Mechanism of Hexane Displaced by Supercritical Carbon Dioxide: Insights from Molecular Simulations
Abstract
:1. Introduction
2. Results and Discussions
2.1. CO2 Displacing Hexane from SiO2-OH Wall
2.2. Effect of CO2 Injection Pressure on Hexane Displacement
2.3. Mechanisms of CO2 Injection Pressure on the Hexane Displacing Process
3. Materials and Methods
3.1. Model and Configurations
3.2. Force Fields of Adsorbent and Adsorbates
3.3. Simulation Configurations
3.4. Verification of the Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Song, Y.; Ji, Q.; Du, Y.-J.; Geng, J.-B. The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets. Energy Econ. 2019, 84, 104564. [Google Scholar] [CrossRef]
- Moh, D.Y.; Zhang, H.; Wang, S.; Yin, X.; Qiao, R. Soaking in CO2 huff-n-puff: A single-nanopore scale study. Fuel 2022, 308, 122026. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Li, Q. Molecular simulations of competitive adsorption behavior between CH4-C2H6 in K-illite clay at supercritical conditions. Fuel 2020, 260, 116358. [Google Scholar] [CrossRef]
- Gong, L.; Wang, J.; Gao, S.; Fu, X.; Liu, B.; Miao, F.; Zhou, X.; Meng, Q. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs. J. Pet. Sci. Eng. 2021, 203, 108655. [Google Scholar] [CrossRef]
- Belu Mănescu, C.; Nuño, G. Quantitative effects of the shale oil revolution. Energy Policy 2015, 86, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fang, T.; Ding, B.; Wang, W.; Yan, Y.; Li, Z.; Guo, W.; Zhang, J. Migration of oil/methane mixture in shale inorganic nano-pore throat: A molecular dynamics simulation study. J. Pet. Sci. Eng. 2020, 187, 106784. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Kantzas, A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel 2021, 305, 121519. [Google Scholar] [CrossRef]
- Kong, S.; Feng, G.; Liu, Y.; Li, K. Potential of dimethyl ether as an additive in CO2 for shale oil recovery. Fuel 2021, 296, 120643. [Google Scholar] [CrossRef]
- Moh, D.Y.; Zhang, H.; Sun, S.; Qiao, R. Molecular anatomy and macroscopic behavior of oil extraction from nanopores by CO2 and CH4. Fuel 2022, 324, 124662. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Liu, Y.; Li, Q.; Cheng, Q.; Cai, S. Transport Property of Methane and Ethane in K-Illite Nanopores of Shale: Insights from Molecular Dynamic Simulations. Energy Fuels 2020, 34, 1710–1719. [Google Scholar] [CrossRef]
- Elwegaa, K.; Emadi, H.; Soliman, M.; Gamadi, T.; Elsharafi, M. Improving oil recovery from shale oil reservoirs using cyclic cold carbon dioxide injection—An experimental study. Fuel 2019, 254, 115586. [Google Scholar] [CrossRef]
- Fakher, S.; Imqam, A. Application of carbon dioxide injection in shale oil reservoirs for increasing oil recovery and carbon dioxide storage. Fuel 2020, 265, 116944. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, M.L.; Viswanathan, H.S. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Lashgari, H.R.; Sun, A.; Zhang, T.; Pope, G.A.; Lake, L.W. Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs. Fuel 2019, 241, 1223–1235. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, X.; Tang, J.; Li, H.; Zhou, L.; Han, S.; Ge, Z.; Xia, B.; Shen, H.; Zhang, J. Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation. Energy 2019, 172, 270–285. [Google Scholar] [CrossRef]
- Wang, S.; Javadpour, F.; Feng, Q. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale. Fuel 2016, 181, 741–758. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Q.; Wang, S.; Xing, X. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation. J. Mol. Liq. 2019, 290, 111183. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, P.; Zhang, Y.; Yan, Y.; Hu, S.; Zhang, J. Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study. Energy 2013, 59, 295–300. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Kang, Q.; Viswanathan, H.S.; Yao, J.; Tao, W. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity. Sci. Rep. 2015, 5, 8089. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Feng, Q.; Javadpour, F.; Yang, Y.-B. Breakdown of Fast Mass Transport of Methane through Calcite Nanopores. J. Phys. Chem. C 2016, 120, 14260–14269. [Google Scholar] [CrossRef]
- Shuai, Z.; Xiaoshu, L.; Qiang, L.; Youhong, S. Thermal-fluid coupling analysis of oil shale pyrolysis and displacement by heat-carrying supercritical carbon dioxide. Chem. Eng. J. 2020, 394, 125037. [Google Scholar] [CrossRef]
- De Lara, L.S.; Michelon, M.F.; Miranda, C.R. Molecular Dynamics Studies of Fluid/Oil Interfaces for Improved Oil Recovery Processes. J. Phys. Chem. B 2012, 116, 14667–14676. [Google Scholar] [CrossRef]
- Nguyen, P.; Carey, J.W.; Viswanathan, H.S.; Porter, M. Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments. Appl. Energy 2018, 230, 160–174. [Google Scholar] [CrossRef]
- Seyyedi, M.; Mahzari, P.; Sohrabi, M. An integrated study of the dominant mechanism leading to improved oil recovery by carbonated water injection. J. Ind. Eng. Chem. 2017, 45, 22–32. [Google Scholar] [CrossRef]
- Liu, L.; Bhatia, S.K. Molecular Simulation of CO2 Adsorption in the Presence of Water in Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 13479–13491. [Google Scholar] [CrossRef]
- Song, J.; Liu, L.; Liu, C.; Gao, X. Interfacial resistance of gas transport through rigid and flexible zeolites. Sep. Purif. Technol. 2021, 278, 119529. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas. J. Nat. Gas Sci. Eng. 2019, 68, 102901. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Harris, J.G.; Yung, K.H. Carbon Dioxide’s Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model. J. Phys. Chem. 1995, 99, 12021–12024. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.-J.; Kalinichev, A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Zhang, J.; Xiao, S.; Zhang, Z.; Shen, Y.; Sun, B.; He, J. Displacement Mechanism of Oil in Shale Inorganic Nanopores by Supercritical Carbon Dioxide from Molecular Dynamics Simulations. Energy Fuels 2016, 31, 738–746. [Google Scholar] [CrossRef]
- Delhommelle, J.; Millié, P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys. 2001, 99, 619–625. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Purton, J.A.; Crabtree, J.C.; Parker, S.C. DL_MONTE: A general purpose program for parallel Monte Carlo simulation. Mol. Simul. 2013, 39, 1240–1252. [Google Scholar] [CrossRef]
- Moultos, O.A.; Tsimpanogiannis, I.N.; Panagiotopoulos, A.Z.; Economou, I.G. Self-diffusion coefficients of the binary (H2O + CO2) mixture at high temperatures and pressures. J. Chem. Thermodyn. 2016, 93, 424–429. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H. Correlation for self-diffusion coefficients of H2, CH4, CO, O2 and CO2 in supercritical water from molecular dynamics simulation. Appl. Therm. Eng. 2020, 171, 114941. [Google Scholar] [CrossRef]
Species | Bond Type | Kr (kcal/mol) | r0 (Å) |
---|---|---|---|
C6H14 | C-C | 268.0 | 1.529 |
C-H | 340.0 | 1.09 | |
CO2 | C=O | 615.322 | 1.149 |
SiO2-OH | O-H | 554.1349 | 1.0 |
Species | Angle Type | Kθ (kcal/(mol·rad2)) | θ (°) |
---|---|---|---|
C6H14 | C-C-C | 58.35 | 112.70 |
C-C-H | 37.5 | 110.70 | |
H-C-H | 33.0 | 107.80 | |
CO2 | O=C=O | 295.411 | 180 |
SiO2-OH | Si-O-H | 30.0 | 109.47 |
Types | V1 (kcal/mol) | V2 (kcal/mol) | V3 (kcal/mol) | V4 (kcal/mol) |
---|---|---|---|---|
C-C-C-C | 1.30 | −0.05 | 0.30 | 0 |
C-C-C-H | 0 | 0 | 0.30 | 0 |
H-C-C-H | 0 | 0 | 0.30 | 0 |
Species | Atoms | ε (kcal/mol) | σ (Å) | q (e) |
---|---|---|---|---|
SiO2-OH | Si | 1.84 × 10−6 | 3.302 | +2.1 |
O | 0.1554 | 3.1655 | −1.05 | |
O_OH | 0.1554 | 3.1655 | −0.95 | |
H_OH | 0 | 0 | 0.425 | |
C6H14 | C_CH3 | 0.066 | 3.50 | −0.18 |
C_CH2 | 0.066 | 3.50 | −0.12 | |
H_C6H14 | 0.030 | 2.50 | 0.06 | |
CO2 | C_CO2 | 0.0559 | 2.757 | 0.6512 |
O_CO2 | 0.1559 | 3.033 | −0.3256 |
p (MPa) | ρ (g·cm3) | Number |
---|---|---|
6.0 | 0.14688 | 246 |
7.5 | 0.22847 | 394 |
9.0 | 0.3745 | 637 |
10.5 | 0.5551 | 961 |
12.0 | 0.6728 | 1173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Zhu, Z.; Liu, L. Mechanism of Hexane Displaced by Supercritical Carbon Dioxide: Insights from Molecular Simulations. Molecules 2022, 27, 8340. https://doi.org/10.3390/molecules27238340
Song J, Zhu Z, Liu L. Mechanism of Hexane Displaced by Supercritical Carbon Dioxide: Insights from Molecular Simulations. Molecules. 2022; 27(23):8340. https://doi.org/10.3390/molecules27238340
Chicago/Turabian StyleSong, Jiasheng, Zhuangying Zhu, and Lang Liu. 2022. "Mechanism of Hexane Displaced by Supercritical Carbon Dioxide: Insights from Molecular Simulations" Molecules 27, no. 23: 8340. https://doi.org/10.3390/molecules27238340
APA StyleSong, J., Zhu, Z., & Liu, L. (2022). Mechanism of Hexane Displaced by Supercritical Carbon Dioxide: Insights from Molecular Simulations. Molecules, 27(23), 8340. https://doi.org/10.3390/molecules27238340