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Abstract: Recent studies on the removal of pollutants via adsorption include the use of carbon-
based adsorbents, due to their high porosity and large surface area; however, such materials lack
photoactive properties. This study evaluates the synergistic effect of integrated mesoporous carbon
xerogel (derived from resorcinol formaldehyde) and titanium dioxide (TiO2) for combined adsorption
and photodegradation application. The complex formed between carbon xerogel and TiO2 phase was
investigated through FTIR, proving the presence of a Ti-O–C chemical linkage. The physicochemical
properties of the synthesised adsorbent–photocatalyst were probed using FESEM, BET analysis and
UV–Vis analysis. The kinetics, equilibrium adsorption, effect of pH, and effect of adsorbent dosage
were investigated. The expansion of the absorbance range to the visible range was verified, and the
corresponding band gap evaluated. These properties enabled a visible light response when the system
was exposed to visible light post adsorption. Hence, an assistive adsorption–photodegradation
phenomenon was successfully executed. The adsorption performance exhibited 85% dye degradation
which improved to 99% following photodegradation. Further experiments showed the reduction
of microorganisms under visible light, where no microbial colonies were observed after treatment,
indicating the potential application of these composite materials.

Keywords: carbon xerogel; TiO2 photocatalysis; adsorption–photodegradation; dye degradation;
adsorption isotherm; adsorption kinetics; microbial degradation

1. Introduction

Amongst several conventional water treatment techniques, adsorption is recognised
as one of the most simple, reliable, and effective methods. New techniques use nano
adsorbents, of which one of the main groups for wastewater treatment are carbon-based
adsorbents [1]. Generally, carbon is preferred, due to its high effectiveness, abundant
availability, and low cost. However, adsorption using basic carbon materials is restricted
by slow kinetics, while advanced adsorbents, for example, zeolites or metal-based nano-
adsorbents are expensive, and experience a loss of adsorption sites during the desorption
process, resulting in pollution during the application process and requiring high energy for
their regeneration [2].

Photodegradation techniques use light irradiance for the activation of a photocatalyst,
upon which they generate charge carriers which transfer to the surface and undergo a series
of chemical reactions to generate reactive oxide species or hydroxyl radicals. These species
target the pollutant surface and chemically decompose it into harmless substances [3].
Titanium dioxide (TiO2) is widely studied in this regard, due to its non-toxicity, cost
efficiency and ability to oxidise organic pollutants and eventually convert them to carbon
dioxide and water [4]. The major limitations encountered by TiO2, which restricts the
process efficiency, include agglomeration, wide band gap and rapid recombination of
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photogenerated charge carriers. Nevertheless, the adsorption capacity on the surface of
TiO2 is poor; therefore, the degradation process is restricted. The use of carbon as a support
matrix can not only enhance the adsorption capacity, but also solve the problem of charge
recombination [5]. Additionally, chemical functionalisation can modify the bandgap of
TiO2; hence, enhanced performance of an integrated system under visible light is possible.

As a consequence of the likelihood of improved performance through composite de-
velopment, several studies have reported on the functional crosslinking of carbon and TiO2
through a wide range of synthesis procedures [6]. Sol–gel is commonly employed, as the
synthesis process can be controlled to achieve strong chemical bonding and dispersibility
of TiO2 nanoparticles. Other methods are expensive, time-consuming and difficult to im-
plement, due to stringent control of factors [7]. With regard to material properties, studies
related to chemical interactions between carbon and TiO2 are limited. Not many studies
report on the complex formation between functional moieties of carbon and TiO2, which is
theoretically responsible for the modification of the electronic structure and thus enables
visible light response [8]. In this study, we have integrated TiO2 in a nano mesoporous
carbon xerogel (CX) to obtain a visible light-activated adsorbent–photocatalyst. CX was
derived from the polycondensation of resorcinol and formaldehyde in the presence of a
base catalyst. Resorcinol formaldehyde gels have been utilised for several applications
including thermal insulation [9], electrical conductivity [10], adsorption, and gas stor-
age [11]. However, less attention has been paid to studying their application in the water
treatment sector, particularly for visible light photocatalysis. Our reasons for choosing
resorcinol–formaldehyde as a carbon source to produce CX were (i) it is composed of a
unique structure (aromatic rings and OH groups), which can bind with TiO2 to produce
new electronic interactions between CX and TiO2 and activate visible light response; and
(ii) the materials are generally highly mesoporous structures, possessing large surface areas
for effective adsorption of pollutants. Within the nanostructure, homogenously distributed
TiO2 forms a heterojunction with the carbon substrate, due to the chemical interaction
between CX and TiO2, resulting in complex formation at the interface of the material.
Remarkably, such structures can absorb visible light and exhibit photoactivity under visible
light irradiation.

This indicates that integrated CX and TiO2 may be an effective adsorbent–photocatalyst
to target a wide range of pollutants in contaminated water, including dyes and microbes.
Thus, a combined photocatalytic adsorbent, CXTi, was synthesised to exploit the synergistic
effect of both adsorption and photocatalysis. The ratios of CX and TiO2 were carefully
selected to optimise the physicochemical and optical properties imperative to maximise
adsorbent–adsorbate interactions and utilisation of a wide fraction of the electromagnetic
spectrum. The synthesised CXTi was tested against adsorption and photodegradation
of methylene blue (MB) from aqueous solutions, and the acquired data analysed using
kinetic and isothermal analysis. Additionally, antimicrobial tests were performed against
the reduction of an indicator microorganism, i.e., total faecal coliform.

2. Results and Discussion
2.1. Structural Properties of CXTi

Figure 1a–c show micrographs of synthesised CXTi at different magnifications, which
confirm that the carbons phase developed as a spherical form, as previously reported for
carbons derived from the polycondensation and subsequent pyrolysis of resorcinol and
formaldehyde gels [12]. The micrographs reveal uniform microclusters of interconnected
microspheres with diameters in the range 1.2–1.5 µm. The surface heterogeneity/roughness
observed in a section of the micrograph in Figure 1c, marked by red arrows, denotes carbon
xerogel spheres engulfed by TiO2 nanoparticles. The yellow arrows show the porosity in
the CXTi structure. The chemical bonding between carbon and TiO2 was confirmed by
the recorded FTIR spectrum, shown in Figure 1d, where characteristic peaks of a typical
resorcinol–formaldehyde-derived carbon were observed, including signals from C-H, C=C,
C-O-C of aromatic rings and methylene bridges [13]. The broad peak at 3300 cm−1 is
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associated with OH of the phenolic groups. The vibrations in the range 2000–1700 are
ascribed to C-H bending of aromatic moieties. The aromatic ether bridges formed during
the polycondensation of resorcinol (R) and formaldehyde (F) result in the absorption
bands observed at 1605 and 1473 cm−1. These observations are in agreement with those
reported by Awadallah et al., for the mesoporous RF xerogels [14]. The chemical bonding
between the carbon xerogel and TiO2 was confirmed by Ti-O-C functionalities in the range
1200–1000 cm−1 [15], indicating that the surface moieties of carbon xerogel support the
attachment of TiO2. This heterojunction has been reported as a charge–transfer complex,
which promotes electronic interactions and enhances the visible light response of the
integrated carbon and TiO2 material [16,17]. Furthermore, signals below 1000 cm−1 are
attributed to functional groups of titanium ethoxide and Ti-O-Ti linkages [18].
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Figure 1. (a–c) FESEM micrographs (contrast altered) at different magnifications and (d) FTIR
spectrum of CXTi synthesised in this study.

The surface area and porosity of synthesised CXTi were obtained using nitrogen sorp-
tion isotherms and subsequent BJH analysis to determine the pore size distributions [19],
as shown in Figure 2. The isotherm shows that the characteristics of a typical mesoporous
carbon xerogel derived from resorcinol–formaldehyde are retained [12]. The BET surface
area and pore volume were calculated to be 384 m2 g−1 and 0.8 cm3 g−1, respectively. A nar-
row pore size distribution was observed, and the average pore width was calculated to be
~9 nm, as represented in the inset of Figure 2. It is evident that the shape of the isotherm is
Type IV with a distinct hysteresis loop of Type H1 [20]. These findings suggest the presence
of ordered mesopores with a uniform cylindrical shaped, open-ended three-dimensional
pore network [20]. The calculated mesoporosity in the structure was 93%. These textural
properties, comprising high surface area and well-developed mesoporous structure, are
expected to facilitate the adsorption process and enhance the photocatalytic activity.
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Figure 3. Effect of (a) adsorbent dosage and (b) pH on the adsorption capacity of methylene blue 
using CXTi synthesised in this study (T = 23 °C, adsorbent dose = 0.01 g, C0 = 100 mg L−1).  

Figure 2. Nitrogen adsorption/desorption isotherm of CXTi synthesised in this study.

High adsorbent loading appears to reduce adsorption performance, while low ad-
sorbent loading results in fewer pollutant molecules interacting with the active sites on
the adsorbent; hence, the amount of adsorbent used is crucial in determining the ultimate
adsorption performance. The study of the effect of dosage rate of CXTi on adsorption
performance was performed at an initial concentration of 100 mg L−1 of MB (Figure 3a). It
was observed that the amount of MB adsorbed increased rapidly with increasing adsorbent
dose, from 0.005 to 0.01 g, tested against 25 mL of MB solution. This is attributed to the
large surface area, mesoporous character and availability of vacant adsorptive sites associ-
ated with the CXTi sorbent. Further increase in adsorbent dose, up to 0.10 g, showed no
significant increase in removal of MB. At this point, the concentration of adsorbate on the
surface of the adsorbent, and the adsorptive in solution, reach equilibrium. Accordingly,
0.01 g was chosen as the optimal amount of adsorbent per 25 mL to conduct the following
adsorption experiments.
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Figure 3. Effect of (a) adsorbent dosage and (b) pH on the adsorption capacity of methylene blue
using CXTi synthesised in this study (T = 23 ◦C, adsorbent dose = 0.01 g, C0 = 100 mg L−1).

Additionally, for optimum adsorption performance, it is important to determine a
suitable operating pH, since this affects the surface charge and ionisation of pollutant
molecules, while unfavourable adsorption, dissolution and decomposition lead to low
adsorption uptakes [21]. Figure 3b shows the effect of pH on the adsorption of MB by
CXTi, as a function of pH value. The adsorption capacity of MB at acidic pH (≤6) was low,
which may be due to the positively charged sample surface repelling the cationic MB dye
molecules. At higher pH values, i.e., more basic, in the range of 8–12, the interface of CXTi
is negatively charged, which means it can favourably adsorb the cationic MB molecule;
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hence, enhanced adsorption capacity is observed. Therefore, a pH of ~7.2 was maintained
for all remaining adsorption experiments.

2.2. Adsorption Kinetics

Figure 4 shows the kinetic data obtained for MB adsorption on CXTi at different initial
concentrations (50–200 mg L−1) and contact times (0–240 min). It was observed that the
adsorption capacity increases with increase in initial concentration, as time elapsed. This
is attributed to increased frequency of collisions between MB molecules and the sample
surface, which overcomes the resistance to mass transfer between the adsorbate and the
adsorbent, and results in the immediate occupancy of available active sites [22]. Rapid
attainment of equilibrium is attributed to the highly porous nature of the sample with
abundant active sites. In this case, π-π interactions between the MB dye molecules and the
aromatic groups of the carbon xerogel, along with electrostatic interactions between the
MB dye molecules and the hydroxyl groups of TiO2, are predominant binding strengths
between the adsorbent and adsorbate. The adsorption process slows after this initial phase
and eventually attains equilibrium at 90 min, as the mass transfer rate slows down due
to saturation of the active sites, thus making it difficult for the MB molecules to further
adsorb on the sample surface. In addition to this, higher initial concentrations of the
adsorptive may result in aggregation of MB or charge repulsion of MB dye species, thereby
decelerating the adsorption process [23]; thus, it takes longer for the adsorptive to diffuse
deeper into the pores of the adsorbent.
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Figure 4. Effect of contact time (0–240 min) on MB adsorption on CXTi synthesised in this study, at
initial concentrations of 50, 100, 150 and 200 mg L−1. Note: Error bars are negligibly small, hence the
overlap of the limits.

To gain a better understanding of the kinetic and diffusion behaviour of the adsorptive–
adsorbent system, the experimental data were analysed by models including Pseudo
First Order (PFO), Pseudo Second Order (PSO), Elovich, and Intra-Particle Diffusion
(IPD) [24]. The PFO model has frequently been used to describe kinetic processes un-
der non-equilibrium conditions. PFO assumes that the rate of adsorption is proportional to
the driving force, i.e., the difference between equilibrium concentration and solid phase
concentration. The integrated form of the PFO model is given in Equation (1):

qt = qe

(
1 − ek1t

)
(1)
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By contrast, the PSO equation assumes that the overall adsorption rate is proportional to
the square of the driving force. The integrated form of PSO model is given in Equation (2):

qt =
k2tq2

e
1 + k2tqe

(2)

In both Equations (1) and (2), qt (mg g−1) and qe (mg g−1) are the concentrations of
MB dye molecules at time t and at equilibrium, respectively. k1 (g mg−1 min−1) and k2
(g−1 mg min−1) are the PFO and PSO rate constants, respectively.

Figure 5 shows the experimentally determined adsorption (qexp) data fitted to the
PFO and PSO models. The evaluated parameters, including qexp, qt (adsorption calculated
at given time), first order rate constant k1, second order rate constant k2, and regression
coefficient, are presented in Table 1. It was observed that PFO is incompatible with the ex-
perimental data, as the regression coefficient deviates from 1 throughout the concentration
range; hence, physisorption is less likely to be the primary adsorption phenomenon.
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Table 1. Kinetic constants for MB adsorption by CXTi; qexp is the experimental amount adsorbed
at equilibrium.

50 mg L−1 100 mg L−1 150 mg L−1 200 mg L−1

qexp 113 217 220 221

Pseudo first order

qt mg g−1 112 211 216 217

k1 min−1 0.104 0.119 0.114 0.177

R2 0.963 0.959 0.947 0.975

Pseudo second order

qt mg g−1 120 225 230 229

k2 (10−3) g
mg−1 min−1 1.40 0.875 0.839 1.43

R2 0.993 0.993 0.990 0.999

Elovich

R2 0.976 0.977 0.979 0.979
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By contrast, the regression coefficient values obtained for PSO are much closer to 1,
indicating a better fit to the experimental data, and the calculated adsorption capacities
through PSO equation closely match with the experimentally determined adsorption
capacities (qexp), as shown in Table 1. Hence, the system can be best interpreted by the PSO
model, and thus it can be concluded that the interaction between the surface of CXTi and
MB is chemical in nature, and MB is mainly removed by a chemisorption phenomenon [25].

To further verify the chemisorption phenomenon of adsorption, the kinetic data was
fitted to the Elovich equation, as shown in Equation (3) [24].

qt =
1
B

ln(AB) +
1
B

ln(t) (3)

where A (mg g−1 min−1) and B (g mg−1) are the initial rate constant of adsorption and des-
orption, respectively. This equation has been applied to wastewater treatment systems and
is useful in describing chemisorption processes, which involve valence forces through shar-
ing or exchange between the adsorbate and the adsorbent. The equation also signifies that
the removal efficiency decreases with time because of the coverage of active sites [24]. The
fit of the experimental data to the Elovich model is shown in Figure 6, and the obtained fits
are good (R2 > 0.97), therefore verifying chemisorption within the adsorption process [26].
In addition, FTIR spectra of the adsorbent were recorded after adsorption treatment to
confirm that the functional groups on CXTi are responsible for the observed adsorption
activity. As shown in Figure 7, the change in spectra before and after adsorption of MB is
evident, where the peaks associated with C-H, C=C and C-O-C vibrations appeared intense
in comparison with CXTi before adsorption. Thus, it can be concluded that the adsorption
of MB onto CXTi occurred predominantly via π–π interactions due to the aromatic rings of
carbon xerogel [27].
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Figure 6. Elovich model fitting to experimental data for adsorption of MB on CXTi synthesised in
this study, at initial concentrations of 50, 100, 150 and 200 mg L−1 (T = 23 ◦C, dose = 0.01 g mL−1).

To further understand the internal diffusion mechanism within the adsorbate–adsorbent
system, the IPD model was applied to the experimental data. The IPD model is commonly
applied to study the rate limiting step during the adsorption process, which is defined by
either mass transfer or the diffusion of adsorbate and pore diffusion. IPD is studied by
fitting the data to Equation (4) [24].

qt = kipt0.5 + C (4)

kip is the rate constant (mg−1 g min0.5) and the intercept C is the boundary layer thickness.
The value of C defines the boundary layer effect. A plot of qt vs. t0.5 gives a linear function;
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if the line passes through the origin, IP diffusion controls the adsorption process. If the
line does not pass through origin and shows multiple linear segments, these segments
correspond to different mechanisms that control the adsorption process [24].
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Figure 7. FTIR spectra of CXTi recorded before and after the adsorption treatment.

Figure 8 shows the plot of MB adsorption onto CXTi fitted to the IPD equation plotted
against t0.5. The multistep adsorption process is evident through the multi-linearity of the
data (marked as stages 1, 2 and 3), which indicates that intra-particle diffusion was not
rate limiting, and other adsorption mechanisms were also involved [25]. This means that
the adsorption process, stage 1, began with rapid diffusion of MB from the bulk phase to
the external surface of the sample, adsorbing swiftly due to the immediate availability of
a large proportion of adsorption sites. The second stage was slower due to the boundary
layer effect causing slow diffusion of the adsorptive into the porous structure of the sample.
The third stage suggests an equilibrium stage, where intra-particle diffusion starts to slow
down due to low adsorptive concentration or saturation of the active sites, preventing
surface reactions from occurring [24,25]. The calculated parameters obtained by piecewise
fitting are shown in Supplementary Materials, Table S1.
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2.3. Adsorption Isotherm Study

The maximum equilibrium adsorption capacity was determined over the concentration
range 0–200 mg L−1, recorded at intervals of 20 mg L−1. It can be observed that the
adsorption capacity of CXTi increased with the increase in initial concentration of MB.
A rapid increase in adsorption capacity was observed at low concentration, suggesting
that CXTi has abundant active sites. With increasing MB concentration, the adsorption
capacity reached a saturation plateau, indicating that the active sites were completely
occupied by MB dye molecules. To understand the interactions between the adsorbent
and adsorbate at equilibrium, adsorption isotherms obtained in this study were analysed
according to the nonlinear form of Langmuir, Freundlich, and Sips isotherm models, and
values of the associated model parameters were determined. The model showing the best
fit to the experimental data, based on determination of the regression coefficient (R2), was
selected for adsorption interpretation. The Langmuir isotherm model is relevant for the
prediction of monolayer adsorption on energetically uniform homogenous adsorption sites,
whereas the Freundlich isotherm model predicts multilayer adsorption [28]. Langmuir and
Freundlich models are expressed in Equations (5) and (7), respectively.

qe =
qLKLCe

1 + CeKL
(5)

where qe (mg g−1) is the MB uptake at equilibrium, Ce (mg L−1) is the equilibrium concen-
tration, qL (mg g−1) is the amount of adsorbate at complete monolayer coverage, and KL is
the Langmuir constant related to the energy of adsorption, which can be used to determine
the extent of adsorbate–adsorbent interaction. Furthermore, adsorption favourability can
be determined by a dimensionless constant called the separation factor, RL, expressed in
Equation (6):

RL =
1

(1 + KLC0)
(6)

where, C0 refers to the initial concentration of the adsorbate in (mg L−1), and KL is Lang-
muir constant related to the adsorption capacity. If the value of RL > 1, the adsorption
is unfavourable, and favourable when 0 < RL < 1. The Freundlich isotherm model is
represented by:

qe = KFC1/nF
e (7)

where qe (mg g−1) and Ce (mg L−1) are as defined in the Langmuir equation, adsorption
affinity is related to the adsorption constant KF, and nF indicates the magnitude of the
adsorption driving force and is used to evaluate the adsorption favourability. When 1/nF is
greater than 0 (0 < 1/nF < 1), adsorption is favourable; whereas, when 1/nF is greater than 1,
the adsorption process is unfavourable. Moreover, the adsorption intensity or surface
heterogeneity and the energy distribution, as well as the adsorbate site heterogeneity, is
indicated by 1/nF. A value of nF between 2 and 10 represents good adsorption, indicating
a high adsorption capacity, while values between 1 and 2 indicate moderate adsorption
capacity, and values less than 1 indicate a small adsorption capacity.

Sips, a three-parameter model, is a combination of Langmuir and Freundlich ad-
sorption isotherm models. It is stated that the Sips model predicts characteristics of the
Langmuir isotherm at higher concentrations, while predicting Freundlich isotherm be-
haviour at lower concentrations [29]. The Sips model is expressed in Equation (8):

qe =
qsKsCns

e

1 + KsCns
e

(8)

where qe (mg g−1) and Ce (mg L−1) are as defined in the Langmuir and Freundlich
equations, Ks is the Sips isotherm model constant (L g−1), and ns is the Sips isotherm
exponent, which is related to the heterogeneity factor that represents the deviation of the
linearity of adsorption. The heterogeneity of adsorbents in the equation is illustrated by
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1/ns; if 1/ns < 1, the adsorbent surface is heterogeneous, and if 1/ns ~ 1, the surface can be
described as homogenous [29].

The fittings of the Langmuir, Freundlich and Sips isotherm models to adsorption data
obtained for MB on CXTi are presented in Figure 9, and the calculated parameters are shown
in Table 2. The fitting results based on regression coefficient values indicate that the Sips
isotherm model exhibits the best fit to the experimentally obtained adsorption equilibrium
data. The maximum adsorption capacity obtained from the Sips model (qs = 217 mg g−1)
was closest to the experimentally determined value (qe = 218 mg g−1). The heterogeneity
factor, ns, is greater than 1; therefore, the suggestion is that the adsorption surface is
heterogeneous. The evaluated parameters from the Freundlich model also validate the
heterogeneous nature of the sorbent, since the value of nF is greater than 1. Additionally,
the separation factor, RL is less than 1, which indicates favourable adsorption. The isotherm
models fit most appropriately in the order Sips > Langmuir > Freundlich.
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Table 2. Parameters for MB adsorption at equilibrium computed from Langmuir, Freundlich and
Sips isotherm model equations.

Isotherm Model Parameters

Experimental qe (mg g−1) 218

Langmuir

qL (mg g−1) 255
KL (L mg−1) 0.087

RL 0.103
R2 0.951

Freundlich
KF mg g−1 (L mg−1)1/n 60.5

nF 3.35
R2 0.861

Sips

qs (mg g−1) 217
Ks (L mg−1) 0.007

ns 2.28
R2 0.992

2.4. Photocatalytic Study

As reflected in Figure 10a, absorption extends broadly to the visible region of the elec-
tromagnetic spectrum, with maximum absorption observed at 509 nm. The corresponding
band gap calculated through the Tauc method was 2.24 eV [30]; meaning that CXTi can
absorb and activate under visible light irradiation. This point was proven by performing
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further experiments post adsorption to observe decolourisation of MB under visible light.
Figure 10c validates the reduction of MB, with a flattened curve observed after 30 min of
exposure to light irradiation. Consequent reduction in MB concentration by combined
adsorption–photocatalysis is shown in Figure 10d. It was observed that the MB removal
capacity of CXTi increased from ~85 to 99% upon light irradiation. As can be seen in
Table 3, these results are more efficient than those of similar systems. The photocatalytic
activity in this work arises from the synergy of CX and TiO2. The chemical linkage be-
tween CX and TiO2 forms a surface complex via a hydroxyl group, where a single oxygen
atom separates the phenolic ligand from the TiO2 surface [16]. This binding phenomenon
is similar to that previously described for aromatic compounds with phenolic hydroxyl
groups, which can chemically bind with functional groups of TiO2 [31]. Binding through
the hydroxyl group enables strong coupling due to ligand–metal charge transfer (LMCT).
The formation of LMCT complexes modifies the overall electronic structure and creates a
new absorption band in the visible light [31,32], as illustrated in Scheme 1. The visible light
photocatalytic activity occurs when light falls on the surface of CXTi, resulting in generation
of photoexcited charge carriers (electron and hole pairs). These charge carriers transfer
from the highest occupied molecular orbital (HOMO) of the CX to the conduction band
of TiO2, similar to other chemically combined carbon/TiO2 systems [33]. Charge carriers
successfully transferred to the surface of the photocatalyst take part in redox reactions and
produce reactive oxide species (ROS), including hydroxy radicals (•OH) and superoxide
radicals (O2

•−) that can efficiently decompose adsorbed MB species [23,34].
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(c) post adsorption photocatalytic performance of CXTi under visible light irradiation and (d) kinetics
of combined adsorption and photodegradation of MB on CXTi.
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Table 3. Characteristics and degradation performance of comparable systems.

Material Procedure Inorganic
Content

Surface Area m2

g−1 Band gap (eV) Pollutant Removal
Efficiency Ref.

Magnet
photocatalyst
based on Carbon
Xerogels/TiO2

Photoinactivation
under UV
irradiation

Fe3O4/SiO2/N-
CXTi = 70%
Fe3O4/N-CXTi =
67%

Fe3O4/SiO2/N-
CXTi = 388
Fe3O4/N-CXTi =
212

Fe3O4/SiO2/N-
CXTi = 3.22
Fe3O4/SiO2/N-
CXTi =
3.10

Acetaminophen

Fe3O4/SiO2/N-
CXTi = 98%
Fe3O4/SiO2/N-
CXTi =
85%

[35]

Carbon/TiO2
gels

Adsorption–
Photodegradation
under UV–Vis
irradiation

10% 588 2.97 Methylene blue,
microbes 74% [17]

Carbon
Xerogel/Ti

Simultaneous
adsorption–
photodegradation

38% 650 2.68 Acetaminophen 96% [36]

Carbon
Xerogel/TiO2
composite

Adsorption–
photodegradation 33% 401 2.60 Orange G 70% [37]

TiO2/Carbon
Aerogel
composite

Photoinactivation
under UV
irradiation

85% 124 - Dimethyl
phthalate (DMP) 83% [38]

Carbon
Xerogel/Titania

Adsorption–
photodegradation 30% 384 2.24

Methylene blue,
Indicator
microorganisms

99% This work
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The change in structure of MB after photodegradation was confirmed by recording
FTIR spectra shown in Figure 11 before (a) and after (b) photocatalytic activity. The
differences in both the spectra clearly validate the change in structure of the MB dye
molecule post treatment, and are in agreement with the previous studies [39,40]. The
main functional moiety associated with MB was detected at ~2900 cm−1 for methylene
asymmetric stretching (C-H). The other functional moieties are observed for overlapped
OH and NH at 3350 cm−1, CH=N at 1645 cm−1, C=C side rings in the range of 1500
to 1400 cm−1, CH3 or CH2 stretching in the range of 1400 to 1300 cm−1, C-N stretching
absorption peaks at 1252 cm−1, C-H at 1176 cm−1, C-N at 1146 and C-S-C at 1060 cm−1,
and C-H out plane bending observed in the range of 800 cm−1. After photodegradation of
MB by ROS produced by CXTi under visible light, most of the characteristic absorption
peaks linked with MB weakened or disappeared, which suggests the breakdown of the MB
molecule at the interface of the CXTi. The main decomposed peaks were observed at 3338
and 1637 cm−1 for H-OH, 1470 for N-H and 2930 and 2850 cm−1 for C-H, which suggests
successful degradation of MB by CXTi under visible light irradiation.
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Photogenerated ROS have been reported to kill bacteria by attacking the cell wall,
leading to cell rupture, reduction in growth and ultimately cell death [34]. It has been
reported that the usual first target of ROS is the cell wall; e.g., in E. coli, the cell wall is
composed of lipopolysaccharide, peptidoglycan and phosphatidyl-ethanolamine, which
have been reported to be affected by ROS [41]. Secondly, the rupture of the cell membrane
occurs, leading to leakage of cellular matter and the ultimate breakdown of the cell [42].
Thirdly, cell lysis progresses by inhibiting the respiratory chain, followed by damage to
DNA [43]. The antimicrobial performance of CXTi was studied by conducting tests using
a membrane filtration procedure according to a standard method (9222 membrane filter
technique for members of the coliform group [44]). The performance was tested against
the reduction in total and faecal coliform bacteria and E. coli. After treating contaminated
water with CXTi, the calculation of bacteria was performed by counting the number of
colonies, colony forming units (CFU per 100 mL) and developed post incubation colonies
grown on the grid after 24 h. Pictures of petri plates before (control) and after (surviving
bacteria) treatment are shown in Figures 12 and 13, and numerical data is presented in
Table 4. The reduction in colonies signifies complete eradication of almost all surviving
bacteria. Remarkable antimicrobial activity is attributed to the production of a sufficient
amount of ROS to attack the bacterial cell wall for complete destruction.

Table 4. Antimicrobial results after performing tests against reduction in total and faecal coliform
and E. coli in control conditions and treatment using CXTi synthesised in this study.

Total Coliform Faecal Coliform E. coli

Control 210 180 176
Post Treatment with CXTi <1 <1 <1
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3. Materials and Method
3.1. Synthesis of CXTi

CX and TiO2 were combined using a sol–gel process. 5.43 g of resorcinol (SigmaAldrich,
ReagentPlus, 99%, Poole, UK) was completely dissolved in 50 mL of deionised water. 0.02 g
of catalyst, sodium carbonate (Na2CO3, Sigma-Aldrich, anhydrous, ≥99.5%) and 2.96 g of
formaldehyde (37 wt%) were added to the resorcinol solution under continuous stirring, at
room temperature. The pH recorded at this point was 7.4. A titania sol* was obtained using
a conventional method described elsewhere [45], and added dropwise to the system. The
integrated system was stirred at 23 ◦C for 2 h, after which the sol mixture was aged at 85 ◦C
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for 72 h. Aging was followed by solvent exchange through immersion of wet monolithic
CXTi in acetone. After 72 h, CX Ti was dried in a vacuum oven (Townson and Mercer 1425
Digital Vacuum Oven) at 110 ◦C for 48 h, and the ultimate CXTi was obtained with 30 wt%
TiO2 (theoretical percentage).

*Briefly, 3.6 g of precursor, titanium isopropoxide (TTIP) (98+%, ACROS Organics™,
Geel, Belgium), was mixed with ethanol, followed by dropwise addition of HCl and water
solution in the following molar ratio: 1 TTIP:10 EtOH:0.3 HCl:0.1 H2O. The mixture was
stirred at room temperature for the hydrolysis reaction to occur, and a homogenous solution
was obtained after 2 h of agitation. The anatase phase of TiO2 deposited was confirmed by
X-ray diffraction spectrum [46–48] (displayed in Figure S2, Supplementary Materials).

3.2. Structural Characterisation

Morphology of the materials was studied using micrograph images obtained via field
emission electron scanning microscopy (FESEM) TESCAN-MIRA. The chemical linkages
were investigated through Fourier Transform Infrared (FTIR) Spectroscopy (MB3000 series,
scanned in the range 4000–400 nm, at an interval 4 cm−1, over 16 scans). Surface area
was studied by obtaining N2 adsorption isotherms at −196 ◦C (Micromeritics ASAP 2420)
and using BET analysis; pore size was estimated using BJH theory [20]. Absorption vs.
wavelength spectra were obtained using UV-Vis Spectrophotometry (Varian Cary 5000
UV-Vis NIR Spectrophotometer Hellma Analytics).

3.3. Adsorption and Photocatalytic Performance

The adsorption experiments were conducted by adding 0.01 g of CXTi to 25 mL
of prepared concentrations of MB solution in the range 20–200 mg L−1. The pH of the
solutions was adjusted if required using 1M HCl and 1M NaOH. The adsorption equilibria
were established by agitating the systems using an orbital shaker (VWR 3500 Analog
Orbital Shaker unit), set to 125 rpm at 23 ◦C, in the dark. After a given time, the solution
was centrifuged for 15 min and the supernatant was collected for measurement. The
concentration of the treated solution was determined using UV-Vis spectrophotometry
(Varian Cary 5000 UV-Vis NIR Spectrophotometer Hellma Analytics). Likewise, post
adsorption, the concentration after photocatalytic treatment was determined at given time
intervals of exposure to visible light (irradiance 111 W m−2).

The equilibrium adsorption capacity, qe (mg g−1), was calculated using

qe =
(Co − Ce).V(l)

W
(9)

The corresponding percentage removal of MB was calculated by

Removal % =
Co − Ce

Co
× 100% (10)

where Co and Ce are the initial MB and final concentration, respectively. W is the weight
(g) of the adsorbent and V is the volume (L) of MB solution.

The effect of contact time was determined using aliquots of MB solution (25 mL,
100 mg L−1) and 0.01 g adsorbent gel, added into flasks and agitated for contact times in
the range 5 min to 4 h. The samples were prepared and treated as above, and the amount
of adsorption was calculated using Equation (11).

qt =
(Co − Ct).V

W
(11)

where Co and Ct are the initial MB and equilibrium concentration at a given time, re-
spectively, V is the volume of solution (L), and W is the mass of adsorbent sample in (g).
Equilibrium concentration was determined by plotting qt versus time of aliquots collected,
at different time intervals.
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3.4. Antimicrobial Performance

A stock solution of lab-cultivated bacteria was prepared with volume ratio 1:100. For
the detection of bacteria, mEndo and mFC agars were prepared, and a membrane filtration
procedure (MF) was performed according to 9222 standard methods for the examination
of water and wastewater using the membrane filter (MF) technique for members of the
coliform group [44].

Briefly, 250 mL transparent sterile water bottles were filled with 200 mL of contam-
inated water. According to standard microbiological examination (9000), the suggested
sample volume to be filtered using membrane filtration for coliform or E. coli testing in
drinking water is 100 mL. Therefore, 100 mL of each treated sample was measured twice,
once for detection of E. coli, and the remaining 100 mL for detection of faecal coliform.
The bottles were labelled with the respective sample codes and 0.1 g of CXTi was added
to the contents of the bottle. After preparation, sample bottles were placed on an orbital
shaker (VRN 360 Gemmy, Taipei, Taiwan) at 200 rpm for 90 min, to establish equilibrium.
The bottles were then exposed to visible light. CXTi was filtered out and the membrane
filtration procedure was carried out. 100 mL of each treated water sample was filtered
twice using microfiltered paper, which was placed on mEndo and mFC agar petri plates.
These plates were incubated for 24 h, at 35 ◦C for mEndo and at 44 ◦C for mFC agar plates.
mEndo (pink plates) form a dark red, mucoid or dark centre without metallic sheen. E. coli
will form colonies with a metallic sheen. mFC (blue plates) are for the detection of faecal
coliform. Faecal coliforms form blue colonies on this medium, and E. coli will form flat
dark blue colonies. The grown bacterial colonies were counted according to the standard
counting procedure. The cell density of the original sample was calculated and compared
with the cell density of water treated with CXTi. The counts were reported as coliform
colony units (CFU/100 mL).

4. Conclusions

The CXTi adsorbent–photocatalyst was successfully synthesised within this study,
using a sol–gel method to combine a resorcinol–formaldehyde xerogel (CX) with titanium
dioxide (TiO2). As expected, the integration of TiO2 into the carbon xerogel material
modified the electronic structure of TiO2, which enabled visible light response, and the
CXTi sample demonstrated efficient adsorbent–photocatalyst behaviour for the removal
of MB under given conditions. The formation of a heterojunction between TiO2 and the
CX material was confirmed using spectroscopic methods. The kinetics of MB adsorption
revealed that agitation for 90 min was sufficient to attain equilibrium, and the kinetic
profiles better fitted a pseudo second order model, indicating chemical processes are
involved within MB removal. The equilibrium adsorption data were best described by
the Sips model, suggesting heterogeneity of the sample surface, which is fully in line with
the mixed material composite produce here. Additionally, the mesoporous carbon phase
provides a high surface area for optimised adsorption, and photocatalysis is enabled by the
inclusion of TiO2, resulting in the complete eradication of microbes under given conditions.
The excellent adsorption–photodegradation abilities exhibited by CXTi, achieved through
the synergistic effects of combining CX and titania, present an economically viable option
for water treatment, as they can be effectively recovered and reused. Recycling efficiency
tests, against the reduction in MB, demonstrated a minimal loss (∼5%) in dye degradation
efficiency by the fourth repeated cycle (Figure 14), suggesting good reusability of over 90%
efficiency with repeated use. Thus, CXTi is a promising candidate for efficient removal of a
wide range of synthetic azo dyes, as well as microbes, from industrial effluents.
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40. Barışçı, S.; Turkay, O.; Dimoglo, A. Review on greywater treatment and dye removal from aqueous solution by ferrate (VI). In
Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation; ACS Symposium Series; ACS
Publications: Washington, DC, USA, 2016; Volume 1238, pp. 349–409. [CrossRef]

41. de Dicastillo, C.L.; Correa, M.G.; Martínez, F.B.; Streitt, C.; Galotto, M.J. Antimicrobial effect of titanium dioxide nanoparticles. In
Antimicrobial Resistance: A One Health Perspective; BoD—Books on Demand: Norderstedt, Germany, 2020. [CrossRef]

42. Albukhaty, S.; Al-Bayati, L.; Al-Karagoly, H.; Al-Musawi, S. Preparation and characterization of titanium dioxide nanoparticles
and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim.
Biotechnol. 2022, 33, 864–870. [CrossRef] [PubMed]

43. Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic
properties. J. Nanobiotechnology 2016, 14, 1–20. [CrossRef]

44. American Public Health Association. 9222 Membrane filter technique for members of the coliform group. In Standard Methods For
the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2018; Volume 27. [CrossRef]

45. Khan, M.A.; Akhtar, M.S.; Yang, O.-B. Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparti-
cles for dye-sensitized solar cells. Sol. Energy 2010, 84, 2195–2201. [CrossRef]

46. Lin, C.; Ritter, J. Effect of synthesis pH on the structure of carbon xerogels. Carbon 1997, 35, 1271–1278. [CrossRef]
47. Fonseca-Correa, R.A.; Giraldo, L.; Moreno-Piraján, J.C. Dataset of xerogel synthesis in basic medium at different resorcinol/catalyst

ratios. Data Brief 2018, 17, 1056–1061. [CrossRef]
48. Singh, S.; Bhatnagar, A.; Dixit, V.; Shukla, V.; Shaz, M.; Sinha, A.; Srivastava, O.; Sekkar, V. Synthesis, characterization and

hydrogen storage characteristics of ambient pressure dried carbon aerogel. Int. J. Hydrog. Energy 2016, 41, 3561–3570. [CrossRef]

http://doi.org/10.1016/j.jphotochem.2021.113248
http://doi.org/10.1016/j.apcatb.2016.08.015
http://doi.org/10.1016/S0926-3373(00)00276-9
http://doi.org/10.1021/bk-2016-1238.ch014
http://doi.org/10.5772/intechopen.90891
http://doi.org/10.1080/10495398.2020.1842751
http://www.ncbi.nlm.nih.gov/pubmed/33251937
http://doi.org/10.1186/s12951-016-0225-6
http://doi.org/10.2105/SMWW.2882.193
http://doi.org/10.1016/j.solener.2010.08.008
http://doi.org/10.1016/S0008-6223(97)00069-9
http://doi.org/10.1016/j.dib.2018.02.041
http://doi.org/10.1016/j.ijhydene.2015.12.174

	Introduction 
	Results and Discussion 
	Structural Properties of CXTi 
	Adsorption Kinetics 
	Adsorption Isotherm Study 
	Photocatalytic Study 

	Materials and Method 
	Synthesis of CXTi 
	Structural Characterisation 
	Adsorption and Photocatalytic Performance 
	Antimicrobial Performance 

	Conclusions 
	References

