Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing
Abstract
:1. Introduction
2. Results
2.1. Extraction and Chemical Composition of the Oil
2.2. Characteristics of the Oil Obtained Using SFE and Cold Pressing
2.3. Extracts from Solid Residues after Oil Extraction
2.3.1. UPLC Analysis
2.3.2. Cell Viability Assay
3. Discussion
Method | Yield (%) | Tocopherol (mg/100 g) | Fatty Acid (% w/w) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
δ | γ | α | Palmitic | Stearic | Oleic | Linoleic | γ-Linolenic | α-Linolenic | |||
pressing | 18.2 | 12.4 | 78.1 | 33.1 | 5.76 | 1.37 | 13.43 | 48.15 | 16.19 | 11.93 | [26] |
pressing | 16.2 | 84.3 | 117.9 | 18.4 | 9.63 | 1.39 | 12.09 | 38.64 | 18.54 | 13.57 | [4] |
SE | 15.9 | - | - | - | 5.2 | 1.8 | 10.3 | 48.2 | 11.3 | 17.5 | [28] |
SE | 25.5–29.2 | - | - | - | 4.1–5.5 | 1.2–2.3 | 11.1–12.2 | 40.6–45.3 | 16.2–18.8 | 12.9–16.2 | [29] |
SE | ca. 10 | 12.5 | 69.7 | 30.7 | 7.7 | 2.4 | 12.9 | 44.1 | 12.8 | 14.5 | [16] |
Soxhlet | 26.15 | 4.09 | 23.0 | 28.8 | 4.49 | 1.93 | 13.79 | 41.41 | 14.89 | 12.91 | [3] |
Soxhlet | 20.3 | 8.58 | 103.3 | 59.7 | - | - | - | 13.8 | - | [27] | |
Soxhlet | 14.5 | - | - | - | 5.9 | 1.4 | 9.3 | 44.6 | 12.6 | 12.2 | [30] |
SFE 50 °C SFE 80 °C | ca. 2 ca. 6 | 16.0 13.7 | 102.7 87.4 | 122.1 93.2 | 7.9 7.7 | 2.1 2.1 | 12.3 13.0 | 42.5 42.1 | 13.4 12.7 | 16.4 17.5 | [16] |
4. Materials and Methods
4.1. Reagents and Standards
4.2. Plant Material
4.3. Extraction of Oil
4.4. Total Chlorophyll and Carotenoid Assay
4.5. GC Determination of Fatty Acids (FAs)
4.6. Chromatographic Analysis
4.6.1. Tocopherols and Carotenoids
4.6.2. Phenolic Constituents
4.7. Cell Culture
4.8. Cell Viability Assay
4.8.1. MTT Assay
4.8.2. Neutral Red Uptake Assay
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of berry and currant seed oils from Asturias, Spain. Int. J. Food Prop. 2014, 17, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińska, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. Chem. 2015, 2015, 659541. [Google Scholar] [CrossRef] [Green Version]
- Trela, A.; Szymańska, R. Less widespread plant oils as a good source of vitamin E. Food Chem. 2019, 296, 160–166. [Google Scholar] [CrossRef]
- Jurgoński, A.; Fotschki, B.; Juśkiewicz, J. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. Eur. J. Nutr. 2015, 54, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Linnama, P.; Nieminen, K.; Koulu, L.; Tuomasjukka, S.; Kallio, H.; Yang, B.; Tahvonen, R.; Savolainen, J. Black currant seed oil supplementation of mothers enhances IFN-c and suppresses IL-4 production in breast milk. Pediatr. Allergy Immunol. 2013, 24, 562–566. [Google Scholar] [CrossRef]
- Linnamaa, P.; Savolainen, J.; Koulu, L.; Tuomasjukka, S.; Kallio, H.; Yang, B.; Vahlberg, T.; Tahvonen, R. Blackcurrant seed oil for prevention of atopic dermatitis in newborns: A randomized, double-blind, placebo-controlled trial. Clin. Exp. Allergy 2010, 40, 1247–1255. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Z.; Hou, Y.; Zhang, T.; Li, K. Efficacy of blackcurrant oil soft capsule, a Chinese herbal drug, in hyperlipidemia treatment. Phytother. Res. 2010, 24, S209–S213. [Google Scholar] [CrossRef]
- Deferne, J.L.; Leeds, A.R. Resting blood pressure and cardiovascular reactivity to mental arithmetic in mild hypertensive males supplemented with blackcurrant seed oil. J. Hum. Hypertens. 1996, 10, 531–537. [Google Scholar]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf. 2019, 19, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Dien, B.S.; Singh, V. Economics of plant oil recovery: A review. Biocatal. Agric. Biotechnol. 2019, 18, 101056. [Google Scholar] [CrossRef]
- Çakaloğlu, B.; Özyurt, V.H.; Ötleş, S. Cold press in oil extraction. A review. Ukr. Food J. 2018, 7, 640–654. [Google Scholar] [CrossRef]
- Banožić, M.; Babić, J.; Jokić, S. Recent advances in extraction of bioactive compounds from tobacco industrial waste—A review. Ind. Crop Prod. 2020, 144, 112009. [Google Scholar] [CrossRef]
- Yang, B.; Ahotupa, M.; Määttä, P.; Kallio, H. Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Res. Int. 2011, 44, 2009–2017. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical fluid extraction of berry seeds: Chemical composition and antioxidant activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with high-resolution ESI-LTQ-Orbitrap MS and high-sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; Mckay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
- Moccia, F.; Agustin-Salazar, S.; Verotta, L.; Caneva, E.; Giovando, S.; D’Errico, G.; Panzella, L.; d’Ischia, M.; Napolitano, A. Antioxidant Properties of Agri-Food Byproducts and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants 2020, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Majsterek, I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration Neurodegenerative Disease. Nutrients 2022, 14, 827. [Google Scholar] [CrossRef] [PubMed]
- Kamai-Eldin, A.; Appelqvist, L. The Chemistry and Antioxidant Properties of Tocopherols and Tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Tso, P.; Caldwell, J.; Lee, D.; Boivin, G.P.; DeMichele, S.J. Comparison of growth, serum biochemistries and n-6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days. Food Chem. Tox. 2012, 50, 1911–1919. [Google Scholar] [CrossRef] [Green Version]
- Rój, E.; Dobrzyńska-Inger, A.; Kostrzewa, D.; Kołodziejczyk, K.; Sójka, M.; Król, B.; Miszczak, A.; Markowski, J. Extraction of berry seed oils with supercritical CO2. Przem. Chem. 2009, 88, 2–7. [Google Scholar]
- Mildner-Szkudlarz, S.; Różańska, M.; Siger, A.; Kowalczewski, P.Ł.; Rudzińska, M. Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds. LWT-Food Sci Technol. 2019, 111, 541–547. [Google Scholar] [CrossRef]
- Goffman, F.D.; Galletti, S. Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several Ribes species. J. Agric. Food Chem. 2001, 49, 349–354. [Google Scholar] [CrossRef]
- Johansson, A.; Laakso, P.; Kallio, H. Characterization of seed oils of wild, edible Finnish berries. Z. Lebensm. Forsch. A 1997, 204, 300–307. [Google Scholar] [CrossRef]
- Flores, G.; Ruiz del Castillo, M.L. Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application. Food Chem. 2016, 194, 1260–1265. [Google Scholar] [CrossRef]
- Dobson, G.; Shrestha, M.; Hilz, H.; Karjalainen, R.; McDougall, G.; Stewart, D. Lipophilic components in black currant seed and pomace extracts. Europ. J. Lipid Sci. Technol. 2012, 114, 575–582. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, J.; Ye, L.; Chuyun, W.; Chang, Z.; Shugang, L.; Fenghong, H. The Effect of the Subcritical Fluid Extraction on the Quality of Almond Oils: Compared to Conventional Mechanical Pressing Method. Food Sci. Nutr. 2019, 7, 2231–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef]
- Karimi-Khouzani, O.; Heidarian, E.; Amini, S.A. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol. Rep. 2017, 69, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Semaming, Y.; Pannengpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med. 2015, 2015, 593902. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Z.; Deng, G.; Liang, Q.; Chen, D.F.; Guo, R.; Lai, R.C. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 2017, 8, 7543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Park, J.; Shin, D.W. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022, 27, 4351. [Google Scholar] [CrossRef] [PubMed]
- Milala, J.; Grzelak-Błaszczyk, K.; Sójka, M.; Kosmala, M.; Dobrzyńska-Inger, A.; Rój, E. Changes of bioactive components in berry seed oils during supercritical CO2 extraction. J. Food Process. Preserv. 2018, 42, e13368. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Mazurek, B.; Chmiel, M.; Górecka, B. Fatty acids analysis using gas chromatography-mass spectrometer detector (GC/MSD)—Method validation based on berry seed extract samples. Food Anal. Met. 2017, 10, 2868–2880. [Google Scholar] [CrossRef] [Green Version]
- Bonvehi, J.S.; Coll, F.V.; Rius, I.A. Liquid chromatographic determination of tocopherols and tocotrienols in vegetable oils, formulated preparations, and biscuits. J. AOAC Int. 2000, 83, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Gliszczyńska-Świgło, A.; Sikorska, E. Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chrom. A 2004, 1048, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Herrera, M.; Sánchez-Astudillo, M.; Beltrán, R.; Sayago, A. Determination of phenolic compounds in olive oil: New method based on liquid-liquid micro extraction and ultrahigh performance liquid chromatography-triple-quadrupole mass spectrometry. LWT-Food Sci. Technol. 2014, 57, 49–57. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Bujak, T.; Wójciak, M.; Sowa, I. Evaluation of Cosmetic and Dermatological Properties of Kombucha-Fermented Berry Leaf Extracts Considered to Be By-Products. Molecules 2022, 27, 2345. [Google Scholar] [CrossRef] [PubMed]
Component | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
---|---|---|---|---|---|---|---|---|---|
CO2 pressure: 230 bar | |||||||||
chlorophyll A | 392 ± 12.3 a | 25.6 ± 1.2 b | 3.2 ± 0.3 c | 1.8 ± 0.1 d | 1.3 ± 0.1 d | 5.3 ± 0.13 e | 40.7 ± 3.1 f | 57.6 ± 3.8 g | 60.9 ± 4.2 g |
chlorophyll B | 5.6 ± 0.2 a | 0.5 ± 0.0 b | 0.1 ± 0.0 c | 0.3 ± 0.0 d | 0.4 ± 0.0 d | 0.9 ± 0.1 c | 4.0 ± 0.25 b | 13.7 ± 1.0 e | 18.4 ± 1.1 f |
carotenoids | 19.0 ± 1.1 a | 13.9 ± 1.0 b | 2.4 ± 0.2 c | 1.2 ± 0.1 d | 0.8 ± 0.1 d | 2.2 ± 0.1 c | 6.4 ± 0.4 e | 9.4 ± 0.6 f | 10.2 ± 0.9 f |
lutein | 17.5 ± 1.1 a | 12.8 ± 0.9 b | 2.2 ± 0.2 c | 1.1 ± 0.4 d | ND | 2.0 ± 0.1 c | 5.9 ± 0.3 e | 8.7 ± 0.7 f | 9.4 ± 0.8 f |
CO2 reassure: 330 bar | |||||||||
chlorophyll A | 248 ± 10.2 a | 2.7 ± 0.2 b | 2.0 ± 0.1 b | 12.0 ± 0.8 c | 41.7 ± 1.9 d | 55.6 ± 2.7 e | 52.6 ± 4.1 e | 46.8 ± 2.2 f | 42.1 ± 2.6 d,f |
chlorophyll B | 41.9 ± 3.2 a | 1.2 ± 0.1 b | 0.5 ± 0.0 c | 1.6 ± 0.1 b | 5.4 ± 0.3 d | 11.7 ± 0.9 e | 10.3 ± 0.8 e | 7.5 ± 0.4 f | 6.0 ± 0.4 d |
carotenoids | 3.7 ± 0.2 a | 1.1 ± 0.9 b | 0.8 ± 0.1 b | 2.7 ± 0.2 c | 5.5 ± 0.4 d | 7.8 ± 0.5 e | 7.3 ± 0.3 e | 6.2 ± 0.4 d | 5.7 ± 0.4 d |
lutein | 3.2 ± 0.2 a | <LOQ | ND | 2.3 ± 0.1 b | 4.74 ± 0.3 c | 6.7 ± 0.5 d | 6.3 ± 0.3 d | 5.3 ± 0.4 c | 4.9 ± 0.2 c |
Component | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
---|---|---|---|---|---|---|---|---|---|
CO2 pressure: 230 bar | |||||||||
δ tocopherol | 38.7 ± 2.5 a | 36.0 ± 2.4 a | 33.4 ± 1.8 b | 30.2 ± 1.4 b | 10.1 ± 1.2 c | 6.2 ± 1.1d | 11.3 ± 1.0 c | 12.0 ± 1.4 cd | 13.9 ± 1.2 d |
γ tocopherol | 141 ± 4.7 a | 130 ± 4.4 b | 119 ± 5.2 c | 72.1 ± 2.4 d | 38.6 ± 1.2 e | 22.4 ± 2.0 f | 32.5 ± 1.3 g | 26.0 ± 1.1 f | 23.8 ± 1.8 f |
α tocopherol | 66.8 ± 6.1 a | 55.9 ± 1.8 a | 28.7 ± 1.2 b | 9.9 ± 0.4 c | 3.3 ± 0.4 d | 3.8 ± 0.3 d | 1.6 ± 0.2 e | 0.8 ± 0.1 f | 0.7 ± 0.1 f |
total | 246 ± 13 a | 219 ± 10 b | 181 ± 5.5 c | 112 ± 4.7 d | 52.1 ± 5.0 e | 32.4 ± 3.8 f | 45.4 ± 3.3 eg | 38.8 ± 4.1 fg | 38.4 ± 3.7 fg |
CO2 pressure: 330 bar | |||||||||
δ tocopherol | 27.7 ± 2.2 a | 28.6 ± 2.0 a | 19.0 ± 1.1 b | 13.8 ± 1.2 cd | 12.7 ± 0.9 c | 14.1 ± 0.9 cd | 13.5 ± 0.5 cd | 13.4 ± 0.5 cd | 14.7 ± 0.6 d |
γ tocopherol | 103 ± 7.6 a | 113 ± 7.3 b | 73.0 ± 2.3 c | 58.2 ± 2.2 d | 25.0 ± 1.3 e | 67.0 ± 2.3 f | 64.8 ± 1.2 f | 62.0 ± 2.6 f | 64.9 ± 2.5 f |
α tocopherol | 23.2 ± 1.4 a | 15.7 ± 0.6 b | 12.3 ± 0.8 c | 4.6 ± 0.2 d | ND | ND | 5.5 ± 0.4 e | 6.2 ± 0.5 ef | 6.7 ± 0.2 f |
Total | 154 ± 11 a | 157 ± 5 a | 104 ± 5 b | 76.7 ± 3.8 c | 37.7 ± 2.3 d | 81.1 ± 3.8 ce | 83.9 ± 2.2 e | 81.8 ± 3.9 ce | 86.3 ± 2.5 ce |
Fatty Acid | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
---|---|---|---|---|---|---|---|---|---|
CO2 pressure: 230 bar | |||||||||
palmitic | 6.5 ± 0.2 a | 7.7 ± 0.1 b | 7.9 ± 0.3 b | 7.4 ± 0.1 b | 6.7 ± 0.2 a | 5.3 ± 0.2 c | 5.4 ± 0.0 c | 5.9 ± 0.1 c | 5.6 ± 0.1 c |
stearic | 0.98 ± 0.06 a | 1.36 ± 0.22 b | 1.4 ± 0.1 b | 1.4 ± 0.0 b | 1.6 ± 0.0 b | 2.0 ± 0.1 c | 1.9 ± 0.0 c | 1.7 ± 0.0 c | 1.5 ± 0.2 b |
oleic | 7.18 ± 0.26 a | 11.1 ± 1.52 b | 12.7 ± 0.6 b | 12.8 ± 0.2 b | 13.9 ± 0.3 c | 14.9 ± 0.6 c | 13.5 ± 0.2 c | 13.2 ± 0.15 c | 11.7 ± 1.6 b |
linoleic | 26.1 ± 0.39 a | 39.3 ± 2.81 b | 44.3 ± 1.2 c | 44.4 ± 0.4 c | 46.3 ± 1.3 c | 45.2 ± 1.9 c | 41.6 ± 0.4 b | 42.0 ± 0.59 b | 38.5 ± 3.0 b |
γ-linolenic | 8.16 ± 0.11 a | 15.2 ± 1.21 b | 17.4 ± 0.6 c | 17.3 ± 0.2 c | 17.1 ± 0.6 c | 14.7 ± 0.8 b | 13.5 ± 0.6 e | 14.3 ± 0.1 b,e | 13.5 ± 1.6 e |
α-linolenic | 10.3 ± 0.2 a | 12.2 ± 1.5 b,e | 13.6 ± 0.4 c | 13.6 ± 0.1 cd | 14.1 ± 0.5 d | 13.0 ± 0.6 b,c | 12.0 ± 0.4 b,e | 12.4 ± 0.1 b,e | 11.5 ± 1.53 e |
total | 59.2 ± 0.4 a | 86.8 ± 2.9 b,e | 97.2 ± 1.3 c,d | 96.9 ± 0.6 c | 99.7 ± 1.3 d | 95.1 ± 1.9 c | 87.9 ± 0.4 b | 89.6 ± 0.6 b | 82.3 ± 3.1 e |
ratio n–6/n–3 | 3.33 | 4.45 | 4.54 | 4.53 | 4.50 | 4.59 | 4.57 | 4.55 | 4.52 |
CO2 pressure: 330 bar | |||||||||
palmitic | 6.9 ± 0.1 a | 7.4 ± 0.1 b | 6.1 ± 0.2 c,e | 6.1 ± 0.1 c,e | 5.1 ± 0.9 d | 5.4 ± 0.2 d | 6.4 ± 0.1 a,c | 6.1 ± 0.2 c,e | 5.7 ± 1.1 d,e |
stearic | 1.4 ± 0.0 a | 1.5 ± 0.0 b,e | 1.4 ± 0.0 a | 1.7 ± 0.0 c | 1.4 ± 0.2 a,b | 1.4 ± 0.0 a,b | 1.6 ± 0.0 d | 1.5 ± 0.0 d,e | 1.6 ± 0.2 d |
oleic | 10.9 ± 0.1 a | 12.3 ± 0.0 b | 10.9 ± 0.3 a | 13.8 ± 0.2 c | 11.3 ± 2.1 a | 11.3 ± 0.3 a | 12.7 ± 0.3 b | 11.9 ± 0.3 b | 11.0 ± 2.1 a |
linoleic | 37.7 ± 0.1 a | 42.8 ± 0.1 b | 37.2 ± 0.7 a | 43.7 ± 0.8 b | 36.1 ± 2.2 a | 36.7 ± 0.7 a | 42.2 ± 0.5 b,c | 40.4 ± 0.9 c | 37.9 ± 2.9 a |
γ-linolenic | 13.5 ± 0.2 a | 16.6 ± 0.4 b | 13.7 ± 0.3 a | 15.2 ± 0.4 c | 12.3 ± 2.1 d | 12.8 ± 0.4 ad | 15.2 ± 0.3 c | 14.6 ± 0.5 c,e | 13.7 ± 2.6 a,e |
α-linolenic | 11.1 ± 0.1 a | 13.1 ± 0.1 b | 11.2 ± 0.3 a | 12.9 ± 0.3 b | 10.4 ± 1.9 a | 10.7 ± 0.4 a | 12.7 ± 0.2 b | 12.2 ± 0.4 b | 11.5 ± 2.2 a |
total | 81.5 ± 0.12 a | 93.8 ± 0.1 b | 80.5 ± 0.7 a | 93.6 ± 0.8 b | 76.6 ± 2.2 c | 78.4 ± 0.8 a,c | 90.7 ± 0.6 b | 86.8 ± 0.9 c,d | 81.3 ± 3.1 a |
ratio n–6/n–3 | 4.62 | 4.52 | 4.55 | 4.57 | 4.64 | 4.62 | 4.53 | 4.49 | 4.48 |
Component (mg/100 g) | SFE 230 Bar | SFE 330 Bar | Pressing |
---|---|---|---|
chlorophyll A | 21.27 ± 0.51 | 31.70 ± 0.31 | nd |
chlorophyll B | 1.08 ± 0.01 | 5.41 ± 0.02 | nd |
carotenoids | 4.26 ± 0.11 | 2.29 ± 0.12 | 4.11 ± 0.08 |
δ tocopherol | 22.1 ± 1.1 | 20.2 ± 1.2 | 24.3 ± 2.1 |
γ tocopherol | 74.9 ± 2.2 | 79.0 ± 3.5 | 76.3 ± 3.5 |
α tocopherol | 19.1 ± 1.2 | 10.9 ± 0.6 | 23.2 ± 2.0 |
total tocopherol | 116.1±7.4 | 110.1±6.1 | 123.8 ± 8.4 |
lutein | 3.92 ± 0.08 | 1.98 ± 0.06 | 4.12 ± 0.31 |
Fatty acid composition (% w/w) | |||
palmitic acid (C16:0) | 6.90 ± 0.19 | 6.86 ± 0.21 | 7.06 ± 0.25 |
stearic acid (C18:0) | 1.53 ± 0.01 | 1.59 ± 0.01 | 1.39 ± 0.10 |
oleic acid (C18:1 n-9) | 12.96 ± 1.18 | 12.83 ± 1.06 | 12.97 ± 1.17 |
linoleic acid (C18:2 n-6) | 43.39 ± 1.67 | 42.92 ± 1.27 | 44.02 ± 1.89 |
γ-linolenic acid (C18:3 n-6) | 16.07 ± 1.10 | 15.68 ± 0.98 | 15.99 ± 1.08 |
α-linolenic acid (C18:3 n-3) | 13.22 ± 0.87 | 12.86 ± 1.07 | 13.46 ± 1.12 |
ratio n-6/n-3 | 4.49 ± 0.23 | 4.56 ± 0.18 | 4.46 ± 0.26 |
No | Component | MeOH/Water (8:2) | Water/PD (8:2) | Water/PD (6:4) |
---|---|---|---|---|
1 | gallic acid | 35.12 ± 1.91 | 59.09 ± 3.25 | 39.17 ± 1.28 |
2 | hydroxybenzoic acid hexoside 1 | 10.27 ± 0.50 | 18.71 ± 0.91 | 16.05 ± 0.71 |
3 | dihydroxybenzoic acid hexoside 2 | 47.45 ± 2.13 | 61.56 ± 2.93 | 65.09 ± 3.13 |
4 | protocatechuic acid | 81.20 ± 4.01 | 92.06 ± 4.65 | 89.81 ± 3.94 |
5 | p-hydroxybenzoic acid | 2.42 ± 0.12 | 2.51 ± 0.21 | 2.91 ± 0.15 |
6 | caffeic acid | 21.76 ± 1.21 | 20.18 ± 1.08 | 23.01 ± 1.41 |
7 | salicylic acid | 1.51 ± 0.08 | 1.22 ± 0.09 | 1.48 ± 0.06 |
8 | myricetin rhamnosylhexoside 3 | 8.18 ± 0.43 | 7.79 ± 0.28 | 7.91 ± 0.38 |
9 | myricetin-3-O-galactoside 3 | 64.29 ± 3.21 | 55.64 ± 3.98 | 58.20 ± 3.02 |
10 | kaempferol hexoside | 26.98 ± 1.21 | 21.12 ± 1.03 | 20.85 ± 1.81 |
11 | quercetin-3-O-rutinoside | 7.91 ± 0.32 | 7.02 ± 0.41 | 6.95 ± 0.28 |
12 | quercetin-3-O-glucoside | 121.83 ± 3.14 | 102.10 ± 4.01 | 107.81 ± 3.96 |
13 | kaempferol-3-O-rutinoside | 2.02 ± 0.20 | 1.74 ± 0.11 | 1.98 ± 0.14 |
14 | kaempferol-3-O-glucoside | 104.44 ± 4.21 | 68.41 ± 2.12 | 76.01 ± 3.01 |
15 | quercetin | 6.21 ± 0.21 | 2.39 ± 0.11 | 4.21 ± 0.19 |
16 | kaempferol | 1.96 ± 0.12 | 0.28 ± 0.03 | 1.18 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójciak, M.; Mazurek, B.; Tyśkiewicz, K.; Kondracka, M.; Wójcicka, G.; Blicharski, T.; Sowa, I. Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules 2022, 27, 8679. https://doi.org/10.3390/molecules27248679
Wójciak M, Mazurek B, Tyśkiewicz K, Kondracka M, Wójcicka G, Blicharski T, Sowa I. Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules. 2022; 27(24):8679. https://doi.org/10.3390/molecules27248679
Chicago/Turabian StyleWójciak, Magdalena, Barbara Mazurek, Katarzyna Tyśkiewicz, Małgorzata Kondracka, Grażyna Wójcicka, Tomasz Blicharski, and Ireneusz Sowa. 2022. "Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing" Molecules 27, no. 24: 8679. https://doi.org/10.3390/molecules27248679
APA StyleWójciak, M., Mazurek, B., Tyśkiewicz, K., Kondracka, M., Wójcicka, G., Blicharski, T., & Sowa, I. (2022). Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules, 27(24), 8679. https://doi.org/10.3390/molecules27248679