Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. DPPH Antiradical Activity
2.3. Color Parameters
2.4. Cooking Properties
2.5. Textural Properties
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Pasta Preparation
3.2.2. Determination of Chemical Composition
3.2.3. Determination of Antiradical Activity
3.2.4. Determination of Color
3.2.5. Determination of Cooking Properties
3.2.6. Determination of Textural Properties
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dziki, D. Current trends in enrichment of wheat pasta: Quality, nutritional value and antioxidant properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P. Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. Int. J. Food Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pede, G.; Dodi, R.; Scarpa, C.; Brighenti, F.; Dall’asta, M.; Scazzina, F. Glycemic index values of pasta products: An overview. Foods 2021, 10, 2541. [Google Scholar] [CrossRef]
- Gangola, M.P.; Ramadoss, B.R.; Jaiswal, S.; Chan, C.; Mollard, R.; Fabek, H.; Tulbek, M.; Jones, P.; Sanchez-Hernandez, D.; Anderson, G.H.; et al. Faba bean meal, starch or protein fortification of durum wheat pasta differentially influence noodle composition, starch structure and in vitro digestibility. Food Chem. 2021, 349, 129167. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Nardiello, D.; Del Nobile, M.A.; Conte, A. New approach to enrich pasta with polyphenols from grape marc. J. Chem. 2015, 2015, 734578. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission:The European Green Deal. Clim. Chang. 2013 Phys. Sci. Basis 2019, 53, 1–30. [Google Scholar]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace—A review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Holtung, L.; Grimmer, S.; Aaby, K. Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J. Agric. Food Chem. 2011, 59, 3632–3640. [Google Scholar] [CrossRef] [Green Version]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocoll. 2018, 81, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.; Geweke, I.; Struck, S.; Zahn, S.; Rohm, H. Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: Dough characteristics and product properties. Int. J. Food Sci. Technol. 2018, 53, 237–245. [Google Scholar] [CrossRef]
- Larrauri, J.A. New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci. Technol. 1999, 10, 3–8. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of grape pomace addition on the technological, sensory, and nutritional properties of durum wheat pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Gerardi, C.; Durante, M.; D’Amico, L.; Tufariello, M. Re-use of grape pomace flour as new ingredient for pasta fortification. In Proceedings of the 2nd International Electronic Conference on Foods, Future Foods and Food Technologies for A Sustainable World, Online, 15–30 October 2021. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Use of grape peels by-product for wheat pasta manufacturing. Plants 2021, 10, 926. [Google Scholar] [CrossRef]
- Ungureanu-Iuga, M.; Mironeasa, S. Advance on the capitalization of grape peels by-product in common wheat pasta. Appl. Sci. 2021, 11, 11129. [Google Scholar] [CrossRef]
- Xu, J.; Bock, J.E.; Stone, D. Quality and textural analysis of noodles enriched with apple pomace. J. Food Process. Preserv. 2020, 44, e14579. [Google Scholar] [CrossRef]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Sykut-Domańska, E.; Zarzycki, P.; Sobota, A.; Teterycz, D.; Wirkijowska, A.; Blicharz-Kania, A.; Andrejko, D.; Mazurkiewicz, J. The potential use of by-products from coconut industry for production of pasta. J. Food Process. Preserv. 2020, 44, e14490. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Structure and quality of pasta enriched with functional ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C.; Scarton, M.; Piran, M.V.F.; Clerici, M.T.P.S. Cereal fiber: Extrusion modifications for food industry. Curr. Opin. Food Sci. 2020, 33, 141–148. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Adachi, S. Drying and rehydration of pasta. Dry. Technol. 2017, 35, 1919–1949. [Google Scholar] [CrossRef]
- Déniel, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Modelling and predictive study of hydrothermal liquefaction: Application to food processing residues. Waste Biomass Valorization 2017, 8, 2087–2107. [Google Scholar] [CrossRef] [Green Version]
- Witczak, T.; Stępień, A.; Zięba, T.; Gumul, D.; Witczak, M. The influence of extrusion process with a minimal addition of corn meal on selected properties of fruit pomaces. J. Food Process Eng. 2020, 43, e13382. [Google Scholar] [CrossRef]
- Witczak, T.; Stępień, A.; Gumul, D.; Witczak, M.; Fiutak, G.; Zięba, T. The influence of the extrusion process on the nutritional composition, physical properties and storage stability of black chokeberry pomaces. Food Chem. 2021, 334, 127548. [Google Scholar] [CrossRef]
- Huang, Y.L.; Ma, Y.S. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chaurand, M.; Lempereur, I.; Roulland, T.M.; Autran, J.C.; Abecassis, J. Genetic and agronomic effects on semolina milling value of durum wheat. Crop Sci. 1999, 39, 790–795. [Google Scholar] [CrossRef]
- Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2016, 8, 1–77. [CrossRef] [Green Version]
- Spinelli, S.; Padalino, L.; Costa, C.; Del Nobile, M.A.; Conte, A. Food by-products to fortified pasta: A new approach for optimization. J. Clean. Prod. 2019, 215, 985–991. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical Profiles and Antioxidant Activity of Wheat Varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.; Jaswal, S.; Sehgal, V.K.; Sheoran, S.; Gupta, R.K. Effect of storage and product making on the antioxidant activity of wheat. J. Wheat Res. 2012, 4, 66–69. [Google Scholar]
- Kamble, D.B.; Singh, R.; Pal Kaur, B.; Rani, S.; Upadhyay, A. Effect of microwave processing on physicothermal properties, antioxidant potential, in vitro protein digestibility and microstructure of durum wheat semolina. J. Food Meas. Charact. 2020, 14, 761–769. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Kapasakalidis, P.G.; Rastall, R.A.; Gordon, M.H. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem. 2006, 54, 4016–4021. [Google Scholar] [CrossRef]
- White, B.L.; Howard, L.R.; Prior, R.L. Polyphenolic composition and antioxidant capacity of extruded cranberry pomace. J. Agric. Food Chem. 2010, 58, 4037–4042. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: Impact on dietary fiber profile and bioactive compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT Food Sci. Technol. 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Ruskova, M.M.; Petrova, T.V.; Penov, N.D. The effect of extrusion variables on the color of apple pomace-wheat semolina extrudates. Bulg. Chem. Commun. 2014, 46, 25–29. [Google Scholar]
- Padalino, L.; D’Antuono, I.; Durante, M.; Conte, A.; Cardinali, A.; Linsalata, V.; Mita, G.; Logrieco, A.F.; Del Nobile, M.A. Use of olive oil industrial by-product for pasta enrichment. Antioxidants 2018, 7, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT 2019, 114, 108368. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Petrie, J.R.; Motoi, L.; Morgenstern, M.P.; Sutton, K.H.; Mishra, S.; Simmons, L.D. Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility. Food Biophys. 2008, 3, 229–234. [Google Scholar] [CrossRef]
- Bruneel, C.; Pareyt, B.; Brijs, K.; Delcour, J.A. The impact of the protein network on the pasting and cooking properties of dry pasta products. Food Chem. 2010, 120, 371–378. [Google Scholar] [CrossRef]
- Rakhesh, N.; Fellows, C.M.; Sissons, M. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres. J. Sci. Food Agric. 2015, 95, 2–11. [Google Scholar] [CrossRef]
- Tudorică, C.M.; Tudorică, T.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Kawai, K.; Takato, S.; Sasaki, T.; Kajiwara, K. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures. Food Hydrocoll. 2012, 27, 228–234. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, J.; Wang, S. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis. Food Chem. 2016, 190, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M. Role of durum wheat composition on the quality of pasta and bread. Food 2008, 2, 75–90. [Google Scholar]
- Ogawa, T.; Chuma, A.; Aimoto, U.; Adachi, S. Characterization of spaghetti prepared under different drying conditions. J. Food Sci. 2015, 80, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.M.; Izydorczyk, M.S.; Dexter, J.E.; Biliaderis, C.G. Cooked pasta texture: Comparison of dynamic viscoelastic properties to instrumental assessment of firmness. Cereal Chem. 1993, 70, 122–126. [Google Scholar]
- Dey, D.; Richter, J.K.; Ek, P.; Gu, B.J.; Ganjyal, G.M. Utilization of food processing by-products in extrusion processing: A review. Front. Sustain. Food Syst. 2021, 4, 603751. [Google Scholar] [CrossRef]
- Badaró, A.T.; Amigo, J.M.; Blasco, J.; Aleixos, N.; Ferreira, A.R.; Clerici, M.T.P.S.; Barbin, D.F. Near infrared hyperspectral imaging and spectral unmixing methods for evaluation of fiber distribution in enriched pasta. Food Chem. 2021, 343, 128517. [Google Scholar] [CrossRef]
- Matsuo, R.R.; Dexter, J.E.; Boudreau, A.; Daun, J.K. The role of lipids in determining spaghetti cooking quality. Cereal Chem. 1986, 63, 484–489. [Google Scholar]
- Witczak, T.; Gałkowska, D. Sorption and thermal characteristics of ancient grain pasta of various compositions. LWT Food Sci. Technol. 2021, 137, 110433. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International. Method 991.43, 19th ed.; AOAC International: Rockville, MD, USA, 2012.
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Approved Methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists, Approved Methods Committee: Saint Paul, MN, USA, 2000.
Sample | Moisture Content (g/100 g) | Protein Content (g/100 g, dwb) | Fat Content (g/100 g, dwb) | Ash Content (g/100 g, dwb) | Dietary Fiber Content (g/100 g, dwb) | Available Carbohydrate Content (g/100 g, dwb) | DPPH Antiradical Activity (µg TE/g, dwb) | ||
---|---|---|---|---|---|---|---|---|---|
TDF | SDF | IDF | |||||||
Raw Materials | |||||||||
Semolina | 9.06 c ± 0.08 | 14.32 a ± 0.11 | 1.61 a ± 0.02 | 0.95 a ± 0.02 | 1.72 a ± 0.07 | 0.54 a ± 0.06 | 1.18 a ± 0.07 | 81.40 ± 0.13 | 832 a ± 13 |
BcP | 3.05 b ± 0.01 | 14.41 a ± 0.26 | 12.68 c ± 0.05 | 3.68 b ± 0.01 | 54.53 c ± 0.13 | 7.49 b ± 0.06 | 47.04 c ± 0.11 | 14.70 ± 0.30 | 10744 c ± 282 |
EBcP | 2.58 a ± 0.08 | 14.47 a ± 0.41 | 11.53 b ± 0.27 | 3.72 b ± 0.04 | 53.22 b ± 0.13 | 8.42 c ± 0.06 | 44.80 b ± 0.12 | 17.06 ± 0.51 | 9576 b ± 5 |
ANOVA–p | <0.001 | 0.824 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - | <0.001 |
Pasta Samples | |||||||||
SP | 9.93 b ± 0.00 | 14.30 b ± 0.08 | 1.29 a ± 0.01 | 0.87 a ± 0.05 | 1.89 a ± 0.06 | 0.87 a ± 0.04 | 1.03 a ± 0.03 | 81.65 ± 0.11 | 253 a ± 15 |
P5 | 10.31 c ± 0.02 | 14.28 b ± 0.07 | 1.97 b ± 0.04 | 1.05 b ± 0.05 | 5.97 c ± 0.11 | 1.63 c ± 0.15 | 4.34 c ± 0.04 | 76.73 ± 0.14 | 560 b ± 4 |
P10 | 10.20 c ± 0.14 | 14.03 b ± 0.10 | 2.70 d ± 0.05 | 1.19 c ± 0.01 | 10.03 e ± 0.15 | 2.27 e ± 0.05 | 7.77 e ± 0.11 | 72.05 ± 0.19 | 804 d ± 6 |
EP5 | 7.83 a ± 0.24 | 13.71 a ± 0.02 | 1.91 b ± 0.07 | 0.93 a ± 0.01 | 4.92 b ± 0.16 | 1.23 b± 0.02 | 3.68 b ± 0.16 | 78.53 ± 0.18 | 706 c ± 6 |
EP10 | 7.53 a ± 0.12 | 13.64 a ± 0.19 | 2.44 c ± 0.07 | 1.07 b ± 0.02 | 7.17 d ± 0.16 | 1.98 d ± 0.03 | 5.19 d ± 0.13 | 75.68 ± 0.26 | 1037 e ± 7 |
ANOVA–p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - | <0.001 |
Sample | Cooking Properties | Textural Properties | ||||||
---|---|---|---|---|---|---|---|---|
OCT (min) | WA (g/100 g) | SI (g/g dw) | CL (g dw/100 g) | Breaking Force (N) | Firmness (N) | Work of Cutting (mJ) | Tensile Strength (N) | |
SP | 8.5 ± 0.0 | 179.3 d ± 3.0 | 1.81 b ± 0.12 | 5.89 b ± 0.20 | 2.76 a ± 0.30 | 3.40 a ± 0.03 | 1.17 a ± 0.07 | 0.23 b ± 0.01 |
P5 | 7.5 ± 0.0 | 131.3 a ± 1.9 | 1.55 a ± 0.04 | 4.70 a ± 0.06 | 3.39 ab ± 0.21 | 4.47 c ± 0.12 | 2.04 c ± 0.10 | 0.46 d ± 0.03 |
P10 | 6.5 ± 0.0 | 122.3 a ± 1.2 | 1.56 a ± 0.02 | 5.86 b ± 0.21 | 3.96 b ± 0.62 | 5.05 d ± 0.11 | 2.24 d ± 0.01 | 0.38 c ± 0.01 |
EP5 | 7.0 ± 0.0 | 151.0 c ± 3.0 | 1.90 b ± 0.03 | 5.73 b ± 0.01 | 3.46 b ± 0.32 | 3.87 b ± 0.19 | 1.75 b ± 0.12 | 0.14 a ± 0.02 |
EP10 | 6.5 ± 0.0 | 138.0 b ± 0.3 | 1.78 a b ± 0.04 | 6.19 b ± 0.13 | 4.66 c ± 0.19 | 4.56 c ± 0.08 | 2.05 c ± 0.13 | 0.20 b ± 0.01 |
ANOVA–p | <0.001 | <0.001 | 0.007 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałkowska, D.; Witczak, T.; Pycia, K. Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace. Molecules 2022, 27, 8616. https://doi.org/10.3390/molecules27238616
Gałkowska D, Witczak T, Pycia K. Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace. Molecules. 2022; 27(23):8616. https://doi.org/10.3390/molecules27238616
Chicago/Turabian StyleGałkowska, Dorota, Teresa Witczak, and Karolina Pycia. 2022. "Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace" Molecules 27, no. 23: 8616. https://doi.org/10.3390/molecules27238616
APA StyleGałkowska, D., Witczak, T., & Pycia, K. (2022). Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace. Molecules, 27(23), 8616. https://doi.org/10.3390/molecules27238616