the equilibrium adsorption capacity (qe, mg/g), the adsorption rate constant
(k, h−1) and the heterogeneity parameter of the surface (α), respectively; Figure S4: (a) UV-Vis
spectra of iodine n-hexane solution at different concentrations (left). (b) Standard curve plotted based
on the absorbance at 521 nm (right); Figure S5: The adsorption removal rates of TN-POP (a) and
ITN-POP (b) for iodine at different concentrations of n-hexane solution; Figure S6: (a) UV-Vis spectra
of iodine aqueous solutions at different concentrations (left); (b) Standard curve plotted based on
the absorbance at 461 nm (right). Figure S7: Time-dependent UV-Vis adsorption spectra of iodine
aqueous solution recorded after contacting with TN-POP (a) and ITN-POP (b). References [57,58] are
cited in the supplementary materials.
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