Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review
Abstract
:1. Introduction
2. Results
3. Discussion
4. Experimental Articles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Shaifuddin, S.N.; Mohamad, A.S. Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Mar. Pollut. Bull. 2018, 136, 135–140. [Google Scholar] [CrossRef]
- Anagnosti, L.; Varvaresou, A.; Pavlou, P.; Protopapa, E.; Carayanni, V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar. Pollut. Bull. 2021, 162, 1596–1605. [Google Scholar] [CrossRef]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Dent, M.P.; Vaillancourt, E.; Thomas, R.S.; Carmichael, P.L.; Ouedraogo, G.; Kojima, H.; Barroso, J.; Ansell, J.; Barton-Maclaren, T.S.; Bennekou, S.H.; et al. Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul. Toxicol. Pharmacol. 2021, 125, 105026. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Bacterial nanocellulose toward green cosmetics: Recent progresses and challenges. Int. J. Mol. Sci. 2021, 22, 2836. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial cellulose skin masks—Properties and sensory tests. J. Cosmet. Dermatol. 2018, 17, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.F.S.; Vilela, C.; Pinto, R.J.B.; Bastos, V.; Oliveira, H.; Catarino, J.; Faísca, P.; Rosado, C.; Silvestre, A.; Freire, C. Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: In vitro and in vivo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111350. [Google Scholar] [CrossRef] [PubMed]
- Mbituyimana, B.; Liu, L.; Ye, W.; Ode Boni, B.O.; Zhang, K.; Chen, J.; Thomas, S.; Vasilievich, R.V.; Shi, Z.; Yang, G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym. 2021, 273, 118565. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Ossowicz-Rupniewska, P.; Rakoczy, R.; Konopacki, M.; Perużyńska, M.; Droździk, M.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Wenelska, K.; et al. Bacterial cellulose membrane containing epilobium angustifolium l. Extract as a promising material for the topical delivery of antioxidants to the skin. Int. J. Mol. Sci. 2021, 22, 6269. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantereau, G.; Sharma, M.; Abednejad, A.; Vilela, C.; Costa, E.M.; Veiga, M.; Antunes, F.; Pintado, M.M.; Sèbe, G.; Coma, V.; et al. Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J. Mol. Liq. 2020, 302, 112547. [Google Scholar] [CrossRef]
- Amnuaikit, T.; Chusuit, T.; Raknam, P.; Boonme, P. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med. Devices Evid. Res. 2011, 4, 77–81. [Google Scholar]
- Almeida, I.F.; Pereira, T.; Silva, N.H.C.S.; Gomes, F.P.; Silvestre, A.J.; Freire, C.S.; Sousa Lobo, J.M.; Costa, P.C. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 2013, 86, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Numata, Y.; Mazzarino, L.; Borsali, R. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm. 2015, 486, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 2017, 164, 214–221. [Google Scholar] [CrossRef]
- Jantarat, C.; Sirathanarun, P.; Boonmee, S.; Meechoodin, W.; Wangpittaya, H. Effect of piperine on skin permeation of curcumin from a bacterially derived cellulose-composite double-layer membrane for transdermal curcumin delivery. Sci. Pharm. 2018, 86, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perugrini, P.; Bleve, M.; Cortinovis, F.; Coplani, A. Biocellulose masks as delivery systems: A novel methodological approach to assure quality and safety. Cosmetics 2018, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Perugrini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin. J. Cosmet. Dermatol. 2019, 19, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Malmir, S.; Atiyeh, K.; Mehrab, P.; Hamedi, J.; Yazdian, F.; Navaee, M. Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydr. Polym. 2020, 234, 115835. [Google Scholar] [CrossRef]
- Li, Y.; Jang, H.; Zheng, W.; Gong, N.; Chen, L.; Jiang, X.; Yang, Y. Bacterial cellulose-hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J. Mater. Chem. B 2015, 3, 3498–3507. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Tan, N.C.S.; Mahadevaswany, U.R.; Chanchareonsook, N.; Steele, T.; Lim, S. Bacterial cellulose adhesive composites for oral cavity applications. Carbohydr. Polym. 2021, 274, 118403. [Google Scholar] [CrossRef] [PubMed]
Results | Microorganism | Study | Reference |
---|---|---|---|
The BC mask significantly increased the skin moisture after a single application. | Acetobacter xylinum | Clinical: 30 volunteers | Amnuaikit, et al., 2011 [13] |
A tolerance under occlusion, after a single application, reinforced the putative interest of BC membranes as support for drug topical delivery. | Gluconacetobacter sacchari | Clinical: 15 volunteers | Almeida, et al., 2013 [14] |
The combination of BC gel and nanoparticles is a slow-release system that may be useful in the cosmetic and biomedical fields for skin treatment and preparation. | Gluconacetobacter xylinus | Analytical | Numata, et al., 2015 [15] |
The BC was incorporated with two formulations, one with plant extracts and the other one with propolis extract, so two types of masks were produced. The BC was effective in delivering the two subtances; however, the increase in hydration was only observed in the masks with plant extract. | Gluconacetobacter xylinus | Clinical: 20 volunteers | Pacheco, et al., 2017 [7] |
BC impregnation with ZnO nanoparticles increased considerable the antimicrobial activity of BC. Furthermore, the synthesized composite enhanced wound healing and tissue regeneration activity. | Gluconacetobacter xylinum | in vivo: Balb/C mice | Khalid, et al., 2017 [16] |
BC was designed with the lower layer composed of piperine and the upper layer composed of curcumin. This form of system allowed the release of piperine from the system and interacted with the skin structure before curcumin was released through the skin. | Gluconacetobacter xylinus | ex vivo: pig ears skin | Jantarat, et al., 2018 [17] |
Non-destructive assay application for evaluating the stability and safety of BC in humans. | Gluconacetobacter xylinus | Clinical: 89 volunteers | Perugrini, et al., 2018 [18] |
Application of BC masks for 1 month improved the firmness and elasticity of the skin and assisted in cell renewal. | Gluconacetobacter xylinus | Clinical: 69 volunteers | Perugini, et al., 2019 [19] |
Incorporation of vitamin B-based ionic liquids into BC for their use in skin care. The incorporated BC increased the bioavailability of vitamin B, helped with skin hydration, and showed no cytotoxic activity. | Gluconacetobacter sacchari | in vitro: HaCaT cells | G. Chantereau, et al., 2020 [12] |
BC was used as a carrier for hyaluronic acid and formulated as a patch with moisturizing and regenerative properties. The developed patch proved to be safe and effective. | Gluconacetobacter sacchari | in vitro: HaCaT ex vivo: pig ears skin | Fonseca, et al., 2020 [8] |
An antibacterial dressing was produced with BC as a carrier for titanium quantum carbon dioxide nanoparticles (CQD-TiO2). The model was tested in vitro and proved to be non-cytotoxic and effective in skin wound healing. | Gluconoacetobacter xylinum | in vitro: human L929 cells | Malmir et al., 2020 [20] |
BC was used as a carrier matrix for the Epilobium angustifolium extract with the intention of a controlled release of the plant extract for local delivery of antioxidants to the skin. The results indicated increased antioxidant properties and full release of the extract. | Komagataeibacter xylinus | in vitro: L929 mouse ex vivo: pig skin | Nowak, et al., 2021 [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.J.; Segato, T.C.M.; Machado, G.P.; Grotto, D.; Jozala, A.F. Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review. Molecules 2022, 27, 8341. https://doi.org/10.3390/molecules27238341
Oliveira TJ, Segato TCM, Machado GP, Grotto D, Jozala AF. Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review. Molecules. 2022; 27(23):8341. https://doi.org/10.3390/molecules27238341
Chicago/Turabian StyleOliveira, Thais Jardim, Talita Cristina Mena Segato, Gabriel Pereira Machado, Denise Grotto, and Angela Faustino Jozala. 2022. "Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review" Molecules 27, no. 23: 8341. https://doi.org/10.3390/molecules27238341
APA StyleOliveira, T. J., Segato, T. C. M., Machado, G. P., Grotto, D., & Jozala, A. F. (2022). Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review. Molecules, 27(23), 8341. https://doi.org/10.3390/molecules27238341