Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry
Abstract
:1. Introduction
2. A Little Bit of History
3. Novel Uses of Polyhydroxyalkanoates and How to Produce Them
3.1. Bacterial Accumulation and Bioremediation
3.2. Packaging: More Than Food
3.3. Drug Delivery of Natural Compounds
3.4. As a Biomaterial
3.5. Applications of Electrospinning Technique on PHA
3.6. Cosmetics
3.7. As Sensor
3.8. Other Uses
3.8.1. As Flame Retardant
3.8.2. For Metabolic Pathways’ Analysis and Physiology
3.8.3. As Cleaning Material
3.8.4. For Environmental Protection
3.8.5. Other Uses
4. Conclusions: The Future of PHA
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raza, Z.A.; Noor, S.; Khalil, S. Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnol. Prog. 2019, 35, e2855. Available online: https://pubmed.ncbi.nlm.nih.gov/31136087/ (accessed on 9 October 2022). [CrossRef] [PubMed]
- Zeugolis, D.I.; Pandit, A. Biofunctional Biomaterials—The Next Frontier. Bioconjug. Chem. 2015, 26, 1157. Available online: https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.5b00342 (accessed on 9 October 2022). [CrossRef] [PubMed] [Green Version]
- Sagong, H.-Y.; Son, H.F.; Choi, S.Y.; Lee, S.Y.; Kim, K.-J. Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends Biochem. Sci. 2018, 43, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chou, I.-N.; Tsai, Y.-H.; Wu, H.-S. Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in drying treatment. J. Appl. Polym. Sci. 2013, 130, 3659–3667. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/app.39616 (accessed on 9 October 2022). [CrossRef]
- Bunster, G.F. Polyhydroxyalkanoates: Production and Use. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; CRC Press: Boca Raton, FL, USA, 2015; pp. 6412–6421. Available online: https://www.taylorfrancis.com/chapters/edit/10.1081/E-EBPP-120049915/polyhydroxyalkanoates-production-use-guillermo-fern%C3%A1ndez-bunster (accessed on 9 October 2022).
- Chandrasekhar, K.; Jujjavarapu, S.E.; Kumar, P.; Kumar, G.; Chandrasai, P.D.; Kumar, E.M.; Chavali, M. Sources of Natural Polymers from Microorganisms with Green Nanoparticles. In Green Polymeric Nanocomposites; CRC Press: Boca Raton, FL, USA, 2020; pp. 103–132. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351045155-5/sources-natural-polymers-microorganisms-green-nanoparticles-chandrasekhar-satya-eswari-jujjavarapu-prasun-kumar-gopalakrishnan-kumar-potla-durthi-chandrasai-enamala-manoj-kumar-murthy-chavali (accessed on 23 November 2022).
- Bhatia, S.K.; Wadhwa, P.; Hong, J.W.; Hong, Y.G.; Jeon, J.-M.; Lee, E.S.; Yang, Y.-H. Lipase mediated functionalization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterial. Int. J. Biol. Macromol. 2018, 123, 117–123. Available online: https://pubmed.ncbi.nlm.nih.gov/30428310/ (accessed on 21 June 2022). [CrossRef] [PubMed]
- García-Quiles, L.; Cuello, Á.F.; Castell, P. Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite. Polymers 2019, 11, 696. Available online: https://pubmed.ncbi.nlm.nih.gov/30995817/ (accessed on 23 June 2022). [CrossRef] [Green Version]
- Larrañaga, A.; Fernández, J.; Vega, A.; Etxeberria, A.; Ronchel, C.; Adrio, J.; Sarasua, J. Crystallization and its effect on the mechanical properties of a medium chain length polyhydroxyalkanoate. J. Mech. Behav. Biomed. Mater. 2014, 39, 87–94. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Sohn, Y.J.; Kim, H.T.; Baritugo, K.-A.; Song, H.M.; Ryu, M.H.; Kang, K.H.; Jo, S.Y.; Kim, H.; Kim, Y.J.; Choi, J.-I.; et al. Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int. J. Biol. Macromol. 2020, 149, 593–599. [Google Scholar] [CrossRef]
- Shahid, S.; Razzaq, S.; Farooq, R.; Nazli, Z.-I. Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world’s future economy. Int. J. Biol. Macromol. 2020, 166, 297–321. Available online: https://pubmed.ncbi.nlm.nih.gov/33127548/ (accessed on 24 June 2022). [CrossRef]
- Reddy, C.; Ghai, R.; Rashmi; Kalia, V. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2002, 87, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.A. Applications of PHB—A microbially produced biodegradable thermoplastic. Phys. Technol. 1985, 16, 32–36. Available online: https://iopscience.iop.org/article/10.1088/0305-4624/16/1/305 (accessed on 9 October 2022). [CrossRef]
- Ray, S.; Kalia, V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017, 57, 261–269. Available online: https://link.springer.com/article/10.1007/s12088-017-0651-7 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Kusuktham, B.; Teeranachaideekul, P. Mechanical Properties of High Density Polyethylene/Modified Calcium Silicate Composites. Silicon 2014, 6, 179–189. Available online: https://link.springer.com/article/10.1007/s12633-014-9204-4 (accessed on 9 October 2022). [CrossRef]
- Adane, L.; Muleta, D. Survey on the usage of plastic bags, their disposal and adverse impacts on environment: A case study in Jimma City, Southwestern Ethiopia. J. Toxicol. Environ. Health Sci. 2011, 3, 234–248. Available online: http://www.academicjournals.org/JTEHS (accessed on 9 October 2022).
- El-Malek, F.A.; Khairy, H.; Farag, A.; Omar, S. The sustainability of microbial bioplastics, production and applications. Int. J. Biol. Macromol. 2020, 157, 319–328. Available online: https://pubmed.ncbi.nlm.nih.gov/32315677/ (accessed on 24 June 2022). [CrossRef]
- Grigore, M.E.; Grigorescu, R.M.; Iancu, L.; Ion, R.-M.; Zaharia, C.; Andrei, E.R. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: A review. J. Biomater. Sci. Polym. Ed. 2019, 30, 695–712. Available online: https://www.tandfonline.com/doi/abs/10.1080/09205063.2019.1605866 (accessed on 9 October 2022). [CrossRef]
- Stojanović, G.M.; Nikodinović-Runić, J.; Švenderman, S.; Kojić, T.; Radovanović, M.; Mikov, M.; Randjelović, D. Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111091. Available online: https://pubmed.ncbi.nlm.nih.gov/32600695/ (accessed on 24 June 2022). [CrossRef]
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 74. Available online: https://pubmed.ncbi.nlm.nih.gov/35200427/ (accessed on 23 November 2022). [CrossRef]
- Zinn, M. Development of Biopolyesters (PHA) as Part of the Swiss Priority Program in Biotechnology. CHIMIA 2020, 74, 398–401. Available online: https://pubmed.ncbi.nlm.nih.gov/32482217/ (accessed on 24 June 2022). [CrossRef]
- Foong, C.P.; Higuchi-Takeuchi, M.; Ohtawa, K.; Asai, T.; Liu, H.; Ozeki, Y.; Numata, K. Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics. ACS Synth. Biol. 2022, 11, 909–920. Available online: https://pubs.acs.org/doi/full/10.1021/acssynbio.1c00537 (accessed on 18 February 2022). [CrossRef] [PubMed]
- Koller, M. Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. EuroBiotech J. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, P.; Ray, S.; Kalia, V.C. Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian J. Microbiol. 2015, 55, 235–249. Available online: https://link.springer.com/article/10.1007/s12088-015-0528-6 (accessed on 23 November 2022). [CrossRef] [PubMed] [Green Version]
- Taguchi, S.; Doi, Y. Evolution of Polyhydroxyalkanoate(PHA) Production System by“Enzyme Evolution”: Successful Case Studies of Directed Evolution. Macromol. Biosci. 2004, 4, 145–156. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/mabi.200300111 (accessed on 23 November 2022). [CrossRef] [PubMed]
- Aldor, I.S.; Keasling, J.D. Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 2003, 14, 475–483. Available online: https://pubmed.ncbi.nlm.nih.gov/14580576/ (accessed on 23 November 2022). [CrossRef]
- Lu, J.; Tappel, R.C.; Nomura, C.T. Mini-Review: Biosynthesis of Poly(hydroxyalkanoates). Polym. Rev. 2009, 49, 226–248. Available online: https://www.tandfonline.com/doi/abs/10.1080/15583720903048243 (accessed on 23 November 2022). [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 55. Available online: https://pubmed.ncbi.nlm.nih.gov/28952534/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Gradíssimo, D.G.; Xavier, L.P.; Santos, A.V. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Molecules 2020, 25, 4331. Available online: https://pubmed.ncbi.nlm.nih.gov/32971731/ (accessed on 23 November 2022). [CrossRef]
- Orellana-Saez, M.; Pacheco, N.; Costa, J.I.; Mendez, K.N.; Miossec, M.J.; Meneses, C.; Castro-Nallar, E.; Marcoleta, A.E.; Poblete-Castro, I. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front. Microbiol. 2019, 10, 1154. Available online: https://pubmed.ncbi.nlm.nih.gov/31178851/ (accessed on 23 June 2022). [CrossRef]
- Kumar, P.; Ray, S.; Patel, S.K.S.; Lee, J.K.; Kalia, V.C. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 2015, 78, 9–16. [Google Scholar] [CrossRef]
- Pereira, J.R.; Araujo, D.; Marques, A.C.; Neves, L.A.; Grandfils, C.; Sevrin, C.; Alves, V.D.; Fortunato, E.; Reis, M.A.; Freitas, F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 2019, 122, 1144–1151. Available online: https://pubmed.ncbi.nlm.nih.gov/30219510/ (accessed on 15 October 2022). [CrossRef] [PubMed]
- Papa, G.; Sciarria, T.P.; Carrara, A.; Scaglia, B.; D’Imporzano, G.; Adani, F. Implementing polyhydroxyalkanoates production to anaerobic digestion of organic fraction of municipal solid waste to diversify products and increase total energy recovery. Bioresour. Technol. 2020, 318, 124270. Available online: https://pubmed.ncbi.nlm.nih.gov/33099102/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Molino, A.; Nanna, F.; Ding, Y.; Bikson, B.; Braccio, G. Biomethane production by anaerobic digestion of organic waste. Fuel 2013, 103, 1003–1009. [Google Scholar] [CrossRef]
- Pierro, L.; Matturro, B.; Rossetti, S.; Sagliaschi, M.; Sucato, S.; Alesi, E.; Bartsch, E.; Arjmand, F.; Papini, M.P. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field. New Biotechnol. 2017, 37, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santorio, S.; Fra-Vázquez, A.; Val del Rio, A.; Mosquera-Corral, A. Potential of endogenous PHA as electron donor for denitrification. Sci. Total. Environ. 2019, 695, 133747. Available online: https://pubmed.ncbi.nlm.nih.gov/31419685/ (accessed on 23 June 2022). [CrossRef] [PubMed]
- Levett, I.; Pratt, S.; Donose, B.C.; Brackin, R.; Pratt, C.; Redding, M.; Laycock, B. Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. J. Agric. Food Chem. 2019, 67, 2449–2458. Available online: https://pubmed.ncbi.nlm.nih.gov/30724561/ (accessed on 23 June 2022). [CrossRef]
- Torresi, E.; Tang, K.; Deng, J.; Sund, C.; Smets, B.F.; Christensson, M.; Andersen, H.R. Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR. Sci. Total Environ. 2019, 663, 496–506. Available online: https://pubmed.ncbi.nlm.nih.gov/30716641/ (accessed on 23 June 2022). [CrossRef]
- Tripathi, A.D.; Joshi, T.R.; Srivastava, S.K.; Darani, K.K.; Khade, S.; Srivastava, J. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Prep. Biochem. Biotechnol. 2019, 49, 567–577. Available online: https://pubmed.ncbi.nlm.nih.gov/30929621/ (accessed on 23 June 2022). [CrossRef]
- Uchino, K.; Saito, T.; Gebauer, B.; Jendrossek, D. Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J. Bacteriol. 2007, 189, 8250–8256. Available online: https://pubmed.ncbi.nlm.nih.gov/17720797/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Tsuge, T.; Fukui, T.; Matsusaki, H.; Taguchi, S.; Kobayashi, G.; Ishizaki, A.; Doi, Y. Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol. Lett. 2000, 184, 193–198. Available online: https://pubmed.ncbi.nlm.nih.gov/10713420/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Taguchi, S.; Yamada, M.; Matsumoto, K.; Tajima, K.; Satoh, Y.; Munekata, M.; Ohno, K.; Kohda, K.; Shimamura, T.; Kambe, H.; et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA 2008, 105, 17323–17327. Available online: https://pubmed.ncbi.nlm.nih.gov/18978031/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Nomura, C.; Taguchi, S. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl. Microbiol. Biotechnol. 2007, 73, 969–979. Available online: https://pubmed.ncbi.nlm.nih.gov/17123079/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Takase, K.; Taguchi, S.; Doi, Y. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J. Biochem. 2003, 133, 139–145. Available online: https://pubmed.ncbi.nlm.nih.gov/12761209/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Park, S.J.; Jang, Y.-A.; Lee, H.; Park, A.-R.; Yang, J.E.; Shin, J.; Oh, Y.H.; Song, B.K.; Jegal, J.; Lee, S.H.; et al. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 2013, 20, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Lv, L.; Chen, G.-Q. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb. Cell Factories 2017, 16, 48. Available online: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-017-0655-3 (accessed on 23 November 2022). [CrossRef] [Green Version]
- Zhang, X.; Lin, Y.; Wu, Q.; Wang, Y.; Chen, G.Q. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol. 2020, 38, 689–700. Available online: https://pubmed.ncbi.nlm.nih.gov/31727372/ (accessed on 23 November 2022). [CrossRef]
- Martínez-Tobón, D.I.; Waters, B.; Elias, A.L.; Sauvageau, D. Streamlined production, purification, and characterization of recombinant extracellular polyhydroxybutyrate depolymerases. Microbiologyopen 2020, 9, e1001. Available online: https://pubmed.ncbi.nlm.nih.gov/32087608/ (accessed on 23 November 2022). [CrossRef]
- Tobin, M.B.; Gustafsson, C.; Huisman, G.W. Directed evolution: The “rational” basis for “irrational” design. Curr. Opin. Struct. Biol. 2000, 10, 421–427. Available online: https://pubmed.ncbi.nlm.nih.gov/10981629/ (accessed on 23 November 2022). [CrossRef]
- Labrou, N.E. Random Mutagenesis Methods for In Vitro Directed Enzyme Evolution. Curr. Protein Pept. Sci. 2010, 11, 91–100. Available online: https://pubmed.ncbi.nlm.nih.gov/20201809/ (accessed on 23 November 2022). [CrossRef]
- Jäckel, C.; Kast, P.; Hilvert, D. Protein Design by Directed Evolution. Annu. Rev. Biophys. 2008, 37, 153–173. Available online: https://www.annualreviews.org/doi/abs/10.1146/annurev.biophys.37.032807.125832 (accessed on 23 November 2022). [CrossRef]
- Patrick, W.M.; Firth, A.E. Strategies and computational tools for improving randomized protein libraries. Biomol. Eng. 2005, 22, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Peters, V.; Rehm, B.H.A. In Vivo Enzyme Immobilization by Use of Engineered Polyhydroxyalkanoate Synthase. Appl. Environ. Microbiol. 2006, 72, 1777–1783. Available online: https://journals.asm.org/doi/10.1128/AEM.72.3.1777-1783.2006 (accessed on 9 October 2022). [CrossRef] [PubMed] [Green Version]
- Tan, L.-T.; Hiraishi, T.; Sudesh, K.; Maeda, M. Effects of mutation at position 285 of Ralstonia pickettii T1 poly[(R)-3-hydroxybutyrate] depolymerase on its activities. Appl. Microbiol. Biotechnol. 2014, 98, 7061–7068. Available online: https://pubmed.ncbi.nlm.nih.gov/24676749/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Hiraishi, T.; Komiya, N.; Matsumoto, N.; Abe, H.; Fujita, M.; Maeda, M. Degradation and adsorption characteristics of PHB depolymerase as revealed by kinetics of mutant enzymes with amino acid substitution in substrate-binding domain. Biomacromolecules 2010, 11, 113–119. Available online: https://pubmed.ncbi.nlm.nih.gov/20058938/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Hiraishi, T.; Hirahara, Y.; Doi, Y.; Maeda, M.; Taguchi, S. Effects of Mutations in the Substrate-Binding Domain of Poly[(R)-3-Hydroxybutyrate] (PHB) Depolymerase from Ralstonia pickettii T1 on PHB Degradation. Appl. Environ. Microbiol. 2006, 72, 7331–7338. Available online: https://pubmed.ncbi.nlm.nih.gov/16963553/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Tan, L.-T.; Hiraishi, T.; Sudesh, K.; Maeda, M. Directed evolution of poly[(R)-3-hydroxybutyrate] depolymerase using cell surface display system: Functional importance of asparagine at position 285. Appl. Microbiol. Biotechnol. 2012, 97, 4859–4871. Available online: https://pubmed.ncbi.nlm.nih.gov/22940802/ (accessed on 23 November 2022). [CrossRef]
- Tsuge, T.; Watanabe, S.; Shimada, D.; Abe, H.; Doi, Y.; Taguchi, S. Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol. Lett. 2007, 277, 217–222. Available online: https://pubmed.ncbi.nlm.nih.gov/18031343/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Chek, M.F.; Hiroe, A.; Hakoshima, T.; Sudesh, K.; Taguchi, S. PHA synthase (PhaC): Interpreting the functions of bioplastic-producing enzyme from a structural perspective. Appl. Microbiol. Biotechnol. 2019, 103, 1131–1141. Available online: https://pubmed.ncbi.nlm.nih.gov/30511262/ (accessed on 23 November 2022). [CrossRef]
- Queirós, D.; Lemos, P.; Rossetti, S.; Serafim, L.S. Unveiling PHA-storing populations using molecular methods. Appl. Microbiol. Biotechnol. 2015, 99, 10433–10446. Available online: https://link.springer.com/article/10.1007/s00253-015-7010-6 (accessed on 23 November 2022). [CrossRef]
- Hädicke, O.; Grammel, H.; Klamt, S. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst. Biol. 2011, 5, 150. Available online: https://pubmed.ncbi.nlm.nih.gov/21943387/ (accessed on 23 November 2022). [CrossRef] [Green Version]
- Alsiyabi, A.; Immethun, C.M.; Saha, R. Modeling the Interplay between Photosynthesis, CO2 Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium. Sci. Rep. 2019, 9, 12638. Available online: https://pubmed.ncbi.nlm.nih.gov/31477760/ (accessed on 23 November 2022). [CrossRef]
- Tanaka, K.; Yoshida, K.; Orita, I.; Fukui, T. Biosynthesis of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from CO2 by a Recombinant Cupriavidusnecator. Bioengineering 2021, 8, 179. Available online: https://pubmed.ncbi.nlm.nih.gov/34821745/ (accessed on 23 November 2022). [CrossRef]
- Tan, D.; Xue, Y.-S.; Aibaidula, G.; Chen, G.-Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour. Technol. 2011, 102, 8130–8136. [Google Scholar] [CrossRef]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. Available online: https://www.science.org/doi/10.1126/science.1138140 (accessed on 23 November 2022). [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. Available online: https://pubs.rsc.org/en/content/articlehtml/2009/cs/b812677c (accessed on 23 November 2022). [CrossRef]
- Lv, L.; Ren, Y.L.; Chen, J.C.; Wu, Q.; Chen, G.Q. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 2015, 29, 160–168. [Google Scholar] [CrossRef]
- Ao, X.; Yao, Y.; Li, T.; Yang, T.-T.; Dong, X.; Zheng, Z.-T.; Chen, G.-Q.; Wu, Q.; Guo, Y. A Multiplex Genome Editing Method for Escherichia coli Based on CRISPR-Cas12a. Front. Microbiol. 2018, 9, 2307. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02307/full (accessed on 23 November 2022). [CrossRef] [Green Version]
- Fu, X.-Z.; Tan, D.; Aibaidula, G.; Wu, Q.; Chen, J.-C.; Chen, G.-Q. Development of Halomonas TD01 as a host for open production of chemicals. Metab. Eng. 2014, 23, 78–91. [Google Scholar] [CrossRef]
- Pakalapati, H.; Chang, C.-K.; Show, P.L.; Arumugasamy, S.K.; Lan, J.C.-W. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J. Biosci. Bioeng. 2018, 126, 282–292. Available online: https://pubmed.ncbi.nlm.nih.gov/29803402/ (accessed on 21 June 2022). [CrossRef]
- Thompson, C.L.; Wang, B.; Holmes, A.J. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2008, 2, 739–748. Available online: https://www.nature.com/articles/ismej200829 (accessed on 9 October 2022). [CrossRef]
- Sui, L.; Ma, G.; Lu, W.; Deng, Y.; Bossier, P.; De Schryver, P. Effect of poly-β-hydroxybutyrate on growth, enzyme activity and intestinal microbial community of Chinese mitten crab, Eriocheir sinensis(Milne-Edwards) juveniles. Aquac. Res. 2015, 47, 3644–3652. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/are.12817 (accessed on 9 October 2022). [CrossRef]
- Baruah, K.; Huy, T.T.; Norouzitallab, P.; Niu, Y.; Gupta, S.K.; De Schryver, P.; Bossier, P. Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Sci. Rep. 2015, 5, 9427. Available online: https://www.nature.com/articles/srep09427 (accessed on 9 October 2022). [CrossRef] [Green Version]
- Wang, X.; Jiang, X.; Wu, F.; Ma, Y.; Che, X.; Chen, X.; Liu, P.; Zhang, W.; Ma, X.; Chen, G. Microbial Poly-3-Hydroxybutyrate (PHB) as a Feed Additive for Fishes and Piglets. Biotechnol. J. 2019, 14, e1900132. Available online: https://pubmed.ncbi.nlm.nih.gov/31119892/ (accessed on 23 June 2022). [CrossRef]
- Situmorang, M.L.; De Schryver, P.; Dierckens, K.; Bossier, P. Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Veter.-Microbiol. 2015, 182, 44–49. Available online: https://pubmed.ncbi.nlm.nih.gov/26711027/ (accessed on 9 October 2022). [CrossRef]
- Kiziltas, A.; Nazari, B.; Kiziltas, E.E.; Gardner, D.J.; Han, Y.; Rushing, T.S. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr. Polym. 2016, 140, 393–399. [Google Scholar] [CrossRef]
- Seoane, I.T.; Fortunati, E.; Puglia, D.; Cyras, V.P.; Manfredi, L.B. Development and characterization of bionanocomposites based on poly(3-hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polym. Int. 2016, 65, 1046–1053. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/pi.5150 (accessed on 9 October 2022). [CrossRef]
- Seoane, I.T.; Manfredi, L.B.; Cyras, V.P. Properties and Processing Relationship of Polyhydroxybutyrate and Cellulose Biocomposites. Procedia Mater. Sci. 2015, 8, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xie, J.; Xiao, X.; Chen, S.; Wang, Y. Development of Nontoxic Biodegradable Polyurethanes Based on Polyhydroxyalkanoate and L-lysine Diisocyanate with Improved Mechanical Properties as New Elastomers Scaffolds. Polymers 2019, 11, 1927. Available online: https://www.mdpi.com/2073-4360/11/12/1927/htm (accessed on 15 October 2022). [CrossRef] [Green Version]
- Goonoo, N.; Bhaw-Luximon, A.; Passanha, P.; Esteves, S.; Schönherr, H.; Jhurry, D. Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Mater. Sci. Eng. C 2017, 76, 13–24. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Freitas, F.; Reis, M.A.M.; Prieto, M.A.; Lagaron, J.M. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int. J. Biol. Macromol. 2018, 108, 426–435. Available online: https://pubmed.ncbi.nlm.nih.gov/29217186/ (accessed on 20 June 2022). [CrossRef]
- Kim, J.; Marshall, M.R.; Wei, C.-I. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. Available online: https://pubs.acs.org/doi/abs/10.1021/jf00059a013 (accessed on 9 October 2022). [CrossRef]
- Figueroa-Lopez, K.J.; Cabedo, L.; Lagaron, J.M.; Torres-Giner, S. Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Front. Nutr. 2020, 7, 140. Available online: https://pubmed.ncbi.nlm.nih.gov/33015118/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Requena, R.; Vargas, M.; Chiralt, A. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices. Food Chem. 2018, 277, 38–45. Available online: https://pubmed.ncbi.nlm.nih.gov/30502160/ (accessed on 21 June 2022). [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. Int. J. Mol. Sci. 2014, 15, 10950–10973. Available online: https://www.mdpi.com/1422-0067/15/6/10950/htm (accessed on 9 October 2022). [CrossRef] [Green Version]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. Available online: https://pubs.acs.org/doi/abs/10.1021/am502261e (accessed on 9 October 2022). [CrossRef] [Green Version]
- Mallakpour, S.; Sirous, F.; Hussain, C.M. A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. Int. J. Biol. Macromol. 2020, 170, 701–716. Available online: https://pubmed.ncbi.nlm.nih.gov/33388319/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Chandar, J.V.; Shanmugan, S.; Mutharasu, D.; A Azlan, A. Poly (3-hydroxybutyrate-co-15 mol% 3hydroxyhexanoate)/ZnO nanocomposites by solvent casting method: A study of optical, surface, and thermal properties. Mater. Res. Express 2017, 4, 015301. Available online: https://iopscience.iop.org/article/10.1088/2053-1591/4/1/015301 (accessed on 9 October 2022). [CrossRef]
- In, X.; Fan, X.; Li, R.; Li, Z.; Ren, T.; Ren, X.; Huang, T.-S. Preparation and characterization of PHB/PBAT-based biodegradable antibacterial hydrophobic nanofibrous membranes. Polym. Adv. Technol. 2017, 29, 481–489. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/pat.4137 (accessed on 9 October 2022).
- Burgos, N.; Armentano, I.; Fortunati, E.; Dominici, F.; Luzi, F.; Fiori, S.; Cristofaro, F.; Visai, L.; Jiménez, A.; Kenny, J.M. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food Bioprocess Technol. 2017, 10, 770–780. Available online: https://link.springer.com/article/10.1007/s11947-016-1846-3 (accessed on 9 October 2022). [CrossRef] [Green Version]
- de Andrade, C.S.; Fonseca, G.G.; Mei, L.H.I.; Fakhouri, F.M. Development and characterization of multilayer films based on polyhydroxyalkanoates and hydrocolloids. J. Appl. Polym. Sci. 2016, 134, 44458. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/app.44458 (accessed on 9 October 2022). [CrossRef]
- Fabra, M.J.; Pardo, P.; Martínez-Sanz, M.; Lopez-Rubio, A.; Lagarón, J.M. Combining polyhydroxyalkanoates with nanokeratin to develop novel biopackaging structures. J. Appl. Polym. Sci. 2015, 133, 42695. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/app.42695 (accessed on 9 October 2022). [CrossRef]
- Ali, F.B.; Kang, D.J.; Kim, M.P.; Cho, C.-H.; Kim, B.J. Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polym. Int. 2014, 63, 1620–1626. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/pi.4662 (accessed on 9 October 2022). [CrossRef]
- Vostrejs, P.; Adamcová, D.; Vaverková, M.D.; Enev, V.; Kalina, M.; Machovsky, M.; Šourková, M.; Marova, I.; Kovalcik, A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv. 2020, 10, 29202–29213. Available online: https://pubmed.ncbi.nlm.nih.gov/35521111/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Xavier, J.R.; Babusha, S.T.; George, J.; Ramana, K.V. Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin. Appl. Biochem. Biotechnol. 2015, 176, 1498–1510. Available online: https://link.springer.com/article/10.1007/s12010-015-1660-9 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Garrido-Miranda, K.A.; Rivas, B.L.; Pérez-Rivera, M.A.; Sanfuentes, E.A.; Peña-Farfal, C. Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT 2018, 98, 260–267. [Google Scholar] [CrossRef]
- Liu, Y.; Low, Z.J.; Ma, X.; Liang, H.; Sinskey, A.J.; Stephanopoulos, G.; Zhou, K. Using biopolymer bodies for encapsulation of hydrophobic products in bacterium. Metab. Eng. 2020, 61, 206–214. Available online: https://pubmed.ncbi.nlm.nih.gov/32339760/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Du, J.; Rehm, B.H.A. Purification of therapeutic proteins mediated by in vivo polyester immobilized sortase. Biotechnol. Lett. 2017, 40, 369–373. Available online: https://link.springer.com/article/10.1007/s10529-017-2473-4 (accessed on 9 October 2022). [CrossRef]
- Min, K.; Park, K.; Park, D.-H.; Yoo, Y.J. Overview on the biotechnological production of l-DOPA. Appl. Microbiol. Biotechnol. 2014, 99, 575–584. Available online: https://link.springer.com/article/10.1007/s00253-014-6215-4 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Tan, D.; Zhao, J.-P.; Ran, G.-Q.; Zhu, X.-L.; Ding, Y.; Lu, X.-Y. Highly efficient biocatalytic synthesis of l-DOPA using in situ immobilized Verrucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules. Appl. Microbiol. Biotechnol. 2019, 103, 5663–5678. Available online: https://pubmed.ncbi.nlm.nih.gov/31127354/ (accessed on 23 June 2022). [CrossRef] [PubMed]
- Raberg, M.; Volodina, E.; Lin, K.; Steinbüchel, A. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools. Crit. Rev. Biotechnol. 2017, 38, 494–510. Available online: https://www.tandfonline.com/doi/abs/10.1080/07388551.2017.1369933 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Ran, G.; Tan, D.; Dai, W.; Zhu, X.; Zhao, J.; Ma, Q.; Lu, X. Immobilization of alkaline polygalacturonate lyase from Bacillus subtilis on the surface of bacterial polyhydroxyalkanoate nano-granules. Appl. Microbiol. Biotechnol. 2017, 101, 3247–3258. Available online: https://link.springer.com/article/10.1007/s00253-016-8085-4 (accessed on 9 October 2022). [CrossRef]
- Hooks, D.O.; Blatchford, P.A.; Rehm, B.H.A. Bioengineering of Bacterial Polymer Inclusions Catalyzing the Synthesis of N -Acetylneuraminic Acid. Appl. Environ. Microbiol. 2013, 79, 3116–3121. Available online: https://journals.asm.org/doi/10.1128/AEM.03947-12 (accessed on 9 October 2022). [CrossRef] [Green Version]
- Lee, J.W.; Parlane, N.A.; Rehm, B.H.A.; Buddle, B.M.; Heiser, A. Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Appl. Environ. Microbiol. 2017, 83, e02289-16. Available online: https://journals.asm.org/doi/10.1128/AEM.02289-16 (accessed on 9 October 2022). [CrossRef] [PubMed] [Green Version]
- Wong, J.X.; Rehm, B.H.A. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018, 19, 4098–4112. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.biomac.8b01093 (accessed on 10 October 2022). [CrossRef]
- Wong, J.X.; Gonzalez-Miro, M.; Sutherland-Smith, A.J.; Rehm, B.H.A. Covalent Functionalization of Bioengineered Polyhydroxyalkanoate Spheres Directed by Specific Protein-Protein Interactions. Front. Bioeng. Biotechnol. 2020, 8, 44. Available online: https://pubmed.ncbi.nlm.nih.gov/32117925/ (accessed on 24 June 2022). [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/9/10/105011 (accessed on 9 October 2022). [CrossRef]
- Luo, S.; Netravali, A. A study of physical and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) during composting. Polym. Degrad. Stab. 2003, 80, 59–66. [Google Scholar] [CrossRef]
- Ishak, K.A.; Annuar, M.S.M.; Ahmad, N. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique. Appl. Biochem. Biotechnol. 2017, 16, 1191–1208. Available online: https://link.springer.com/article/10.1007/s12010-017-2492-6 (accessed on 20 June 2022). [CrossRef] [PubMed]
- Latos-Brozio, M.; Masek, A. The Effect of Natural Additives on the Composting Properties of Aliphatic Polyesters. Polymers 2020, 12, 1856. Available online: https://pubmed.ncbi.nlm.nih.gov/32824947/ (accessed on 24 June 2022). [CrossRef]
- Huerta-Angeles, G.; Brandejsová, M.; Nigmatullin, R.; Kopecká, K.; Vágnerová, H.; Šmejkalová, D.; Roy, I.; Velebný, V. Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). Carbohydr. Polym. 2017, 171, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modjinou, T.; Versace, D.L.; Andaloussi, S.A.; Langlois, V.; Renard, E. Co-Networks Poly(hydroxyalkanoates)-Terpenes to Enhance Antibacterial Properties. Bioengineering 2020, 7, 13. Available online: https://pubmed.ncbi.nlm.nih.gov/31972967/ (accessed on 24 June 2022). [CrossRef]
- Wang, H.L.; Gao, J.P.; Han, Y.L.; Xu, X.; Wu, R.; Gao, Y.; Cui, X.H. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine 2015, 22, 553–559. Available online: https://pubmed.ncbi.nlm.nih.gov/25981921/ (accessed on 9 October 2022). [CrossRef] [PubMed]
- Latos-Brozio, M.; Masek, A. The Application of (+)-Catechin and Polydatin as Functional Additives for Biodegradable Polyesters. Int. J. Mol. Sci. 2020, 21, 414. Available online: https://pubmed.ncbi.nlm.nih.gov/31936484/ (accessed on 24 June 2022). [CrossRef] [PubMed] [Green Version]
- Bello-Gil, D.; Roig-Molina, E.; Fonseca, J.; Sarmiento-Ferrández, M.D.; Ferrandiz, M.; Franco, E.; Mira, E.; Maestro, B.; Sanz, J.M. An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate. Microb. Biotechnol. 2018, 11, 881–892. Available online: https://pubmed.ncbi.nlm.nih.gov/29896867/ (accessed on 21 June 2022). [CrossRef] [PubMed]
- Ran, G.; Tan, D.; Zhao, J.; Fan, F.; Zhang, Q.; Wu, X.; Fan, P.; Fang, X.; Lu, X. Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar d-allulose. Bioresour. Technol. 2019, 289, 121673. Available online: https://pubmed.ncbi.nlm.nih.gov/31260936/ (accessed on 23 June 2022). [CrossRef]
- Wang, C.; Sauvageau, D.; Elias, A. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 1128–1138. Available online: https://pubs.acs.org/doi/abs/10.1021/acsami.5b08664 (accessed on 9 October 2022). [CrossRef] [PubMed]
- González, E.; Herencias, C.; Prieto, M.A. A polyhydroxyalkanoate-based encapsulating strategy for ‘bioplasticizing’ microorganisms. Microb. Biotechnol. 2019, 13, 185–198. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/1751-7915.13492 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Ausejo, J.G.; Rydz, J.; Musioł, M.; Sikorska, W.; Sobota, M.; Włodarczyk, J.; Adamus, G.; Janeczek, H.; Kwiecień, I.; Hercog, A.; et al. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym. Degrad. Stab. 2018, 152, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Pop, M.A.; Croitoru, C.; Bedo, T.; Geamăn, V.; Radomir, I.; Zaharia, S.M.; Chicoș, L.A. Influence of Internal Innovative Architecture on the Mechanical Properties of 3D Polymer Printed Parts. Polymers 2020, 12, 1129. Available online: https://pubmed.ncbi.nlm.nih.gov/32423075/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Benson, N.U.; Bassey, D.E.; Palanisami, T. COVID pollution: Impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 2021, 7, e06343. Available online: http://www.cell.com/article/S2405844021004485/fulltext (accessed on 9 October 2022). [CrossRef]
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in applications and prospects of bioplastics and biopolymers: A review. Environ. Chem. Lett. 2021, 20, 379–395. Available online: https://pubmed.ncbi.nlm.nih.gov/34867134/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Zgodavová, K.; Lengyelová, K.; Bober, P.; Eguren, J.A.; Moreno, A. 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials 2021, 14, 6595. Available online: https://pubmed.ncbi.nlm.nih.gov/34772117/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Seggiani, M.; Cinelli, P.; Mallegni, N.; Balestri, E.; Puccini, M.; Vitolo, S.; Lardicci, C.; Lazzeri, A. materials New Bio-Composites Based on Polyhydroxyalkanoates and Posidonia oceanica Fibres for Applications in a Marine Environment. Materials 2017, 10, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.-P.; Zhang, X.; Wei, D.-X.; Wu, Q.; Jiang, X.-R.; Chen, G.-Q. Highly Efficient Fluorescent Material Based on Rare-Earth-Modified Polyhydroxyalkanoates. Biomacromolecules 2019, 20, 3233–3241. Available online: https://pubmed.ncbi.nlm.nih.gov/30624051/ (accessed on 23 June 2022). [CrossRef] [PubMed]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. Available online: https://www.nature.com/articles/nmeth.1248 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Liu, C.; Hou, Y.; Gao, M. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932. Available online: https://pubmed.ncbi.nlm.nih.gov/24616057/ (accessed on 9 October 2022). [CrossRef] [PubMed]
- Chen, G.-Q.; Jiang, X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018, 50, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Tomita, H.; Isono, T.; Satoh, T.; Matsumoto, K. Artificial polyhydroxyalkanoate poly[2-hydroxybutyrate-block-3-hydroxybutyrate] elastomer-like material. Sci. Rep. 2021, 11, 22446. Available online: https://pubmed.ncbi.nlm.nih.gov/34789822/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Matsumoto, K.; Shiba, T.; Hiraide, Y.; Taguchi, S. Incorporation of Glycolate Units Promotes Hydrolytic Degradation in Flexible Poly(glycolate-co-3-hydroxybutyrate) Synthesized by Engineered Escherichia coli. ACS Biomater. Sci. Eng. 2016, 3, 3058–3063. Available online: https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.6b00194 (accessed on 9 October 2022). [CrossRef] [PubMed]
- Acevedo, F.; Villegas, P.; Urtuvia, V.; Hermosilla, J.; Navia, R.; Seeger, M. Bacterial polyhydroxybutyrate for electrospun fiber production. Int. J. Biol. Macromol. 2018, 106, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Cherpinski, A.; Torres-Giner, S.; Cabedo, L.; Lagaron, J.M. Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Addit. Contam. Part A 2017, 34, 1817–1830. Available online: https://www.tandfonline.com/doi/abs/10.1080/19440049.2017.1355115 (accessed on 20 June 2022). [CrossRef] [PubMed]
- Cherpinski, A.; Gozutok, M.; Sasmazel, H.T.; Torres-Giner, S.; Lagaron, J.M. Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials 2018, 8, 469. Available online: https://pubmed.ncbi.nlm.nih.gov/29954085/ (accessed on 21 June 2022). [CrossRef] [PubMed] [Green Version]
- Mukheem, A.; Muthoosamy, K.; Manickam, S.; Sudesh, K.; Shahabuddin, S.; Saidur, R.; Akbar, N.; Sridewi, N. Fabrication and Characterization of an Electrospun PHA/Graphene Silver Nanocomposite Scaffold for Antibacterial Applications. Materials 2018, 11, 1673. Available online: https://pubmed.ncbi.nlm.nih.gov/30201852/ (accessed on 21 June 2022). [CrossRef] [PubMed] [Green Version]
- Rabbani, S.; Jafari, R.; Momen, G. Superhydrophobic micro-nanofibers from PHBV-SiO2 biopolymer composites produced by electrospinning. Funct. Compos. Mater. 2022, 3, 1. Available online: https://functionalcompositematerials.springeropen.com/articles/10.1186/s42252-022-00029-5 (accessed on 15 October 2022). [CrossRef]
- Kim, Y.; Kim, D.H. Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers. Korean J. Chem. Eng. 2018, 35, 2303–2312. Available online: https://link.springer.com/article/10.1007/s11814-018-0130-9 (accessed on 23 November 2022). [CrossRef]
- Choi, S.Y.; Na Rhie, M.; Kim, H.T.; Joo, J.C.; Cho, I.J.; Son, J.; Jo, S.Y.; Sohn, Y.J.; Baritugo, K.-A.; Pyo, J.; et al. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab. Eng. 2019, 58, 47–81. Available online: https://pubmed.ncbi.nlm.nih.gov/31145993/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Rydz, J.; Sikorska, W.; Musioł, M.; Janeczek, H.; Włodarczyk, J.; Misiurska-Marczak, M.; Łęczycka, J.; Kowalczuk, M. 3D-Printed Polyester-Based Prototypes for Cosmetic Applications—Future Directions at the Forensic Engineering of Advanced Polymeric Materials. Materials 2019, 12, 994. Available online: https://pubmed.ncbi.nlm.nih.gov/30917574/ (accessed on 23 June 2022). [CrossRef] [Green Version]
- Dorweiler, K.J.; Gurav, J.N.; Walbridge, J.S.; Ghatge, V.S.; Savant, R.H. Determination of Stability from Multicomponent Pesticide Mixes. J. Agric. Food Chem. 2016, 64, 6108–6124. Available online: https://pubmed.ncbi.nlm.nih.gov/26937779/ (accessed on 9 October 2022). [CrossRef] [PubMed]
- Zhang, G.; Xie, W.; Wu, D. Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydr. Polym. 2020, 227, 115341. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.-B.; Panariello, L.; Morganti, P.; Danti, S.; Baroni, A.; Lazzeri, A.; Fusco, A.; Donnarumma, G. Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. J. Funct. Biomater. 2020, 11, 23. Available online: https://pubmed.ncbi.nlm.nih.gov/32268483/ (accessed on 24 June 2022). [CrossRef] [PubMed] [Green Version]
- Rembiesa, J.; Ruzgas, T.; Engblom, J.; Holefors, A. The Impact of Pollution on Skin and Proper Efficacy Testing for Anti-Pollution Claims. Cosmetics 2018, 5, 4. Available online: https://www.mdpi.com/2079-9284/5/1/4/htm (accessed on 9 October 2022). [CrossRef]
- Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial cellulose skin masks-Properties and sensory tests. J. Cosmet. Dermatol. 2017, 17, 840–847. Available online: https://pubmed.ncbi.nlm.nih.gov/28963772/ (accessed on 9 October 2022). [CrossRef]
- Wu, C.S.; Liao, H.T. Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility. Mater. Sci. Eng. C 2017, 70, 54–61. [Google Scholar] [CrossRef]
- Benken, A.; Gianchandani, Y. Passive Wireless Pressure Sensing for Gastric Manometry. Micromachines 2019, 10, 868. [Google Scholar] [CrossRef] [Green Version]
- Phukon, P.; Radhapyari, K.; Konwar, B.K.; Khan, R. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 37, 314–320. Available online: https://pubmed.ncbi.nlm.nih.gov/24582254/ (accessed on 10 October 2022). [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Che, X.; Yu, L.; Jia, W.; Shen, R.; Chen, J.; Ma, Y.; Chen, G.Q. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019, 20, 3303–3312. Available online: https://pubmed.ncbi.nlm.nih.gov/31094501/ (accessed on 23 June 2022). [CrossRef] [PubMed]
- Okesola, B.O.; Smith, D.K. Applying low-molecular weight supramolecular gelators in an environmental setting—Self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 2016, 45, 4226–4251. Available online: https://pubs.rsc.org/en/content/articlehtml/2016/cs/c6cs00124f (accessed on 9 October 2022). [CrossRef] [Green Version]
- Babu, S.S.; Praveen, V.K.; Ajayaghosh, A. Functional π-Gelators and Their Applications. Chem. Rev. 2014, 114, 1973–2129. Available online: https://pubs.acs.org/doi/abs/10.1021/cr400195e (accessed on 9 October 2022).
- Zhang, K.; Liu, M.; Si, M.; Wang, Z.; Zhuo, S.; Chai, L.; Shi, Y. Polyhydroxyalkanoate-Modified Bacterium Regulates Biomass Structure and Promotes Synthesis of Carbon Materials for High-Performance Supercapacitors. ChemSusChem 2019, 12, 1732–1742. Available online: https://pubmed.ncbi.nlm.nih.gov/30793532/ (accessed on 23 June 2022). [CrossRef]
- Tan, Y.; Xu, C.; Chen, G.; Liu, Z.; Ma, M.; Xie, Q.; Zheng, N.; Yao, S. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 2241–2248. Available online: https://pubs.acs.org/doi/abs/10.1021/am400001g (accessed on 10 October 2022). [CrossRef] [PubMed]
- Chapter 2. Wood Carbonisation and the Products it Yields. Available online: https://www.fao.org/3/x5555e/x5555e03.htm (accessed on 10 October 2022).
- Hindatu, Y.; Annuar, M.S.M.; Subramaniam, R.; Gumel, A.M. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell. Bioprocess Biosyst. Eng. 2017, 40, 919–928. Available online: https://link.springer.com/article/10.1007/s00449-017-1756-4 (accessed on 20 June 2022). [CrossRef]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Khasanah Reddy, K.R.; Sato, H.; Takahashi, I.; Ozaki, Y. Intermolecular hydrogen bondings in the poly(3-hydroxybutyrate) and chitin blends: Their effects on the crystallization behavior and crystal structure of poly(3-hydroxybutyrate). Polymer 2015, 75, 141–150. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Kuciel, S.; Liber-Knec, A. Biocomposites based on PHB filled with wood or kenaf fibers. Polimery 2011, 56, 218–223. [Google Scholar] [CrossRef]
- Fernandes, E.G.; Pietrini, M.; Chiellini, E. Bio-Based Polymeric Composites Comprising Wood Flour as Filler. Biomacromolecules 2004, 5, 1200–1205. Available online: https://pubs.acs.org/doi/abs/10.1021/bm034507o (accessed on 10 October 2022). [CrossRef]
- Arrieta, M.P.; López, J.; Hernández, A.; Rayón, E. Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Eur. Polym. J. 2014, 50, 255–270. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Czub, P. Flame Retardancy of Biobased Composites—Research Development. Materials 2020, 13, 5253. Available online: https://pubmed.ncbi.nlm.nih.gov/33233820/ (accessed on 24 June 2022). [CrossRef]
- Gallo, E.; Schartel, B.; Acierno, D.; Russo, P. Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides. Eur. Polym. J. 2011, 47, 1390–1401. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2005, 7, 199–207. Available online: https://pubs.acs.org/doi/abs/10.1021/bm050581q (accessed on 10 October 2022). [CrossRef] [PubMed]
- Gallo, E.; Schartel, B.; Acierno, D.; Cimino, F.; Russo, P. Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos. Part B Eng. 2013, 44, 112–119. [Google Scholar] [CrossRef]
- Lapomarda, A.; Degli Esposti, M.; Micalizzi, S.; Fabbri, P.; Galletti, A.M.R.; Morselli, D.; De Maria, C. Valorization of a Levulinic Acid Platform through Electrospinning of Polyhydroxyalkanoate-Based Fibrous Membranes for In Vitro Modeling of Biological Barriers. ACS Appl. Polym. Mater. 2022, 4, 5872–5881. Available online: https://pubs.acs.org/doi/full/10.1021/acsapm.2c00721 (accessed on 15 October 2022). [CrossRef]
- Wróbel-Kwiatkowska, M.; Kropiwnicki, M.; Żebrowski, J.; Beopoulos, A.; Dymińska, L.; Hanuza, J.; Rymowicz, W. Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition. Transgenic Res. 2019, 28, 77–90. Available online: https://pubmed.ncbi.nlm.nih.gov/30484148/ (accessed on 21 June 2022). [CrossRef] [Green Version]
- Sun, X.; Cheng, C.; Zhang, J.; Jin, X.; Sun, S.; Mei, L.; Huang, L. Intracellular Trafficking Network and Autophagy of PHBHHx Nanoparticles and their Implications for Drug Delivery. Sci Rep 2019, 9, 9585. Available online: https://pubmed.ncbi.nlm.nih.gov/31270337/ (accessed on 23 June 2022). [CrossRef] [Green Version]
- Sanhueza, C.; Acevedo, F.; Rocha, S.; Villegas, P.; Seeger, M.; Navia, R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int. J. Biol. Macromol. 2019, 124, 102–110. Available online: https://pubmed.ncbi.nlm.nih.gov/30445089/ (accessed on 21 June 2022). [CrossRef]
- Narancic, T.; O’Connor, K.E. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology 2019, 165, 129–137. Available online: https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000749 (accessed on 23 November 2022). [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02963 (accessed on 23 November 2022). [CrossRef]
- Qu, X.-H.; Wu, Q.; Zhang, K.-Y.; Chen, G. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions. Biomaterials 2006, 27, 3540–3548. Available online: https://pubmed.ncbi.nlm.nih.gov/16542719/ (accessed on 23 November 2022). [CrossRef]
- Samorì, C.; Galletti, P.; Giorgini, L.; Mazzeo, R.; Mazzocchetti, L.; Prati, S.; Sciutto, G.; Volpi, F.; Tagliavini, E. The Green Attitude in Art Conservation: Polyhydroxybutyrate-based Gels for the Cleaning of Oil Paintings. ChemistrySelect 2016, 1, 4502–4508. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/slct.201601180 (accessed on 9 October 2022). [CrossRef]
- Jia, Y.; Sciutto, G.; Mazzeo, R.; Samorì, C.; Focarete, M.L.; Prati, S.; Gualandi, C. Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 39620–39629. Available online: https://pubmed.ncbi.nlm.nih.gov/32820898/ (accessed on 24 June 2022). [CrossRef]
- Altermann, E.; Schofield, L.R.; Ronimus, R.S.; Beattie, A.K.; Reilly, K. Inhibition of Rumen Methanogens by a Novel Archaeal Lytic Enzyme Displayed on Tailored Bionanoparticles. Front. Microbiol. 2018, 9, 2378. Available online: https://pubmed.ncbi.nlm.nih.gov/30356700/ (accessed on 21 June 2022). [CrossRef] [PubMed] [Green Version]
- Meneses, L.; Craveiro, R.; Jesus, A.; Reis, M.; Freitas, F.; Paiva, A. Supercritical CO2 Assisted Impregnation of Ibuprofen on Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA). Molecules 2021, 26, 4772. Available online: https://pubmed.ncbi.nlm.nih.gov/34443357/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Panaksri, A.; Tanadchangsaeng, N. Evaluation of 3D-Printing Scaffold Fabrication on Biosynthetic Medium-Chain-Length Polyhydroxyalkanoate Terpolyester as Biomaterial-Ink. Polymers 2021, 13, 2222. Available online: https://pubmed.ncbi.nlm.nih.gov/34300981/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- le Gal, M.; Rios De Anda, A.; Michely, L.; Simon Colin, C.; Renard, E.; Langlois, V. Synthesis of Fluorinated Polyhydroxyalkanoates from Marine Bioresources as a Promising Biomaterial Coating. Biomacromolecules 2021, 22, 4510–4520. Available online: https://pubmed.ncbi.nlm.nih.gov/34647729/ (accessed on 24 June 2022). [CrossRef]
- Melendez-Rodriguez, B.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Hilliou, L.; Escuin, J.M.; Cabedo, L.; Nevo, Y.; Prieto, C.; Lagaron, J.M. High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals. Nanomaterials 2021, 11, 1443. Available online: https://pubmed.ncbi.nlm.nih.gov/34070946/ (accessed on 25 June 2022). [CrossRef]
- Lee, S.M.; Lee, H.J.; Kim, S.H.; Suh, M.J.; Cho, J.Y.; Ham, S.; Song, H.S.; Bhatia, S.K.; Gurav, R.; Jeon, J.M.; et al. Engineering of Shewanella marisflavi BBL25 for biomass-based polyhydroxybutyrate production and evaluation of its performance in electricity production. Int. J. Biol. Macromol. 2021, 183, 1669–1675. Available online: https://pubmed.ncbi.nlm.nih.gov/34023371/ (accessed on 31 July 2022). [CrossRef]
- Esmail, A.; Pereira, J.R.; Zoio, P.; Silvestre, S.; Menda, U.D.; Sevrin, C.; Grandfils, C.; Fortunato, E.; Reis, M.A.; Henriques, C.; et al. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers 2021, 13, 1056. Available online: https://pubmed.ncbi.nlm.nih.gov/33801747/ (accessed on 25 June 2022). [CrossRef]
- Jang, S.A.; Park, J.H.; Lim, H.J.; Oh, J.Y.; Ki, H.B.; Lee, K.J.; Song, J.K.; Kim, D.-M. Bio-specific immobilization of enzymes on electrospun PHB nanofibers. Enzym. Microb. Technol. 2021, 145, 109749. Available online: https://pubmed.ncbi.nlm.nih.gov/33750539/ (accessed on 25 June 2022). [CrossRef]
- Riaz, S.; Rhee, K.Y.; Park, S.J. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers 2021, 13, 253. Available online: https://pubmed.ncbi.nlm.nih.gov/33451137/ (accessed on 1 January 2022). [CrossRef]
- Brelle, L.; Renard, E.; Langlois, V. Antioxidant Network Based on Sulfonated Polyhydroxyalkanoate and Tannic Acid Derivative. Bioengineering 2021, 8, 9. Available online: https://pubmed.ncbi.nlm.nih.gov/33430110/ (accessed on 25 June 2022). [CrossRef] [PubMed]
- Zhu, B.; Wei, N. Tyrosinase-functionalized polyhydroxyalkanoate bio-beads as a novel biocatalyst for degradation of bisphenol analogues. Environ. Int. 2022, 163, 107225. Available online: https://pubmed.ncbi.nlm.nih.gov/35398803/ (accessed on 26 June 2022). [CrossRef]
- Zheng, H.; Tang, H.; Yang, C.; Chen, J.; Wang, L.; Dong, Q.; Shi, W.; Li, L.; Liu, Y. Evaluation of the slow-release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets. Food Chem. 2022, 385, 132693. Available online: https://pubmed.ncbi.nlm.nih.gov/35303650/ (accessed on 26 June 2022). [CrossRef]
- Corrado, I.; Di Girolamo, R.; Regalado-González, C.; Pezzella, C. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 2022, 14, 166. Available online: https://pubmed.ncbi.nlm.nih.gov/35012189/ (accessed on 26 June 2022). [CrossRef] [PubMed]
- AG Soares da Silva, F.; Matos, M.; Dourado, F.; AMReis, M.; CBranco, P.; Poças, F.; Gama, M. Development of a layered bacterial nanocellulose-PHBV composite for food packaging. J. Sci. Food Agric. 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/35218225/ (accessed on 26 June 2022).
- Meléndez-Rodríguez, B.; Torres-Giner, S.; Reis, M.; Silva, F.; Matos, M.; Cabedo, L.; Lagarón, J. Blends of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers 2021, 13, 1155. Available online: https://pubmed.ncbi.nlm.nih.gov/33916564/ (accessed on 25 June 2022). [CrossRef]
- Chotchindakun, K.; Pekkoh, J.; Ruangsuriya, J.; Zheng, K.; Unalan, I.; Boccaccini, A.R. Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration. Polymers 2021, 13, 1794. Available online: https://pubmed.ncbi.nlm.nih.gov/34072334/ (accessed on 25 June 2022). [CrossRef]
- Mukheem, A.; Shahabuddin, S.; Akbar, N.; Ahmad, I.; Sudesh, K.; Sridewi, N. Development of Biocompatible Polyhydroxyalkanoate/Chitosan-Tungsten Disulphide Nanocomposite for Antibacterial and Biological Applications. Polymers 2022, 14, 2224. Available online: https://pubmed.ncbi.nlm.nih.gov/35683897/ (accessed on 25 June 2022). [CrossRef] [PubMed]
- Stone, E.; Pennone, V.; Reilly, K.; Grant, I.R.; Campbell, K.; Altermann, E.; McAuliffe, O. Inhibition of Listeria monocytogenes by Phage Lytic Enzymes Displayed on Tailored Bionanoparticles. Foods 2022, 11, 854. Available online: https://pubmed.ncbi.nlm.nih.gov/35327276/ (accessed on 26 June 2022). [CrossRef]
- Davies, C.G.; Reilly, K.; Altermann, E.; Hendrickson, H.L. PLAN-M; Mycobacteriophage Endolysins Fused to Biodegradable Nanobeads Mitigate Mycobacterial Growth in Liquid and on Surfaces. Front. Microbiol. 2021, 12, 562748. Available online: https://pubmed.ncbi.nlm.nih.gov/33981289/ (accessed on 25 June 2022). [CrossRef]
- Pilania, G.; Iverson, C.N.; Lookman, T.; Marrone, B.L. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers. J. Chem. Inf. Model. 2019, 59, 5013–5025. Available online: https://pubmed.ncbi.nlm.nih.gov/31697891/ (accessed on 23 November 2022). [CrossRef]
- Bejagam, K.K.; Iverson, C.N.; Marrone, B.L.; Pilania, G. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers. Phys. Chem. Chem. Phys. 2020, 22, 17880–17889. Available online: https://pubmed.ncbi.nlm.nih.gov/32776023/ (accessed on 23 November 2022). [CrossRef]
- Bejagam, K.K.; Gupta, N.S.; Lee, K.S.; Iverson, C.N.; Marrone, B.L.; Pilania, G. Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations. Polymers 2022, 14, 345. Available online: https://pubmed.ncbi.nlm.nih.gov/35054751/ (accessed on 23 November 2022). [CrossRef] [PubMed]
- Wong, J.X.; Ogura, K.; Chen, S.; Rehm, B.H.A. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front. Bioeng. Biotechnol. 2020, 8, 156. Available online: https://pubmed.ncbi.nlm.nih.gov/32195237/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Barron, A.; Sparks, T.D. Commercial Marine-Degradable Polymers for Flexible Packaging. iScience 2020, 23, 101353. Available online: https://pubmed.ncbi.nlm.nih.gov/32745984/ (accessed on 24 June 2022). [CrossRef] [PubMed]
- Dilkes-Hoffman, L.S.; Lant, P.A.; Laycock, B.; Pratt, S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar. Pollut. Bull. 2019, 142, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Castellano, D.; Blanes, M.; Marco, B.; Cerrada, I.; Ruiz-Saurí, A.; Pelacho, B.; Araña, M.; Montero, J.A.; Cambra, V.; Prosper, F.; et al. A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair. Stem Cells Dev. 2014, 23, 1479–1490. Available online: https://pubmed.ncbi.nlm.nih.gov/24564648/ (accessed on 23 June 2022). [CrossRef] [PubMed] [Green Version]
- Lezcano, M.F.; Álvarez, G.; Chuhuaicura, P.; Godoy, K.; Alarcón, J.; Acevedo, F.; Gareis, I.; Dias, F.J. Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. Biology 2022, 11, 706. Available online: https://www.mdpi.com/2079-7737/11/5/706/htm (accessed on 23 November 2022). [CrossRef] [PubMed]
Enzyme | Function | From |
---|---|---|
PhaA | 3HB monomer-supplying enzymes. b-ketothiolase | Ralstonia eutropha |
PhaB | 3HB monomer-supplying enzymes. NADPH-dependent acetoacetyl-CoA reductase | Ralstonia eutropha |
PhaC | PHA synthase | Ralstonia eutropha |
PhaJ | (R)-specific enoyl-CoA hydratase. Catalyzes the generation of mcl-3HA-CoA from enoyl-CoA | Aeromonas caviae |
PhaG | (R)-3-hydroxyacyl-acyl carrier protein (ACP)-CoA transferase | several pseudomonads |
PhaP | PHA granule binding |
Biopolymer Blend | Aim/Proposed Use | Reference |
---|---|---|
mcl-PHA | Ibuprofen impregnation on mcl-PHA | [176] |
mcl-PHA terpolyester | As biomaterial & ink | [177] |
Fluorinated polyhydroxyalkanoates | As a biomaterial coating | [178] |
Polyhydroxyalkanoates and Cellulose Nanocrystals | As high-oxygen-barrier multilayer films | [179] |
Polyhydroxybutyrate accumulation on Shewanella marisflavi BBL25 | To evaluate performance in electricity production | [180] |
Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffold | For hydrophilicity improvement and cell adhesion enhancement | [181] |
PHB nanofibers | For enzyme immobilization | [182] |
Polyhydroxyalkanoates (PHAs; review) | For biofuel and biorefineries | [183] |
Sulfonated Polyhydroxyalkanoate and Tannic Acid Derivative | As an antioxidant network | [184] |
Tyrosinase-functionalized polyhydroxyalkanoate bio-beads | For bisphenol analog degradation | [185] |
Polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil | To enhance the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets—as essential oil carriers | [186] |
Polyhydroxyalkanoates-Based Nanoparticles | As essential oil carriers | [187] |
Layered bacterial nanocellulose-PHBV composite | For food packaging | [188] |
Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) | As organic, recycled food packaging | [189] |
Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microsphere | To prevent bacterial infection and promote bone tissue regeneration | [190] |
Biocompatible Polyhydroxyalkanoate/Chitosan-Tungsten Disulphide Nanocomposite | For antibacterial and biological applications | [191] |
Phage Lytic Enzymes Displayed on Tailored Bionanoparticles | To inhibit Listeria monocytogenes growth | [192] |
Mycobacteriophage Endolysins Fused to Biodegradable Nanobeads | To mitigate mycobacterial growth in liquid and on surfaces | [193] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Bunster, G.; Pavez, P. Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. Molecules 2022, 27, 8351. https://doi.org/10.3390/molecules27238351
Fernandez-Bunster G, Pavez P. Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. Molecules. 2022; 27(23):8351. https://doi.org/10.3390/molecules27238351
Chicago/Turabian StyleFernandez-Bunster, Guillermo, and Pamela Pavez. 2022. "Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry" Molecules 27, no. 23: 8351. https://doi.org/10.3390/molecules27238351
APA StyleFernandez-Bunster, G., & Pavez, P. (2022). Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. Molecules, 27(23), 8351. https://doi.org/10.3390/molecules27238351