Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections
Abstract
:1. Introduction
2. COVID 19: Context, Treatment and New Drugs Demand
2.1. COVID-19 Scenario
2.2. Combination Pharmacotherapy for Treatment of Patients with COVID-19
2.3. Prescription of Antibiotics for Patients with COVID-19 and Bacterial Resistance
2.4. Medicinal and Spice Plants with Antibiotic Activity and Their Synergistic Effects with Industrialized Antibiotics
2.5. Potential of Plant Spices with Antibiotic Activity as Antiviral Agents
Scientific Name [Popular Name] | Main Component | Antiviral Effects/COVID-19 Applications | Reference |
---|---|---|---|
C. longa [Turmeric] | Curcumin | Attenuation of poly(I:C)-induced immune and inflammatory responses by inhibiting the TLR3/TBK1/IFN-β cascade | [90] |
Enhancement of oral drug delivery system (Labrasol® and tween 80 bicelles) | [91] | ||
Molecular docking studies showed reliable ADME profile | [92] | ||
Analogues as dual inhibitor of SARS-CoV-2 | [93] | ||
Development of nanoformulations | [87,94] | ||
Allium sativum [Garlic] | Allicin | Suppresses production and secretion of pro-inflammatory cytokines and stimulates of immune system cells (NK, lymphocytes, eosinophils and macrophages) | [95] |
Suppression of pro-inflammatory cytokines TNF-α and CRP | [96] | ||
Cinnamomum verum [Dalchini] | Eugenol | Inhibition of specific immune responses to allergens, reduces side effects of some anti-inflammatory drugs, antioxidant properties | [97] |
Increases the bioavailability of antiviral drug saquinavir | [98] | ||
Nigella sativa [Black cumin] | Thymoquinone | Inhibitory effects on viral spike protein with cellular angiotensin-converting enzyme 2 (ACE2) | [99] |
Inhibition of RdRp of SARS-CoV-2, especially α-hederin; ongoing drug development strategy against SARS-CoV-2 | [99] | ||
O. basilicum [Basil] | Apigenin | The phytoconstituents vicenin, sorientin and ursolic acid inhibit SARS-CoV-2 Mpro | [100] |
Development of gellan gum hydrogel with basil oil nanoemulsion | [101] | ||
O. vulgare [Oregano] | Carvacrol | Inhibition of viral replication and activity of SARS-CoV-2 3CLPRO | [102] |
Potent inhibition of SARS-CoV-2 replication (modeling studies) | [103] | ||
Thymus vulgaris [Thyme] | Thymol | Inhibits the viral spike protein, preventing SARS-CoV-2 entry | [103] |
Essential oils induce cytopathogenic effect against SARS-CoV in Vero-E6 cells | [104] |
2.6. Recent Research in Spice-Derived Metabolites in COVID-19 Context
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021, 172, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Kausar, S.; Said, K.F.; Ishaq, M.; Akram, M.; Riaz, M.; Rasool, G.; Malik, A. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211002621. [Google Scholar] [CrossRef]
- Kwok, M.; Lee, C.; Li, H.S.; Deng, R.; Tsoi, C.; Ding, Q.; Poon, E.N. Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc. Res. 2022, 118, 2652–2664. [Google Scholar] [CrossRef]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Mao, Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.G.; Heleno, A.S.; Alves, M.J.; Isabel, I.C.F.R. Bacterial resistance: Antibiotics of last generation used in clinical practice and the arise of natural products as new therapeutic alternatives. Curr. Pharm. Des. 2020, 26, 815–837. [Google Scholar] [CrossRef]
- Interagency Coordination Group on Antimicrobial Resistance (IACG). No Time to Wait: Securing the Future from Drug Resistant Infections. Available online: https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf (accessed on 21 October 2022).
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Peng, D.; Wang, Y.; Ren, Q.; Guo, Y. The production and exportation of artemisinin-derived drugs in China: Current status and existing challenges. Malaria J. 2016, 15, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.; Dubey, N.K. Traditional medicinal plants as promising source of immunomodulator against COVID-19. J. Agric. Sci. 2020, 8, 126–138. [Google Scholar] [CrossRef]
- Akinbolade, S.; Coughlan, D.; Fairbairn, R.; McConkey, G.; Powell, H.; Ogunbayo, D.; Craig, D. Combination therapies for COVID-19: An overview of the clinical trials landscape. Br. J. Clin. Pharmacol. 2022, 88, 1590–1597. [Google Scholar] [CrossRef]
- Taher, M.; Tik, N.; Susanti, D. Drugs intervention study in COVID-19 management. Drug. Metab. Pers. Ther. 2021. [Google Scholar] [CrossRef]
- Berber, E.; Sumbria, D.; Kokkaya, S. A metabolic blueprint of COVID-19 and long-term vaccine efficacy. Drug Metab Pers Ther. 2022. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Sana, U.; Khan, R.; Alagawany, M.; et al. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites/Extracts Countering Viral Pathogens—Current Knowledge and Future Prospects. Curr. Drug. Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Barbosa, B.V.R.; Lima, M.T.N.S.; Cardoso, P.G.; Contigli, C.; Pimenta, L.P.S. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg. Med. Chem. 2021, 46, 116366. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.M.; Su, X.; Wang, X.Q. Pain Symptoms in Patients with Coronavirus Disease (COVID-19): A Literature Review. J. Pain Res. 2021, 14, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.A.; Yeasmin, M.; Slam, K.; Sharif, M.; Amin, R.; Nafisa, T.; Ghosh, A.K.; Parveen, M.; Arif, M.H.; Alam, J.A.J.; et al. Antibiotic Prescribing Patterns at COVID-19 Dedicated Wards in Bangladesh: Findings from a Single Center Study. Inf. Prev. Pract. 2021, 3, 100–134. [Google Scholar] [CrossRef]
- Mobaraki, P.D.; Zaidi, A.K. Consequences of Intubation in COVID-19 Patients: Are We Ready. IJOPL 2020, 10, 50–53. [Google Scholar] [CrossRef]
- Clancy, J.C.; Buehrle, J.D.; Nguyen, M.H. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob. Resist. 2020, 2, dlaa049. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2020, 76, 1078–1084. [Google Scholar] [CrossRef]
- Hirschmann, R.; Bortolotto, C.C.; Silva, M.T.; Machado, A.K.F.; Xavier, M.O.; Fernandes, M.P.; Martins, R.C.; Bielemann, R.M.; Rodrigues, L.T.; Wehrmeister, F.C. Simultaneity of risk factors for chronic non-communicable diseases in a rural population of a Southern Brazilian city. Rev. Bras. Epidemiol. 2020, 23, E200066. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, S.; Zhang, X.; Cai, H.; Gu, J.; Lian, J.; Lu, Y.; Jia, H.; Hu, J.; Jin, C.; et al. Impact of comorbidities on patients with COVID-19: A large retrospective study in Zhejiang, China. J. Med. Virol. 2020, 92, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: A global analysis. Environ. Res. 2022, 30, 10024. [Google Scholar] [CrossRef]
- Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Pöhlmann, S. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Koch, M.; Wu, K.; Chu, L.; Ma, L.Z.; Hill, A.; Nunna, N.; Huang, W.; Oestreicher, J.; Colpitts, T.; et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis. Nat. Med. 2021, 27, 2025–2031. [Google Scholar] [CrossRef]
- Javorac, D.; Grahovac, L.; Manic, L.; Srrojikovic, N.; Andelkovi, A.; Bulat, Z.; Dukic, D.; Curcic, M.; Djordjevic, A.B. An overview of the safety assessment of medicines currently used in the COVID-19 disease treatment. Food Chem. Toxicol. 2020, 144, 111639. [Google Scholar] [CrossRef]
- Salasc, F.; Lahlali, T.; Laurent, E.; Calatrava, M.R.; Pizzorno, A. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. COPHAR 2022, 62, 43–49. [Google Scholar] [CrossRef]
- Shubhangi, K.; Darren, F. Repurposing drugs for treatment of SARS-CoV-2 infection: Computational design insights into mechanisms of action. J. Biomol. Struct. Dyn. 2022, 40, 1316–1330. [Google Scholar]
- Milas, S.; Poncelet, A.; Buttafuoco, F.; Pardo, A.; Lali, S.E.; Cherifi, S. Antibiotic use in patients with Coronavirus disease 2019 (COVID-19): Outcomes and associated factors. Acta Clin. Belg. 2022, 77, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Bakowski, A.M.; Beutler, N.; Chen, E.; Trinh, T.; Nguyen, H.; Kirkpatrick, M.G.; Parren, M.; Yang, L.; Ricketts, J.; Gupta, A.K.; et al. Oral drug repositioning candidates and synergistic remdesivir combinations for the prophylaxis and treatment of COVID-19. bioRxiv 2020. [Google Scholar] [CrossRef]
- Khataniar, A.; Pathak, U.; Rajkhowa, S.; Jha, A.N. A Comprehensive Review of Drug Repurposing Strategies against Known Drug Targets of COVID-19. Covid 2022, 2, 148–167. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, R.P.J.; Westwood, D.; Daneman, N.; Macfadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. CMI 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Miranda, C.; Silva, V.; Capita, R.; Calleja, C.A.; Igrejas, G.; Poeta, P. Implications of antibiotics use during the COVID-19 pandemic: Present and future. J. Antimicrob. Chemother. 2020, 75, 3413–3416. [Google Scholar] [CrossRef]
- Lucien, A.M.B.; Canarie, M.F.; Kilgore, P.E.; Denis, G.J.; Fenelon, N.; Pierre, M.; Cerpa, M.; Joseph, G.; Maki, G.; Zervos, M.J.; et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Su, L.; Tu, Y.; Kong, D.; Chen, D.; Zhang, C.; Zhang, W.; Zhuang, C.; Wang, Z. Drug repurposing of anti-infective clinical drugs: Discovery of two potential anti-cytokine storm agents. Biomed. Pharmacother. 2020, 131, 110643. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The microbial coinfection in COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 7777–7785. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. J. Infect. 2021, 49, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Uchino, K.; Kolikonda, M.K.; Brown, D.; Kovi, S.; Collins, D.; Khawaja, Z.; Buletko, A.B.; Russman, A.N.; Hussain, M.S. Decline in Stroke Presentations During COVID-19 Surge. Stroke 2020, 51, 2544–2547. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.X.; Wang, C.Y.; Li, Y.Y.; Li, J.; Wan, Q.Q.; Chen, J.H.; Tay, F.R.; Niu, L.N. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. Adv. Sci. 2020, 7, 1901872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, F.S.; Gohar, U.F.; Tahir, S.F.; Mukhtar, H.; Pornpukdeewattana, S.; Nukthamna, P.; Ali, A.M.M.; Bavisetty, S.C.B.; Massa, S. Antimicrobial resistance: More than 70 years of war between humans and bactéria. Crit. Rev. Microbiol. 2020, 5, 578–599. [Google Scholar] [CrossRef]
- Ilanko, A.; Cock, I.E. The interactive antimicrobial activity of conventional antibiotics and Petalostigma spp. extracts against bacterial triggers of some autoimmune inflammatory diseases. Pharmacogn. J. 2019, 11, 292–309. [Google Scholar] [CrossRef] [Green Version]
- Obakiro, S.B.; Kiyimba, K.; Paasi, G.; Napyo, A.; Anthierens, S.; Waako, P.; Royen, P.V.; Iramiot, J.S.; Goossens, H.; Kostyanev, T. Prevalence of antibiotic-resistant bacteria among patients in two tertiary hospitals in Eastern Uganda. J. Glob. Antimicrob. Resist. 2021, 25, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Paul, P.; Jernigan, J.A.; Baggs, L. National Estimates of Healthcare Costs Associated with Multidrug-Resistant Bacterial Infections Among patients hospitalized in the United States. Clin. Infect. Dis. 2021, 72, 17–26. [Google Scholar] [CrossRef]
- Abdulbari, A.; Ali, N.M.; Raghif, A.R.A.; Matloob, A.N. Comparison of Oral Isotretinoin vs Azithromycin in the Treatment of Acne Vulgaris. Indian J. Med. Forensic Med. Toxicol. 2021, 5, 1485–1489. [Google Scholar]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Hao, D.C.; Xiao, P.G. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. Chin. Herb. Med. 2020, 12, 104–117. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Baloyi, I.T.; Idowu, J.A.; Abdullahi, A.Y.; Sekelwa, C. Antibacterial, antiquorum sensing, antibiofilm activities and chemical profiling of selected South African medicinal plants against multi-drug resistant bacteria. J. Med. Plant Res. 2022, 16, 52–65. [Google Scholar]
- Nigussie, D.; Gail, D.; Beyene, T.T.; Malcolm, B.; Adefris, L.B.; Abebaw, F.; Eyasu, M. Antibacterial and Antifungal Activities of Ethiopian Medicinal Plants: A Systematic Review. Front. Pharmacol. 2021, 12, 1663–9812. [Google Scholar] [CrossRef]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 1895340. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Jung, H.C.; Baek, Y.J.; Kim, B.Y.; Lee, M.W.; Kim, H.D.; Kim, S.W. Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Cech, N.B.; Junio, H.A.; Ackermann, L.W.; Kavanaugh, J.S.; Horswill, A.R. Quorum quenching and antimicrobial activity of goldenseal (Hydrastis canadensis) against methicillin-resistant Staphylococcus aureus (MRSA). Planta Med. 2012, 78, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Richwagen, N.; Lyles, J.; Dale, B.; Quave, C. Antibacterial Activity of Kalanchoe mortagei and K. fedtschenkoi against ESKAPE Pathogens. Front. Pharmacol. 2019, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, N.; Ferraz, A.C.; Moraes, T.D.F.S.; Lima, W.G.; Dos Santos, J.P.; Duarte, L.P.; de Magalhães, J.C. Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus. J. Ethnopharmacol. 2021, 266, 113423. [Google Scholar]
- Mulat, M.; Khan, F.; Pandita, A. Chemical Composition and Antibacterial, Anti-biofilm and Anti-virulence Activities of Plant Extracts against Human Pathogenic Bacteria. Nat. Prod. J. 2022, 12, 54–68. [Google Scholar] [CrossRef]
- Schultz, F.; Anywar, G.; Tang, H. Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda. Sci. Rep. 2020, 10, 11935. [Google Scholar] [CrossRef]
- Assis, F.V.; Ferreira, J.M.S.; Siqueira, F.L.; Gonçalves, I.E.; Lacerda, R.P.; Nascimento, R.A.; Araújo, S.G.; Trindade, J.T.; Herrera, K.M.S.; Lima, A.R.L.S. Antibacterial activity of Lamiaceae plant extracts in clinical isolates of multidrug-resistant bacteria. Anais da Academia Brasileira de Ciências 2018, 90, 1665–1670. [Google Scholar] [CrossRef] [Green Version]
- Al-sa’ady, A. Antibacterial screening for five local medicinal plants against nosocomial pathogens: Klebsiella pneumoniae and Staphylococcus epidermidis. Eurasia J. Biosci. 2020, 14, 553–559. [Google Scholar]
- Al-Bakri, A.G.; Othman, G.; Afif, F.U. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species. Pharmacogn. Mag. 2010, 6, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.C.; Lin, C.S.; Hsu, C.R. Using the Chinese herb Scutellaria barbata against extensively drug-resistant Acinetobacter baumannii infections: In vitro and in vivo studies. BMC Complement. Altern. Med. 2018, 18, 96. [Google Scholar] [CrossRef]
- Bouhrim, M.; Radi, F.Z.; Mechchate, H.; Al-zahrani, M.; Qurtam, A.A.; Aleissa, A.M.; Drioiche, A.; Handaq, N.; Zair, T. Phytochemical Analysis, Antimicrobial and Antioxidant Properties of Thymus zygis L. and Thymus willdenowii Boiss. Essential Oils. Plants 2022, 11, 15. [Google Scholar]
- Sun, L.; Song, F.; Shi, N.; Liu, F.; Li, S.; Li, P.; Zhang, W.; Jiang, X.; Zhang, Y.; Sun, L.; et al. Combination of four clinical indicators predicts the severe/critical symptom of patients infected COVID-19. J. Clin. Virol. 2020, 128, 104431. [Google Scholar] [CrossRef] [PubMed]
- Chanda, S.; Rakholiya, K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol. Book Ser. 2011, 1, 520–529. [Google Scholar]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2020, 62, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Saquib, S.A.; AlQahtani, N.A.; Ahmad, I.; Kader, M.A.; Al Shahrani, S.S.; Asiri, E.A. Evaluation and Comparison of Antibacterial Efficacy of Herbal Extracts in Combination with Antibiotics on Periodontal pathobionts: An in vitro Microbiological Study. Antibiotics 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Embaby, M.A.; El-Raey, M.A.; Zaineldain, M.; Almaghrabi, O.; Marrez, D.A. Synergistic effect and efflux pump inhibitory activity of Ficus nitida phenolic extract with tetracycline against some pathogenic bacteria. Toxin Rev. 2021, 40, 1187–1197. [Google Scholar] [CrossRef]
- Khleifat, K.M.; Matar, S.A.; Jaafreh, M.; Qaralleh, H.; Al-limoun, M.O.; Alsharafa, K.Y. Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. J. Essent. Oil-Bear. Plants 2019, 22, 356–367. [Google Scholar] [CrossRef]
- Dassanayake, M.K.; Khoo, T.J.; An, J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: A review of synergistic mechanisms. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 79. [Google Scholar] [CrossRef]
- Bezalwar, P.M.; Charde, V.N. Study on synergistic action of Coriandrum sativum seed extracts on antibiotics against multidrug resistant P. aeruginosa. Environ. Conserv. J. 2019, 20, 83–88. [Google Scholar] [CrossRef]
- Da Silva, J.B.; de Bessa, M.E.; Mayorga, O.A.S.; Andrade, V.T.; da Costa, Y.F.G.; de Freitas, M.R.; Alves, M.S. A promising antibiotic, synergistic and antibiofilm effects of Vernonia condensata Baker (Asteraceae) on Staphylococcus aureus. Microb. Pathog. 2018, 123, 385–392. [Google Scholar] [CrossRef]
- Maheshwari, M.; Althubiani, A.S.; Abulreesh, H.H.; Qais, F.A.; Khan, M.S.; Ahmad, I. Bioactive extracts of Carum copticum L. enhances efficacy of ciprofloxacin against MDR enteric bacteria. Saudi J. Biol. Sci. 2019, 26, 1848–1855. [Google Scholar] [CrossRef]
- Bahmani, M.; Taherikalani, M.; Khaksarian, M.; Rafieian-Kopaei, M.; Ashrafi, B.; Nazer, M.; Rashidipour, M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. 2019, 5, FSO371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keawchai, K.; Chumkaew, P.; Permpoonpattana, P.; Srisawat, T. Synergistic effect of Hydnophytum formicarum tuber and Vatica diospyroides Symington cotyledon extracts with ampicillin on pathogenic bacteria. J. Appl. Biol. 2022, 10, 6–11. [Google Scholar]
- Silva, D.M.; Costa, P.A.; Ribon, A.B.; Purgato, G.A.; Gaspar, D.M.; Diaz, M.A. Plant Extracts Display Synergism with Different Classes of Antibiotics. Anais da Academia Brasileira de Ciências 2019, 91, e20180117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Chauhan, P. Spices that heal: Review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann. Phytomedicine 2022, 11, 7–11. [Google Scholar] [CrossRef]
- Mei, J.; Zhao, F.; Xu, R.; Huang, Y. A review on the application of spectroscopy to the condiments detection: From safety to authenticity. Crit. Rev. Food Sci. Nutr. 2021, 62, 6374–6389. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhang, M.; Mujumdar, A.S.; Chen, J. Valorization of turmeric (Curcuma longa L.) rhizome: Effect of different drying methods on antioxidant capacity and physical properties. Dry. Technol. 2022, 40, 1609–1619. [Google Scholar] [CrossRef]
- Global Industry Analysts. Condiments Market—Growth, Trends, COVID-19 Impact and Forecasts (2022–2029). Available online: https://www.maximizemarketresearch.com/market-report/condiments-market/148426/#:~:text=Condiments%20Market%20Segment%20Analysis%3A&text=The%20Food%20Chain%20Service%20segment,dressing%20markets%20in%20the%20world (accessed on 25 October 2022).
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11, 322. [Google Scholar] [CrossRef]
- Thimmulappa, R.K.; Mudnakudu-Nagaraju, K.K.; Shivamallu, C.; Subramaniam, K.T.; Radhakrishnan, A.; Bhojraj, S.; Kuppusamy, G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021, 7, 6350. [Google Scholar] [CrossRef]
- Babaei, F.; Nassiri-asl, M.; Hosseinzadeh, H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci. Nutr. 2020, 8, 5215–5227. [Google Scholar] [CrossRef] [PubMed]
- Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral Curcumin with Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front. Pharmacol. 2021, 12, 669362. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, R.; Salari, S.; Sharifi, M.D.; Reihani, H.; Rostamiani, M.B.; Behmadi, M.; Elyasi, S. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Sci. Nutr. 2021, 9, 4068–4075. [Google Scholar] [CrossRef] [PubMed]
- Saber-Moghaddam, N.; Salari, S.; Hejazi, S.; Amini, M.; Taherzadeh, Z.; Eslami, S.; Elyasi, S. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial. Phytother Res. 2022, 35, 2616–2623. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Sahebkar, A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022, 14, 256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.; Hu, C.; Fast, D.; Zhang, L.; Yang, B.; Kan, J.; Du, J. Curcumin attenuates poly(I:C)-induced immune and inflammatory responses in mouse macrophages by inhibiting TLR3/TBK1/IFNB cascade. J. Funct. Foods. 2022, 33, 104949. [Google Scholar] [CrossRef]
- Mahmoud, D.B.; Bakr, M.M.; Al-karmalawy, A.A. Scrutinizing the Feasibility of Nonionic Surfactants to Form Isotropic Bicelles of Curcumin: A Potential Antiviral Candidate Against COVID-19. AAPS PharmSciTech 2022, 23, 44. [Google Scholar] [CrossRef]
- Alici, H.; Tahtaci, H.; Demir, K. Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19—Associated main enzymes. Comput. Biol. Chem. 2022, 98, 107657. [Google Scholar] [CrossRef]
- Rampogu, S.; Lee, G.; Park, J.S.; Lee, K.W.; Kim, M.O. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 1771. [Google Scholar] [CrossRef] [PubMed]
- Asha, D.; Kushwaha, K.; Mishra, P.; Mrinalini, S.; Lilly, G.; Deepika, S. Nanocurcumin formulation: A possible therapeutic agent for post COVID inflammatory syndrome. Immunopharmacol. Immunotoxicol. 2022, 44, 141–146. [Google Scholar]
- Soleymani, S.; Naghizadeh, A.; Karimi, M. COVID-19: General strategies for herbal therapies. J. Evid.-Based Integr. Med. 2022, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kiraç, H.; Dalda, S.A.; Coskun, O.F. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genet. Resour. Crop. Evol. 2022, 69, 1833–1841. [Google Scholar] [CrossRef]
- Kiymaci, M.E.; Kaskatepe, B. Assessment of Cinnamon as an Antimicrobial Agent. In Promising Antimicrobials from Natural Products; Rai, M., Kosalec, I., Eds.; Springer: Cham, Switzerland, 2022; Volume 4, pp. 53–73. [Google Scholar]
- Gidwani, B.; Bhattacharya, R.; Shukla, S.S.; Pandey, R.K. Indian spices: Past, present and future challenges as the engine for bio-enhancement of drugs: Impact of COVID-19. J. Sci. Food Agric. 2022, 102, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Firoz, A.; Alaidarous, M.; Alshehri, B.; Dukhyil, A.B.; Banawas, S.; Alsagaby, A.S.; Alturaiki, W.; Bhat, A.G.; Kashoo, F.; et al. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J. Biol. Sci. 2022, 29, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, M.; Sivamaruthi, B.S.; Kesika, P.; Thangaleela, S.; Chaiyasut, C. In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. Appl. Sci. 2022, 12, 665. [Google Scholar] [CrossRef]
- Chinnaiyan, S.K.; Pandiyan, R.; Natesan, S.; Chindam, S.; Gouti, A.K.; Sugumaran, A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—Evaluation of its antibacterial and anti-biofilm potential. J. Drug Deliv. Sci. Technol. 2022, 68, 1773–2247. [Google Scholar] [CrossRef]
- Zrig, A. The Effect of Phytocompounds of Medicinal Plants on Coronavirus (2019-NCOV) Infection. Pharm. Chem. J. 2022, 55, 1080–1084. [Google Scholar] [CrossRef]
- Santos, S.; Barata, P.; Charmier, A. Cannabidiol and Terpene Formulation Reducing SARS-CoV-2 Infectivity Tackling a Therapeutic Strategy. Front. Immunol. 2022, 13, 841459. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Alam, M.; Khatoon, F.; Fatima, U.; Elasbali, A.M.; Adnan, M.; Islam, A.; Hassan, M.I.; Snoussi, M. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed. Pharmacother. 2022, 147, 112658. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Torres, K.A.D.M.; Lima, S.M.R.R.; Torres, L.M.B.; Gamberini, M.T.; Silva, J.P.I.D. Garlic: An alternative treatment for group B Streptococcus. Microbiol. Spectr. 2021, 9, 121–170. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi, P.L.; Nhung, N.T.A. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 2020, 5, 8312–8320. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, A.; Vats, S.; Tiwari, V.; Kumari, A.; Mishra, V.; Krishania, M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021, 8, 586815. [Google Scholar] [CrossRef]
- Zaer, A.M.; Norouzi, F.; Askari, V.R.; Khazdair, M.R.; Roshan, M.; Boskabady, M.; Hosseini, M.; Boskabady, M.H. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. J. Ethnopharmacol. 2020, 253, 112653. [Google Scholar] [CrossRef]
- Koshak, A.E.; Koshak, E.A. Nigella sativa l. as a potential phytotherapy for COVID-19: A mini-review of in-silico studies. CTR 2020, 93, 100602. [Google Scholar]
- Islam, M.N.; Hossain, K.S.; Sarker, P.P.; Ferdous, J.; Hannan, M.A.; Rahman, M.M.; Uddin, M.J. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother. Res. 2021, 35, 1329–1344. [Google Scholar] [CrossRef]
- Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn. 2020, 39, 4618–4632. [Google Scholar] [CrossRef]
- D’aquila, P.; Paparazzo, E.; Crudo, M.; Bonacci, S.; Procopio, A.; Passarino, G.; Bellizzi, D. Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients 2022, 14, 391. [Google Scholar] [CrossRef]
- Qureshi, W.; Saeed, F.; Ajaz, M.; Rasool, S.A. In vitro antimicrobial, antibiofilm and antiphage activity of thyme (Thymus vulgaris). Pak. J. Bot. 2022, 22, 660–666. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Rana, V.; Parama, D.; Banik, K.; Girisa, S.; Henamayee, S.; Aggarwal, B.B. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci. 2021, 284, 119201. [Google Scholar] [CrossRef]
- Nath, M.; Debnath, P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J. Biomol. Struct. Dyn. 2022, 20, 1–20. [Google Scholar]
- Singh, N.A.; Kumar, P.; Kumar, N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother. Res. 2021, 35, 2745–2757. [Google Scholar] [CrossRef]
- Kumar, B.; Zaidi, S.; Haque, S.; Dasgupta, N.; Hussain, A.; Pramodh, S.; Mishra, B.N. In silico studies reveal antiviral effects of traditional Indian spices on COVID-19. Curr. Pharm. Des. 2021, 27, 3462–3475. [Google Scholar] [CrossRef]
- Devan, A.R.; Nair, B.; Kumar, A.R.; Gorantla, J.N.; Nath, L.R. Unravelling the immune modulatory effect of Indian spices to impede the transmission of COVID-19: A promising approach. Curr. Pharm. Biotechnol. 2022, 23, 201–220. [Google Scholar] [CrossRef]
- Radhika, A.G.; Malik, H. Fight against COVID-19: Survey of Spices & Herbs Used in North India. Open J. Epidemiol. 2021, 11, 256–266. [Google Scholar]
- Sengupta, S.; Bhattacharyya, D.; Kasle, G.; Karmakar, S.; Sahu, O.; Ganguly, A.; Das Sarma, J. Potential Immunomodulatory Properties of Biologically Active Components of Spices Against SARS-CoV-2 and Pan β-Coronaviruses. Front. Cell. Infect. 2021, 11, 729622. [Google Scholar] [CrossRef] [PubMed]
- Khasamwala, R.H.; Ranjani, S.; Nivetha, S.S.; Hemalatha, S. COVID-19: An In Silico Analysis on Potential Therapeutic Uses of Trikadu as Immune System Boosters. Appl. Biochem. Biotechnol. 2022, 194, 291–301. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Rathinavel, T.; Periyannan, V.; Ammashi, S.; Marimuthu, S.; Nasir Iqbal, M. Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry. J. Biomol. Struct. Dyn. 2022, 12, 1–20. [Google Scholar] [CrossRef]
- Rajan, M.; Gupta, P.; Kumar, A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin. J. Integr. Med. 2021, 27, 243–244. [Google Scholar]
- Ratnawatia, S.; Kumbara, A.; Pudentia, M.; Kusuma, W.; Soriente, A. The Indonesian Herbal Heritage Medicine during COVID-19 Pandemic. Rev. Int. Geogr. Educ. 2021, 11, 1611–1620. [Google Scholar]
- Mlozi, S.H. The role of natural products from medicinal plants against COVID-19: Traditional medicine practice in Tanzania. Heliyon 2022, 8, e09739. [Google Scholar] [CrossRef]
- Hajibeygi, R.; Mirghazanfari, S.M.; Pahlavani, N.; Jalil, A.T.; Alshahrani, S.H.; Rizaev, J.A.; Yekta, N.H. Effect of a diet based on Iranian traditional medicine on inflammatory markers and clinical outcomes in COVID-19 patients: A double-blind, randomized, controlled trial. Eur. J. Integr. Med. 2022, 55, 102179. [Google Scholar] [CrossRef]
- Bousquet, J.; Haahtela, T.; Blain, H.; Czarlewski, W.; Zuberbier, T.; Bedbrook, A.; Anto, J.M. Available and affordable complementary treatments for COVID-19: From hypothesis to pilot studies and the need for implementation. Clin. Transl. Allergy 2022, 12, e12127. [Google Scholar] [CrossRef]
- Johnson, T.S.; Narayana, D.A. Role of Spices in Offering Natural Immunity to Fight Various Diseases. Pharmacogn. Mag. 2021, 13, 600–613. [Google Scholar] [CrossRef]
- Farzana, M.; Shahriar, S.; Jeba, F.R.; Tabassum, T.; Araf, Y.; Ullah, M.; Hosen, M.J. Functional food: Complementary to fight against COVID-19. Be Beni Suef Univ. J. Basic Appl. Sci. 2022, 11, 33. [Google Scholar] [CrossRef]
Plant Species [Botanical Family] | Active Against | Scope of Activity | Reference |
---|---|---|---|
Achyranthes aspera [Amaranthaceae] | MRSA ATCC 43300 | IZ 6.3 ± 0.6 mm; MIC 42.0 ± 14.4 mg/mL | [50] |
MRPA ATCC 27853 | IZ 6.2 ± 0.3 mm; MIC 200.0 ± 0.0 mg/mL | ||
MRKP ATCC 00603 | IZ 6.0 ± 0.0 mm; 50.0 ± 0.0 mg/mL | ||
Acokathera oppositifolia [Apocynaceae] | MRKP ATCC 33495 | MIC 6.25 ± 0.0 mg/mL | [51] |
Ageratina adenophora [Compositae] | MRSA ATCC 25923 | IZ 10 ± 0.0 mm; MIC 12.5 mg/mL | [52] |
Areca catechu [Arecaceae] | MRPA CCARM 2092 | IZ 6.4 ± 0.5–16.3 ± 1.5 mm; MIC 5.6 µg/mL | [52] |
MRAB CCARM 12005 | IZ 6.0 ± 0.0–17.7 ± 1.2 mm; MIC 5.6 µg/mL | ||
Artemesia vulgaris [Compositae] | MRSA ATCC 25923 | IZ 10 ± 0.1 mm; MIC 12.5 mg/mL | [53] |
Azadirachta indica [Meliaceae] | MRSA ATCC 43300 | IZ 6.2 ± 0.3 mm; MIC 33.3 ± 14.4 mg/mL | [50] |
MRPA ATCC 27853 | IZ 6.4 ± 0.4 mm; MIC 50.0 ± 0.0 mg/mL | ||
MRKP ATCC 00603 | IZ 6.1 ± 0.2 mm; MIC 41.7 ± 144 mg/mL | ||
Cirsium englerianum [Asteraceae] | MRSA ATCC 25923 | IZ 28 ± 0.04 mm; MIC 16 μg/mL | [53] |
Euphorbia depauperata [Euphorbiaceae] | MRSA ATCC 25923 | IZ 26 ± 0.02 mm; MIC 4 μg/mL | [53] |
Hydrastis canadensis. [Ranunculaceae] | MRSA AH1677 | MIC 75 µg/mL | [54] |
Kalanchoe fedtschenkoi [Crassulaceae] | MRAB CDC0033 | MIC 256 μg/mL | [55] |
MREC CDC08 | MIC > 256 μg/mL | ||
Lawsoniainermis [Lythracea] | MRSA ATCC 43300 | IZ 15.5 ± 0.5 mm; MIC 4.2 ± 2.0 mg/mL | [50] |
MRPA ATCC 27853 | IZ 12.5 ± 0.5 mm; MIC 4.2 ± 1.8 mg/mL | ||
MRKP ATCC 00603 | IZ 7.6 ± 0.5 mm; MIC 12.5 ± 0.0 mg/mL | ||
Lippia adoensis [Verbenaceae] | MRSA ATCC 25923 | IZ 27 ± 0.56 mm; MIC 64 μg/mL | [49] |
Lippia javanica [Verbenaceae] | MRPA ATCC 9721 | MIC 6.25 ± 3.2 mg/mL | [49] |
Matricaria chamomilla [Asteraceae] | MRSA ATCC 43300 | IZ 30 ± 2 mm; MIC 0.781 mg/mL | [57] |
MRPA ATCC 27853 | IZ 13.66 ± 1.52 mm; MIC 0.590 mg/mL | [57] | |
Morella kandtiana [Myricaceae] | MRAB CDC 0033 | MIC > 256 μg/mL | [58] |
MBKP CDC 0076 | MIC 256 μg/mL | ||
Mentha sp [Lamiaceae] | MRAB CI | MIC > 2 mg/mL | [59] |
MRKP CI | MIC >2 mg/mL | ||
MRPA CI | MIC 2 mg/mL | ||
Ocimun basilicum [Lamiaceae] | MRAB CI | MIC > 2 mg/mL | [59] |
MRKP CI | MIC > 2 mg/mL | ||
MRPA CI | MIC > 2 mg/mL | ||
Oxalis corniculata [Oxalidaceae] | MRKP CDC 0076 | IZ 11 ± 0.0 mm; MIC 25 mg/mL | [53] |
Plectranthus barbatus [Lamiaceae] | MRAB CI | MIC > 2 mg/mL | [59] |
MRKP CI | MIC 1 mg/mL | ||
MRPA CI | MIC 2 mg/mL | ||
Punica granatum [Punicaceae] | MRKP CDC 0076 | IZ 19–45 ± 0.7 mm | [60] |
Salvia triloba [Lamiaceae] | MRSA ATCC 6538 P | IZ 9.5 mm | [61] |
Scutellaria barbata [Lamiaceae] | MRAB CDC 0033 | IZ 14–18 ± 0.0 mm; MIC 6.4 mg/mL | [62] |
Thymus zygis L. [Lamiaceae] | MRSA ATCC 43300 | IZ 75 ± 00 mm; MIC 02 ± 0.0009 μL/mL | [63] |
MRAB CDC 0033 | IZ 71.5 ± 0.1 mm; MIC 02 ± 0.001 μL/mL | ||
Thymus willdenowii [Lamiaceae] | MRSA ATCC 43300 | IZ 33 ± 0.2 mm; MIC 04 ± 00 μL/mL | [63] |
MRAB CDC 0033 | IZ 30 ± 00 mm; MIC 04 ± 0.001 μL/mL | ||
Zanthoxylum chalybeum [Rutaceae] | MRSA ATCC 1677 | MIC 16 μg/mL | [58] |
MREF ATCC 0044 | MIC 32 μg/mL |
Target Pathogen | Plant Species | Synergy Effect | Reference |
---|---|---|---|
Aggregatibacter actinomycetemcomitans | Salvadora persica | More than doubled the activity combined with metronidazole | [68] |
B. cereus, S. aureus, E. coli, and P. aeruginosa | Ficus nitida | Antibacterial activity was enhanced in the presence of tetracycline | [69] |
E. coli and K. pneumoniae | Centaurea damascena | Synergetic effect combined with gentamicin (ineffective for E. coli), vancomycin, ampicillin and chloramphenicol (ineffective for K. pneumoniae) | [70] |
MDRAB and MDRPsA | Pithecellobium clypearia | Synergistic effect with imipenem and tetracycline a | [71] |
MDRPsA | Coriandrum sativum | Synergism in the presence of antibiotics including mezlocillin, cefoperazone, cefotaxime and levofloxacin | [72] |
MRSA 1485279 | Vernonia condensata | High MIC reduction combined with ampicillin a | [73] |
Multidrug-resistant enteric bacteria | Carum copticum | Reduced up to 64-fold MIC against E. coli with ciprofloxacin | [74] |
P. mirabilis | Petalostigma spp. | Synergistic activity with penicillin-G, chloramphenicol and erythromycin | [41] |
S. aureus ATCC 12600 | Origanum vulgare and Hypericum perforatum | Combined extracts (1:1) increased inhibition over 3 times more than the individual extracts | [75] |
S. aureus ATCC 25923 and E. coli ATTC 25922 | Vatica diospyroides | Increased ampicillin efficacy; reduced the required antibiotic concentration by eight times | [76] |
S. aureus strains 3993 and 4125 | Salvia officinalis, Senna macranthera, and Plectranthus ornatus | Up to 8-fold reductions in the MIC, especially associated to ampicillin, kanamycin and gentamicin | [77] |
Treponema denticola | Cinnamomum zeylanicum | More than doubled the activity combined with amoxicillin | [68] |
Scope | Reference |
---|---|
Indian Spices and Ayurvedic Herbs | |
Spices with anti-inflammatory properties with suggested beneficial action in the prevention and treatment of COVID-19 associated cytokine storm. | [116] |
Spices useful for future design of new protease inhibitors effective against SARS-CoV-2. | [117] |
Antiviral activities of spices, herbs, and derivatives, mechanisms of action, and prospects for future studies. | [118] |
Mechanism of action of spices regularly used for cooking purpose to enhance the taste of food in India. | [98] |
In silico evaluation of Indian traditional spices with medicinal properties for their inhibitory activity against SARS-CoV-2 spike proteins (SP) and main proteases (Mpro). | [119] |
Immune impact of various Indian spices, potential to tackle the novel coronavirus, safety and toxicity aspects. | [120] |
Traditional herbs used for protection against COVID-19 in North India. | [121] |
Modulation of host immune responses by spice-derived bioactive components with protective immunity in COVID-19. | [122] |
Preventive effect of Trikadu (mixture of Zingiber officinale, Piper nigrum and Piper longum) by action in the immune system. | [123] |
Docking of gingerol, thymol, thymohydroquinone, cyclocurcumin, hydrazinocurcumin, components of Indian medicinal plants (ginger, black cumin, turmeric) against initially deposited spike structural proteins (PDB ID 6WPT) and mutant variant D-614G (PDB ID 6XS6). | [124] |
Quick screening of traditional herbs/spices phytoconstituents by in silico study in polyherbal/Ayurvedic formulations. | [125] |
Indonesian herbal medicines | |
Several healthy drinks related to the COVID-19 pandemic. | [126] |
Tanzanian Traditional Medicine | |
Phytochemical screening of medicinal plants used to combat COVID-19 in Tanzania. | [127] |
Persian Traditional Medicine | |
New traditional Persian medicine-based drug, efficacy and safety assessment in COVID-19 patients with major symptoms. | [128] |
Other | |
Available and affordable complementary treatments for COVID-19. | [129] |
Scientific evidence on potential role of spices in offering innate and adaptive immunity to human body. | [130] |
Role of functional foods through modulating the host immune system and promoting the synthesis of agents effective against the coronavirus. | [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, N.B.A.; Takahashi, J.A. Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. Molecules 2022, 27, 8210. https://doi.org/10.3390/molecules27238210
Duarte NBA, Takahashi JA. Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. Molecules. 2022; 27(23):8210. https://doi.org/10.3390/molecules27238210
Chicago/Turabian StyleDuarte, Nathália Barroso Almeida, and Jacqueline Aparecida Takahashi. 2022. "Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections" Molecules 27, no. 23: 8210. https://doi.org/10.3390/molecules27238210
APA StyleDuarte, N. B. A., & Takahashi, J. A. (2022). Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. Molecules, 27(23), 8210. https://doi.org/10.3390/molecules27238210