A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4, xLi2MnPO4, yLiFePO4 Composites for Lithium-Ion Batteries (LIBs)
Abstract
:1. Introduction
1.1. Lithium-Ion Batteries Background
1.2. Entropy Changing and Gibbs Energy in LIBs
2. Results
2.1. Material Characterization
2.1.1. SEM Analyzing
2.1.2. X-ray Diffraction
2.1.3. Charge and Discharge Measurement
2.2. Thermal Conductivity Measurement
3. Discussion
3.1. Cathode Material Compositions
3.2. XRD & XPS
3.3. Electrochemical Testing
3.4. Thermo Dynamic Properties Calculation
4. Materials and Methods
4.1. Cathode Electrode Preparation
4.2. State of Charge (SOC) Measurements
4.3. Applied Equipment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188. [Google Scholar] [CrossRef]
- Sun, C.S.; Zhou, Z.; Xu, Z.G.; Wang, D.G.; Wei, J.P.; Bian, X.K.; Yan, J. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 2009, 193, 841–845. [Google Scholar] [CrossRef]
- Yin, X.; Huang, K.; Liu, S.; Wang, H.; Wang, H. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J. Power Sources 2010, 195, 4308–4312. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, P.; Yi, J.; Yuan, Q.; Jiang, J.; Xu, Q.; Luo, Z.; Ren, X. XRD simulation study of doped LiFePO4. J. Alloys Compd. 2011, 509, 1206. [Google Scholar] [CrossRef]
- BussinesWire. Lithium Ion Batteries Outlook and Alternative Energy Vehicle (HEVs, PHEVs) Technologies, Markets, Competitors and Opportunities: 2010–2020 Analysis and Forecasts Market Research; BussinesWire: Rockville, MD, USA, 2010. [Google Scholar]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries; Science and Technologies; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Monajjemia, M.; Mollaamin, F.; Thu, P.T.; Otadi, M.; Alihosseini, A.; Dung, D.T.M.; Chien, D.M. Electrochemical Investigation of Lithium Ion Battery Including LiCo0.8Ni0.2O2, Li2MnO3, LiNiO2 Cathode Materials. Rus. J. Electrochem. 2020, 56, 737–748. [Google Scholar] [CrossRef]
- Daniel, C.; Besenhard, J.O. Handbook of Battery Materials, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Meyers, R.A. Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012. [Google Scholar]
- Rossen, E.; Jones, C.D.W.; Dahn, J.R. Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ion. 1992, 57, 311–318. [Google Scholar] [CrossRef]
- Spahr, M.E.; Novák, P.; Schnyder, B.; Haas, O.; Nesper, R. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J. Electrochem. Soc. 1998, 145, 1113. [Google Scholar] [CrossRef]
- Makimura, Y.; Ohzuku, T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J. Power Sources 2003, 119–121, 156–160. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, A.; Lee, J.Y. Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources 1999, 81–82, 416–419. [Google Scholar] [CrossRef]
- Yoshio, M.; Noguchi, H.; Itoh, J.I.; Okada, M.; Mouri, T. Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries. J. Power Sources 2000, 90, 176–181. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 2001, 30, 642–643. [Google Scholar] [CrossRef]
- Monajjemi, M.; Naghsh, F.; Mollaamin, F. Bio-Lipid Nano Capacitors: Resonance with Helical Myeline Proteins. Biointerface Res. Appl. Chem. 2020, 10, 6695–6705. [Google Scholar]
- Ngala, J.K.; Chernova, N.A.; Ma, M.; Mamak, M.; Zavalij, P.Y.; Whittingham, M.S. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem. 2004, 14, 214–220. [Google Scholar] [CrossRef]
- Yoon, W.S.; Chung, K.Y.; McBreen, J.; Yang, X.Q. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem. Commun. 2006, 8, 1257–1262. [Google Scholar] [CrossRef]
- Yu, Z.; Rudnicki, P.E.; Zhang, Z.; Huang, Z.; Celik, H.; Oyakhire, S.T.; Chen, Y.; Kong, X.; Kim, S.C.; Xiao, X.; et al. Rational solvent molecule tuning for high-perform ance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, F.; Wang, X.; Zheng, L.; Yang, X.; Zhao, H.; Sun, Y.; Zhao, W.; Bai, Y.; Wu, C. An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling High–Voltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2021, 32, 2107764. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, F.; Wang, X.; Weng, S.; Yang, X.; Zhao, H.; Guo, R.; Sun, Y.; Zhao, W.; Song, T.; et al. 8.5 µm-Thick Flexible-Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air-Stable and Interface-Compatible All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2200368. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Vlahinos, A.; Burch, S.D. Thermal Performance of EV and HEV Battery Modules and Packs; National Renewable Energy Laboratory: Golden, CO, USA, 1997.
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2009, 22, 587–603. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Thangadurai, V.; Weppner, W. Solid state lithium ion conductors: Design considerations by thermodynamic approach. Ionics 2002, 8, 281–292. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Kumar, B. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic. J. Power Sources 2008, 185, 480–485. [Google Scholar] [CrossRef]
- Kumar, B.; Thomas, D.; Kumar, J. Space-charge-mediated superionic transport in lithium ion conducting glass-ceramics. J. Electrochem. Soc. 2009, 156, A506–A513. [Google Scholar] [CrossRef]
- Xu, X.; Wen, Z.; Yang, X.; Zhang, J.; Gu, Z. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ion. 2006, 177, 2611–2615. [Google Scholar] [CrossRef]
- Smith, K.; Wang, C.-Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J. Power Sources 2006, 160, 662–673. [Google Scholar] [CrossRef]
- Yi, J.; Kim, U.S.; Shin, C.B.; Han, T.; Park, S. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J. Electrochem. Soc. 2013, 160, A437. [Google Scholar] [CrossRef]
- Monajjemi, M.; Mollaamin, F. Evaluation of Aromaticity Indexes During Substituting B &N Atoms in Poly-Annulene. Biointerface Res. Appl. Chem. 2021, 11, 8298–8317. [Google Scholar]
- Gerver, R.E.; Meyers, J.P. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations. J. Electrochem. Soc. 2011, 158, A835. [Google Scholar] [CrossRef]
- Bagheri, S.; Monajjemi, M. A novel cathodic combination in sodium-ion battery based on NaNi0.7Co0.3O2, Na2MnO3, and NaCoO2 combination: Synthesis and characterization. Biointerface Res. Appl. Chem. 2021, 11, 11316–11317. [Google Scholar]
- Maher, K.; Yazami, R. A study of lithium ion batteries cycle aging by thermodynamics techniques. J. Power Sources 2014, 247, 527–533. [Google Scholar] [CrossRef]
- Nelson, P.; Dees, D.; Amine, K.; Henriksen, G. Modeling thermal management of lithium-ion PNGV batteries. J. Power Sources 2002, 110, 349–356. [Google Scholar] [CrossRef]
- Smith, K.; Wang, C.Y. Impact of transportation electrification on the electricity grid—A review. In Proceedings of the SAE Future Transportation Technology Conference, Chicago, IL, USA, 7–9 September 2005. [Google Scholar]
- Chiasson, J.; Vairamohan, B. Estimating the state of charge of a battery. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 2863–2868. [Google Scholar]
- Aiello, L.; Kovachev, G.; Brunnsteiner, B.; Schwab, M.; Gstrein, G.; Sinz, W.; Llersdorfer, C. In situ measurement of orthotropic thermal conductivity on commercial pouch lithium-ion batteries with thermoelectric device. Batteries 2020, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Botte, G.; Johnson, B.; White, R. Influence of some design variables on the thermal behavior of a lithium-ion cell. J. Electrochem. Soc. 1999, 146, 914. [Google Scholar] [CrossRef]
Compounds | Li/Li+ Potential | Capacity (mAh/g) | Energy (Wh/Kg) | Advantages | Disadvantages |
---|---|---|---|---|---|
LiCoO2 | 3.8 | 140 | 546 | High capacity and high voltage | High cost |
TCA: Ti, Co, Al | 3.7 | 185–205 | 650–750 | High capacity and high voltage | High cost |
TCM: Ti, Co, Mn | 3.7 | 165–175 | 600–650 | High capacity, high operating voltage | High cost of |
LiMn2O4 (LMO) | 4.2 | 105–125 | 400–500 | Low cost, Excellent performance, | Low capacity, affecting cycle life |
LiFePO4 (LCP) | 3.4 | 155–175 | 510–580 | Low cost, Excellent performance, Excellent safety (oxygen release) | Low voltage Low capacity |
Sample | Composition | Sample | Composition |
---|---|---|---|
1 | LiFe0.333Ti0.333Co0.333PO4 | 15 | LiFe0.778Ti0.111Co0.111PO4 |
2 | Li1.167Fe0.278Ti0.278Co0.278Mn0.166PO4 | 16 | Li1.835Fe0.055Ti0.055Co0.055Mn0.835PO4 |
3 | LiFe0.444Ti0.278Co0.278PO4 | 17 | Li1.668Fe0.222Ti0.055Co0.055Mn0.668PO4 |
4 | Li1.334Fe0.222Ti0.222Co0.222 Mn0.334PO4 | 18 | Li1.501Fe0.389Ti0.055Co0.055Mn0.501PO4 |
5 | Li1.167Fe0.389Ti0.222Co0.222Mn0.167PO4 | 19 | Li1.334Fe0.556Ti0.055Co0.055Mn0.334PO4 |
6 | LiFe0.556Ti0.222Co0.222PO4 | 20 | Li1.167Fe0.723Ti0.055Co0.055Mn0.167PO4 |
7 | Li1.501Fe0.167Ti0.167Co0.166 Mn0.500PO4 | 21 | LiFe0.890Ti0.055Co0.055PO4 |
8 | LiFe0.334Ti0.166Co0.166Mn0.334PO4 | 22 | Li2MnPO4 |
9 | LiFe0.501Ti0.166Co0.166Mn0.167PO4 | 23 | Li1.835Fe0.166Mn0.834PO4 |
10 | LiFe0.667Ti0.167Co0.166PO4 | 24 | Li1.668Fe0.332Mn0.668PO4 |
11 | Li1.668Fe0.111Ti0.111Co0.111 Mn0.667PO4 | 25 | Li1.501Fe0.500Mn0.500PO4 |
12 | Li1.501Fe0.278Ti0.111Co0.111Mn0.500PO4 | 26 | Li1.334Fe0.668Mn0.332PO4 |
13 | Li1.334Fe0.445Ti0.111Co0.111Mn0.333PO4 | 27 | Li1.167Fe0.834Mn0.166PO4 |
14 | Li1.167Fe0.612Ti0.111Co0.111Mn0.166PO4 | 28 | LiFePO4 |
Sample | a (nm) | b (nm) | c (nm) | Capacity | Cyclability |
---|---|---|---|---|---|
14 (Ternary) | 0.2314 | 0.2677 | 1.052 | 171.5 | 85 |
16 (Binary) | 0.2845 | 0.2843 | 1.123 | 188.5 | 85 |
18 (Ternary) | 0.3123 | 0.2514 | 1.243 | 220.2 | 95 |
21 (Binary) | 0.3032 | 0.2987 | 1.833 | 185.5 | 96 |
Samples | Li2MnPO4 | LiFePO4 | LiFe0.333Ti0.333Co0.333PO4 | Blend | Capacity | Cyclability |
---|---|---|---|---|---|---|
1- | 0 | 0 | 1 | Pure | 112.5 | 85 |
2- | 1/6 = 0.167 | 0 | 0.833 | Binary | 92.5 | 64 |
3- | 0 | 0.167 | 0.833 | Binary | 95.5 | 77 |
4- | 1/3 = 0.333 | 0 | 0.667 | Binary | 165.5 | 92 |
5- | 1/6 = 0.167 | 0.167 | 0.667 | Ternary | 140.5 | 80 |
6- | 0 | 0.333 | 0.667 | Binary | 91.5 | 75 |
7- | 1/2 = 0.500 | 0 | 0.500 | Binary | 155.5 | 80 |
8- | 1/3 = 0.333 | 0.167 | 0.500 | Ternary | 173.5 | 68 |
9- | 1/6 = 0.167 | 0.333 | 0.500 | Ternary | 158.5 | 88 |
10- | 0 | 0.500 | 0.500 | Binary | 179.5 | 98 |
11- | 2/3 = 0.667 | 0 | 0.333 | Binary | 112.6 | 98 |
12- | 1/2 = 0.500 | 0.167 | 0.333 | Ternary | 154.1 | 92 |
13- | 1/3 = 0.333 | 0.333 | 0.333 | Ternary | 170.4 | 79 |
14- | 1/6 = 0.167 | 0.500 | 0.333 | Ternary | 171.5 | 85 |
15- | 0 | 0.667 | 0.333 | Binary | 115.6 | 95 |
16- | 5/6 = 0.833 | 0 | 0.167 | Binary | 188.5 | 85 |
17- | 2/3 = 0.667 | 0.167 | 0.167 | Ternary | 171.9 | 95 |
18- | 1/2 = 0.500 | 0.333 | 0.167 | Ternary | 220.2 | 95 |
19- | 1/3 = 0.333 | 0.5 | 0.167 | Ternary | 139.5 | 95 |
20- | 1/6 = 0.167 | 0.667 | 0.167 | Ternary | 248.1 | 55 |
21- | 0 | 0.833 | 0.167 | Binary | 185.5 | 96 |
22- | 1 | 0 | 0 | Pure | 71.5 | 95 |
23- | 5/6 = 0.833 | 0.167 | 0 | Binary | 183.5 | 92 |
24- | 2/3 = 0.667 | 0.333 | 0 | Binary | 175.2 | 90 |
25- | 1/2 = 0.500 | 0.500 | 0 | Binary | 190.5 | 90 |
26- | 1/3 = 0.333 | 0.667 | 0 | Binary | 198.5 | 57 |
27- | 1/6 = 0.167 | 0.833 | 0 | Binary | 200.5 | 99 |
28- | 0 | 1 | 0 | Pure | 190.2 | 85 |
Sample | Thermal Conductivity k [W m−1 K−1] | Thermal Energy (kJ) | Electro-Chemical Energy (kJ) | Gibbs Energy from Each Related Systems | Activation Energy * J mol−1 |
---|---|---|---|---|---|
1 | 1.75 | 48.5 | 122.2 | −150.1 | |
2 | 1.83 | 52.3 | 111.9 | −138.2 | |
3 | 1.65 | 44.7 | 131.8 | −144.1 | |
4 | 1.73 | 47.8 | 117.5 | −165.4 | |
5 | 1.77 | 43.9 | 115.8 | −143.7 | |
6 | 1.93 | 50.1 | 118.4 | −134.7 | |
7 | 1.67 | 51.9 | 102.5 | −165.3 | |
8 | 1.66 | 53.8 | 109.5 | −122.5 | |
9 | 1.87 | 44.9 | 111.3 | −156.7 | |
10 | 1.67 | 46.8 | 112.4 | −145.3 | |
11 | 1.89 | 47.9 | 115.5 | −143.1 | |
12 | 1.99 | 49.6 | 113.7 | −125.7 | |
13 | 1.78 | 50.8 | 100.8 | −166.3 | |
14 | 1.88 | 46.8 | 114.6 | −163.7 | |
15 | 1.74 | 47.9 | 121.8 | −143.8 | |
16 | 1.79 | 49.0 | 109.8 | −156.9 | |
17 | 1.83 | 50.9 | 116.9 | −166.5 | |
18 | 1.95 | 55.5 | 130.5 | −200.8 | |
19 | 1.72 | 43.7 | 121.8 | −193.6 | |
20 | 1.67 | 44.9 | 112.6 | −122.5 | |
21 | 1.81 | 47.8 | 114.6 | −164.4 | |
22 | 1.57 | 46.9 | 117.8 | −163.9 | |
23 | 1.95 | 51.2 | 119.5 | −167.0 | |
24 | 1.56 | 49.6 | 113.4 | −145.6 | |
25 | 1.66 | 51.6 | 100.6 | −153.9 | |
26 | 1.79 | 50.2 | 105.7 | −165.8 | |
27 | 1.55 | 49.7 | 109.2 | −122.8 | |
28 | 1.84 | 44.5 | 100.0 | −144.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Min, X.; Monajjemi, M. A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4, xLi2MnPO4, yLiFePO4 Composites for Lithium-Ion Batteries (LIBs). Molecules 2022, 27, 8486. https://doi.org/10.3390/molecules27238486
Li L, Min X, Monajjemi M. A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4, xLi2MnPO4, yLiFePO4 Composites for Lithium-Ion Batteries (LIBs). Molecules. 2022; 27(23):8486. https://doi.org/10.3390/molecules27238486
Chicago/Turabian StyleLi, Lu, Xin Min, and Majid Monajjemi. 2022. "A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4, xLi2MnPO4, yLiFePO4 Composites for Lithium-Ion Batteries (LIBs)" Molecules 27, no. 23: 8486. https://doi.org/10.3390/molecules27238486
APA StyleLi, L., Min, X., & Monajjemi, M. (2022). A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4, xLi2MnPO4, yLiFePO4 Composites for Lithium-Ion Batteries (LIBs). Molecules, 27(23), 8486. https://doi.org/10.3390/molecules27238486