Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks
Abstract
:1. Introduction
2. Results
2.1. Multi-Residues of Pesticides in Vegetable and Fruits
2.2. Risk Analysis of Pesticide Residues
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. LC-MS/MS Analysis
4.3. GC-MS/MS Analysis
4.4. Dietary Risk Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolani, L.; Mawussi, G.; Sanda, K. Assessment of organochlorine pesticide residues in vegetable samples from some agricultural areas in Togo. Am. J. Anal. Chem. 2016, 7, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public. Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Year Book 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- FAO. Pesticides Use: Global, Regional and Country Trends, 1990–2018; FAOSTAT Analytical Brief Series No. 16; FAO: Rome, Italy, 2021. [Google Scholar]
- Schimmel, S.C.; Garnas, R.L.; Patrick, J.M.; Moore, J.C. Acute Toxicity, Bioconcentration, and Persistence of Ac-222, 705, Benthiocarb, Chlorpyrifos, Fenvalerate, Methyl Parathion, and Permethrin in the Estuarine Environment. J. Agric. Food Chem. 1983, 31, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Phys. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- FAO; WHO. Fruit and Vegetables for Health, Report of a Joint FAO/WHO Workshop; WHO: Geneva, Switzerland; FAO: Rome, Italy, 2004. [Google Scholar]
- Szpyrka, E.; Kurdziel, A.; Matyaszek, A.; Podbielska, M.; Rupar, J.; Słowik-Borowiec, M. Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control 2015, 48, 137–142. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; Gonázlez-Curbelo, M.A.; González-Sálamo, J.; Hernandez-Borges, J. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food Chem. 2019, 297, 1–8. [Google Scholar] [CrossRef]
- Mahdavi, V.; Eslami, Z.; Molaee-Aghaee, E.; Peivasteh-Roudsari, L.; Sadighara, P.; Thai, V.N.; Fakhri, Y.; Ravanlou, A.A. Evaluation of pesticide residues and risk assessment in apple and grape from western Azerbaijan Province of Iran. Environ. Res. 2022, 203, 111882. [Google Scholar] [CrossRef]
- Knĕzevic, Z.; Serdar, M. Screening of fresh fruit and vegetables for pesticide residues on Croatian market. Food Control 2009, 20, 419–422. [Google Scholar] [CrossRef]
- Hjorth, K.; Johansen, K.; Holen, B.; Andersson, A.; Christensen, H.B.; Siivinend, K.; Toome, M. Pesticide residues in fruits and vegetables from South America–A Nordic project. Food Control 2011, 22, 1701–1706. [Google Scholar] [CrossRef]
- Bakırcı, G.T.; Acay, D.B.Y.; Bakırcı, F.; Otles, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Liu, Q.; Liu, J.; Wang, Q.; Wang, Y. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 2016, 60, 353–360. [Google Scholar] [CrossRef]
- Algharibeh, G.R.; AlFararjeh, M.S. Pesticide residues in fruits and vegetables in Jordan using liquid chromatography/tandem mass spectrometry. Food Addit. Contam. Part B 2019, 12, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, N.M.; Abu-Abdoun, I.I.; Janaan, A.S. Monitoring of pesticide residues in imported fruits and vegetables in United Arab Emirates during 2019. Int. Res. J. Pure Appl. Chem. 2020, 21, 239–260. [Google Scholar]
- Osaili, T.M.; Al Sallagi, M.; Dhanasekaran, D.K.; Wael, A.M.; Bani Odeh, W.; Al Ali, H.J.; Ahmed, A.S.A.; Al Ali, D.; Radwan, H.; Obaid, R.S.; et al. Pesticide residues in fresh vegetables imported into the United Arab Emirates. Food Control 2022, 133, 108663. [Google Scholar] [CrossRef]
- Omwenga, I.; Kanja, L.; Zomer, P.; Louisse, J.; Rietjens, I.M.; Mol, H. Organophosphate and carbamate pesticide residues and accompanying risks in commonly consumed vegetables in Kenya. Food Addit. Contam. Part B 2021, 14, 48–58. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.-J.; Park, Y.; Kwak, B.; Moon, S.H.; Yoon, Y.T.; Jo, S.A.; Yi, H.; Kim, S.; Park, S.K.; et al. Comparison of QuEChERS and Liquid–Liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS. Food Control 2022, 141, 109202. [Google Scholar] [CrossRef]
- Rizzati, V.; Briand, O.; Guillou, H.; Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem. Biol. Interact. 2016, 254, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.F.; Parron, T.; Tsatsakis, A.M.; Requena, M.; Alarcon, R.; Lopez-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Bayoumi, A.E. Deleterious effects of banned chemical pesticides on human health in developing countries. In Pesticides-Updates on Toxicity, Efficacy and Risk Assessment; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Ciscato, C.H.P.; Gebara, A.B.; Monteiro, S.H. Pesticide residue monitoring of Brazilian fruit for export 2006–2007. Food Addit. Contam. Part B-Surveill. 2009, 2, 140–145. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ashour, B.A.; Moreland-Young, C.; Ragheb, D.A.; Romeh, A.A.; Goma, E.; El-Sheikh, E.; Lidell, F.P.; Ibitayo, O.; Assad, J.-C. Health risk assessment of pesticide usage in Menia El-Kamh Province of Sharkia Governorate in Egypt. Int. J. Mol. Sci. 2002, 3, 1082–1094. [Google Scholar] [CrossRef]
- Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and new trends in analysis of pesticide residues in food: A comprehensive review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef]
- El-Sheikh, E.A.; Aamir, M. Comparative effectiveness and field persistence of insect growth regulators on a field strain of the cotton leafworm, Spodoptera littoralis, Boisd (Lepidoptera: Noctuidae). Crop Prot. 2011, 30, 645–650. [Google Scholar] [CrossRef]
- El-Sheikh, E.A. Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Crop Prot. 2015, 67, 228–234. [Google Scholar] [CrossRef]
- Grimalt, S.; Dehouck, P. Review of analytical methods for the determination of pesticide residues in grapes. J. Chromatogr. A 2015, 1433, 1–23. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fattahi, N.; Rahimi, R.; Sharafi, K.; Ghaffari, H.R. Evaluation of abamectin, diazinon and chlorpyrifos pesticide residues in apple product of Mahabad region gardens: Iran in 2014. Food Chem. 2017, 231, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, G.; Marfoglia, C.; Centorame, P.; Agostino, A.; Aurelio, R.; Scattolini, S.; Aprea, G.; Iannetti, L.; Pomilio, F.; Migliorati, G. Survey on Pesticide Residues and Microbial Contamination in Leafy Vegetables Marketed in Italy. In Proceedings of the 18th International Symposium of the World Association of Veterinary Laboratory Diagnosticians, Sorrento, Italy, 7–10 June 2017. [Google Scholar]
- Yang, X.; Luo, J.; Li, S.; Liu, C. Evaluation of nine pesticide residues in three minor tropical fruits from southern China. Food Control 2016, 60, 677–682. [Google Scholar] [CrossRef]
- Jardim, A.N.O.; Caldas, E.D. Brazilian monitoring programs for pesticide residues in food—Results from 2001 to 2010. Food Control 2012, 25, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Loughlin, T.M.M.; Peluso, M.L.; Etchegoyen, M.A.; Alonso, L.L.; Castro, M.C.; Percudani, M.C.; Marino, D.J.G. Pesticide residues in fruits and vegetables of the Argentine domestic market: Occurrence and quality. Food Control 2018, 39, 129–138. [Google Scholar] [CrossRef]
- Arias, L.A.; Bojaca, C.R.; Ahumada, D.A.; Schrevens, E. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control 2014, 35, 213–217. [Google Scholar] [CrossRef]
- Chen, X.; Fan, X.; Ma, Y.; Hu, J. Dissipation behaviour, residue distribution and dietary risk assessment of tetraconazole and kresoxim-methyl in greenhouse strawberry via RRLC-QqQ-MS/MS technique. Ecotoxicol. Environ. Saf. 2018, 148, 799–804. [Google Scholar] [CrossRef]
- Sójka, M.; Miszczak, A.; Sikorski, P.; Zagibajło, K.; Karlińska, E.; Kosmala, M. Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS J. 2015, 1, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.S.; Liu, X.G.; Xu, J.; Li, J.; Li, Y.B.; Shan, W.L.; Zheng, Y.Q. Determination of cyantraniliprole and its major metabolite residues in vegetable and soil using ultra-performance liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2012, 26, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, Z.B.; Fang, N.; Hou, Z.G.; Li, Y.R.; Lu, Z.B. Simultaneous determination of five diamide insecticides in food matrices using carbon nanotube multiplug filtration cleanup and ultrahigh-performance liquid chromatographytandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 10977–10983. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, E.A.; Ashour, M.-B.A. Diamide insecticides: Efficacy, toxicity and analytical methods for residue monitoring in food samples. Egypt. J. Chem. 2022, 65, 165–177. [Google Scholar] [CrossRef]
- Tian, F.; Qiao, C.; Luo, J.; Guo, L.; Pang, T.; Pang, R.; Li, J.; Wang, C.; Wang, R.; Xie, H. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS. Food Chem. 2020, 333, 127468. [Google Scholar] [CrossRef]
- E.U. Pesticides Database 2020. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public (accessed on 15 May 2022).
- Hassan, A.A.; Bel Hadj Salah, K.; Fahmy, E.M.; Mansour, D.A.; Mohamed, S.A.M.; Abdallah, A.A.; Ashkan, M.F.; Majrashi, K.A.; Melebary, S.J.; El-Sheikh, E.-S.A.; et al. Olive Leaf Extract Attenuates Chlorpyrifos-Induced Neuro- and Reproductive Toxicity in Male Albino Rats. Life 2022, 12, 1500. [Google Scholar] [CrossRef]
- Constantinou, M.; Louca-Christodoulou, D.; Agapiou, A. Method validation for the determination of 314 pesticide residues using tandem MS systems (GC–MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chem. 2021, 360, 129964. [Google Scholar] [CrossRef]
- Malhat, F.; Sabera, E.; Abd Elsalam, S.; Ahmed, M.; Amin, A. Consumer safety evaluation of pyraclostrobin residues in strawberry using liquid chromatography tandem mass spectrometry (LC-MS/MS): An Egyptian profile. Regul. Toxicol. Pharmacol. 2019, 108, 104450. [Google Scholar] [CrossRef]
- Chen, J.-N.; Lian, Y.-J.; Zhou, Y.-R.; Wang, M.-H.; Zhang, X.-Q.; Wang, J.-H.; Wu, Y.-N.; Wang, M.-L. Determination of 107 pesticide residues in wolfberry with acetate-buffered salt extraction and sin-quechers nano column purification coupled with ultra performance liquid chromatography tandem mass spectrometry. Molecules 2019, 24, 2918. [Google Scholar] [CrossRef] [Green Version]
- Malhat, F.; Abdallah, O.; Ahmed, F.; Abdel Salam, S.; Anagnostopoulos, C.; Ahmed, M.T. Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 1029–1039. [Google Scholar] [CrossRef]
- Mozzaquatro, J.d.O.; César, I.A.; Pinheiro, A.E.B.; Caldas, E.D. Pesticide residues analysis in passion fruit and its processed products by LC–MS/MS and GC–MS/MS: Method validation, processing factors and dietary risk assessment. Food Chem. 2022, 375, 131643. [Google Scholar] [CrossRef]
- Qin, G.; Chen, Y.; He, F.; Yang, B.; Zou, K.; Shen, N.; Zuo, B.; Liu, R.; Zhang, W.; Li, Y. Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. J. Food Compost. Anal. 2021, 95, 103663. [Google Scholar] [CrossRef]
- Xing, L.; Wang, Y.; Luo, R.; Li1, X.; Zou, L. Determination of 31 pesticide residues in wolfberry by LC-MS/MS and dietary risk assessment of wolfberry consumption. Food Sci. Technol. Campinas 2022, 42, e61921. [Google Scholar] [CrossRef]
- Luo, L.; Dong, L.; Huang, Q.; Ma, S.; Fantke, P.; Li, J.; Jiang, J.; Fitzgerald, M.; Yang, J.; Jia, Z.; et al. Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. Chemosphere 2021, 262, 127477. [Google Scholar] [CrossRef]
- Castilla-Fernández, D.; Moreno-González, D.; Bouza, M.; Saez-Gómez, A.; Ballesteros, E.; García-Reyes, J.F.; Molina-Díaz, A. Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control 2021, 130, 108311. [Google Scholar] [CrossRef]
- Kiljanek, T.; Niewiadowska, A.; Małysiak, M.; Posyniak, A. Miniaturized multiresidue method for determination of 267 pesticides, their metabolites and polychlorinated biphenyls in low mass beebread samples by liquid and gas chromatography coupled with tandem mass spectrometry. Talanta 2021, 235, 122721. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, S.; Mahdavi, V.; Gordan, H.; Rezadoost, H.; Conti, G.O.; Khaneghah, A.M. Determination of multi-class pesticides residues of cow and human milk samples from Iran using UHPLC-MS/MS and GC-ECD: A probabilistic health risk assessment. Environ. Res. 2022, 208, 112730. [Google Scholar] [CrossRef] [PubMed]
- Mwanja, M.; Jacobs, C.; Mbewe, A.R.; Munyinda, N.S. Assessment of pesticide residue levels among locally produced fruits and vegetables in Monze district, Zambia. Int. J. Food Contam. 2017, 4, 11. [Google Scholar] [CrossRef]
- Hamed, S.A.; EL-Ghanam, A.A.A.; Elhefny, D.E. Fast and easy method of 55 pesticide residues determination in commonly fruits and vegetables collected from Egyptian local markets. J. Plant Protect. Pathol. 2019, 10, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Parveen, Z.; Riazuddin, A.; Iqbal, S.; Bhutto, M.A.; Khuhro, M.I. Monitoring of multiple pesticide residues in some fruits in Karachi, Pakistan. Pakistan J. Bot. 2011, 43, 1915–1918. [Google Scholar]
- Mert, A.; Qi, A.; Bygrave, A.; Stotz, H.U. Trends of pesticide residues in foods imported to the United Kingdom from 2000 to 2020. Food Control 2022, 133, 108616. [Google Scholar] [CrossRef]
- Tankiewicz, M.; Berg, A. Improvement of the QuEChERS method coupled with GC–MS/MS for the determination of pesticide residues in fresh fruit and vegetables. Microchem. J. 2022, 181, 107794. [Google Scholar] [CrossRef]
- Sinha, S.; Rao, M.; Vasudev, K.; Odetokun, M. A liquid chromatography mass spectrometry-based method to measure organophosphorous insecticide, herbicide and non-organophosphorous pesticide in grape and apple samples. Food Control 2012, 25, 636–646. [Google Scholar] [CrossRef]
- Javeres, M.N.L.; Habib, R.; Laure, N.J.; Shah, S.T.A.; Valis, M.; Kuca, K.; Nurulain, S.M. Chronic exposure to organophosphates pesticides and risk of metabolic disorder in cohort from Pakistan and Cameroon. Int. J. Environ. Res. Public Health 2021, 18, 2310. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. TrAC Trends Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- USEPA. Baseline Human Health Risk Assessment; Vasquez Boulevard and I-70 Superfund Site: Denver, CO, USA, 2001.
Samples | Pesticides | Type * | RT (Min.) | Range (µg Kg−1) | Mean ± SD | LOD (µg Kg−1) | LOQ (µg Kg−1) | MRL ** (µg Kg−1) |
---|---|---|---|---|---|---|---|---|
Carrot | ||||||||
Lufenuron | I | 11.08 | 25–99 | 62.00 ± 37.00 | 0.5 | 5 | 10 | |
Cabbage | ||||||||
Chlorpyrifos | I | 11.02 | 4–10 | 7.33 ± 3.06 | 1.7 | 3 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 9–19 | 13.33 ± 5.13 | 0.5 | 10 | 150 | |
Thiacloprid | I | 5.06 | 6–17 | 11.33 ± 5.51 | 0.5 | 10 | 300 | |
Cucumber | ||||||||
Acetamprid | I | 4.64 | 8–22 | 13.33 ± 7.57 | 0.3 | 10 | 300 | |
Carbendazim | F | 4.92 | 8–28 | 18.33 ± 10.02 | 0.3 | 10 | 100 | |
Chlorfenapyr | I | 10.70 | 22–36 | 28.67 ± 7.02 | 2.5 | 10 | 10 | |
Chlorpyrifos | I | 11.02 | 36–100 | 59.33 ± 35.35 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 29–45 | 35.00 ± 8.72 | 4 | 25 | 200 | |
Fenvalerate | I | 45.07 | 55–80 | 65.67 ± 12.90 | 0.3 | 25 | 20 | |
Fipronil | I | 9.25 | 11 | 11.00 ± 0.00 | 0.3 | 5 | 5 | |
Imidacloprid | I | 4.93 | 12–32 | 21.67 ± 10.02 | 0.3 | 5 | 500 | |
Lambda-cyhalothrin | I | 35.88 | 8–48 | 22.33 ± 22.28 | 0.5 | 10 | 50 | |
Methomyl | I | 4.97 | 48 | 48.00 ± 0.00 | 5 | 10 | 10 | |
Oxamyl | I | 1.51 | 17 | 17.00 ± 0.00 | 2.5 | 10 | 10 | |
Pyrimethanil | F | 7.52 | 54 | 54.00 ± 0.00 | 1.7 | 5 | 800 | |
Thiacloprid | I | 5.06 | 9–13 | 10.67 ± 2.08 | 0.5 | 10 | 500 | |
Thiamethoxam | I | 4.78 | 17–40 | 26.67 ± 11.93 | 1.7 | 5 | 500 | |
Thiophanate methyl | F | 5.44 | 66–100 | 85.00 ± 17.35 | 0.3 | 1 | 100 | |
Eggplant | ||||||||
Acetamprid | I | 4.64 | 10–14 | 12.00 ± 2.00 | 0.3 | 10 | 200 | |
Chlorpyrifos | I | 11.02 | 11 | 11.00 ± 0.00 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 11–21 | 16.00 ± 5.00 | 4 | 25 | 500 | |
Deltamethrin | I | 35.01 | 44–74 | 57.33 ± 15.28 | 1.8 | 10 | 400 | |
Hexythiazox | I | 11.05 | 13 | 13.00 ± 0.00 | 0.3 | 5 | 100 | |
Lambda-cyhalothrin | I | 35.88 | 10–63 | 37.67 ± 26.58 | 0.5 | 10 | 300 | |
Lufenuron | I | 11.08 | 17–34 | 24.33 ± 8.74 | 0.5 | 5 | 300 | |
Propargite | I | 11.32 | 11 | 11.00 ± 0.00 | 2 | 5 | 10 | |
Green Beans | ||||||||
Chlorpyrifos | I | 11.02 | 8 | 8.00 ± 0.00 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 9–15 | 11.67 ± 3.06 | 0.5 | 10 | 400 | |
Lufenuron | I | 11.08 | 233–453 | 328.33 ± 112.90 | 0.5 | 5 | 10 | |
Green Onion | ||||||||
Chlorpyrifos | I | 11.02 | 7–19 | 12.67 ± 6.03 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 12 | 12.00 ± 0.00 | 0.5 | 10 | 200 | |
Profenofos | I | 10.46 | 951 | 951.00 ± 0.00 | 10 | 25 | 20 | |
Green Peas | ||||||||
Chlorpyrifos | I | 11.02 | 16 | 16.00 ± 0.00 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 24–101 | 63.00 ± 38.51 | 0.5 | 10 | 200 | |
Lufenuron | I | 11.08 | 40–96 | 67.67 ± 28.01 | 0.5 | 5 | 10 | |
Thiamethoxam | I | 4.78 | 9 | 9.00 ± 0.00 | 1.7 | 5 | 300 | |
Okra | ||||||||
Chlorpyrifos | I | 11.02 | 14–18 | 16.00 ± 2.83 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 13–44 | 27.67 ± 15.57 | 4 | 25 | 500 | |
Deltamethrin | I | 35.01 | 11 | 11.00 ± 0.00 | 1.8 | 10 | 10 | |
Fenvalerate | I | 45.07 | 9–50 | 27.00 ± 20.95 | 0.3 | 25 | 20 | |
Fipronil | I | 9.25 | 26 | 26.00 ± 0.00 | 0.3 | 5 | 5 | |
Imidacloprid | I | 4.93 | 8–30 | 16.67 ± 11.72 | 0.3 | 5 | 500 | |
Lambda-cyhalothrin | I | 35.88 | 39–99 | 68.33 ± 30.02 | 0.5 | 10 | 300 | |
Propargite | I | 11.32 | 14 | 14.00 ± 0.00 | 2 | 5 | 10 | |
Pepper | ||||||||
Acetamprid | I | 4.64 | 99–221 | 151.67 ± 62.68 | 0.3 | 10 | 300 | |
Boscalid | F | 8.03 | 50–106 | 79.67 ± 28.15 | 0.5 | 1 | 3000 | |
Carbendazim | F | 4.92 | 98–330 | 232.67 ± 120.42 | 0.3 | 10 | 100 | |
Chlorpyrifos | I | 11.02 | 24 | 24.00 ± 0.00 | 1.7 | 5 | 10 | |
Dimethoate | I | 4.95 | 11 | 11.00 ± 0.00 | 0.3 | 1 | 10 | |
Fluazifop-p-butyl | H | 10.74 | 60–90 | 77.33 ± 15.53 | 0.3 | 5 | 10 | |
Imidacloprid | I | 4.93 | 9–22 | 16.00 ± 6.56 | 0.3 | 5 | 900 | |
Lambda-cyhalothrin | I | 35.88 | 21–64 | 43.00 ± 21.52 | 0.5 | 10 | 300 | |
Methomyl | I | 4.97 | 9–60 | 32.00 ± 25.87 | 5 | 10 | 40 | |
Myclobutanil | F | 8.26 | 19 | 19.00 ± 0.00 | 1.7 | 5 | 3000 | |
Profenofos | I | 10.46 | 35 | 35.00 ± 0.00 | 10 | 25 | 10 | |
Thiophanate methyl | F | 5.44 | 17–60 | 38.33 ± 21.50 | 0.3 | 1 | 100 | |
Potatoes | ||||||||
Chlorpyrifos | I | 11.02 | 13–14 | 13.50 ± 0.71 | 1.7 | 5 | 10 | |
Lufenuron | I | 11.08 | 60–120 | 87.00 ± 30.45 | 0.5 | 5 | 10 | |
Spinach | ||||||||
Acetamprid | I | 4.64 | 11 | 11.00 ± 0.00 | 0.3 | 10 | 600 | |
Chlorpyrifos | I | 11.02 | 12 | 12.00 ± 0.00 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 340–521 | 434.33 ± 90.74 | 0.5 | 10 | 600 | |
Omethoate | I | 7.38 | 12 | 12.00 ± 0.00 | 3.3 | 5 | 10 | |
Thiacloprid | I | 5.06 | 9–31 | 17.00 ± 12.17 | 0.5 | 10 | 150 | |
Tomato | ||||||||
Acetamprid | I | 4.64 | 8–23 | 15.00 ± 7.55 | 0.3 | 10 | 500 | |
Carbendazim | F | 4.92 | 16–109 | 62.50 ± 65.76 | 0.3 | 10 | 300 | |
Chlorpyrifos | I | 11.02 | 52 | 52.00 ± 0.00 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 26 | 26.00 ± 0.00 | 4 | 25 | 500 | |
Fenvalerate | I | 45.07 | 12 | 12.00 ± 0.00 | 0.3 | 25 | 100 | |
Imidacloprid | I | 4.93 | 11–30 | 20.50 ± 13.44 | 0.3 | 5 | 300 | |
Lambda-cyhalothrin | I | 35.88 | 29–72 | 51.67 ± 21.59 | 0.5 | 10 | 70 | |
Permethrin | I | 23.09 | 23 | 23.00 ± 0.00 | 0.3 | 1 | 50 | |
Propargite | I | 11.32 | 88–219 | 152.00 ± 65.55 | 2 | 5 | 10 | |
Thiophanate methyl | F | 5.44 | 120–210 | 163.33 ± 45.09 | 0.3 | 1 | 100 | |
Zucchini | ||||||||
Acetamprid | I | 4.64 | 7–40 | 20.33 ± 17.39 | 0.3 | 10 | 300 | |
Carbendazim | F | 4.92 | 23 | 23.00 ± 0.00 | 0.3 | 10 | 100 | |
Chlorpyrifos | I | 11.02 | 16–80 | 48.00 ± 45.25 | 1.7 | 5 | 10 | |
Deltamethrin | I | 35.01 | 9–22 | 14.33 ± 6.81 | 1.8 | 10 | 200 | |
Diazinon | I | 9.31 | 11 | 11.00 ± 0.00 | 1.7 | 5 | 10 | |
Fenvalerate | I | 45.07 | 16 | 16.00 ± 0.00 | 0.3 | 25 | 20 | |
Fipronil | I | 9.25 | 33 | 33.00 ± 0.00 | 0.3 | 5 | 5 | |
Imidacloprid | I | 4.93 | 90–541 | 320.67 ± 225.68 | 0.3 | 5 | 400 | |
Lambda-cyhalothrin | I | 35.88 | 68–174 | 121.00 ± 74.95 | 0.5 | 10 | 150 | |
Tebuconazole | F | 8.59 | 9–70 | 37.33 ± 30.73 | 1.7 | 10 | 600 | |
Thiamethoxam | I | 4.78 | 4–131 | 66.33 ± 63.53 | 1.7 | 5 | 500 | |
Thiophanate methyl | F | 5.44 | 105 | 105.00 ± 0.00 | 0.3 | 1 | 100 |
Samples | Pesticides | Type * | RT (Min.) | Range (µg Kg−1) | Mean ± SD | LOD (µg Kg−1) | LOQ (µg Kg−1) | MRL ** (µg Kg−1) |
---|---|---|---|---|---|---|---|---|
Apple | ||||||||
Acetamprid | I | 4.64 | 9–48 | 31.00 ± 19.97 | 0.3 | 10 | 400 | |
Boscalid | F | 8.03 | 11–23 | 16.67 ± 6.03 | 0.5 | 1 | 2000 | |
Carbendazim | F | 4.92 | 41–125 | 82.00 ± 42.04 | 0.3 | 10 | 200 | |
Chlorantraniliprole | I | 7.45 | 12–22 | 15.33 ± 5.77 | 0.3 | 1 | 400 | |
Chlorpyrifos | I | 11.02 | 12–394 | 195.33 ± 191.46 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 90–362 | 246.00 ± 140.34 | 4 | 25 | 1000 | |
Difenoconazole | F | 10.11 | 10–13 | 11.33 ± 1.53 | 0.5 | 5 | 800 | |
Fipronil | I | 9.25 | 17 | 17.00 ± 0.00 | 0.3 | 5 | 5 | |
Flonicamid | I | 2.01 | 10 | 10.00 ± 0.00 | 3.3 | 10 | 300 | |
Fluazifop-p-butyl | H | 10.74 | 16 | 16.00 ± 0.00 | 0.3 | 5 | 10 | |
Fluopyram | F | 8.69 | 11–40 | 24.33 ± 14.64 | 0.3 | 5 | 800 | |
Hexythiazox | I | 11.05 | 14 | 14.00 ± 0.00 | 0.3 | 5 | 400 | |
Imidacloprid | I | 4.93 | 12–61 | 35.00 ± 24.64 | 0.3 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 23–25 | 24.00 ± 1.41 | 0.5 | 10 | 80 | |
Metalaxyl | F | 7.01 | 9–20 | 13.00 ± 6.08 | 1.7 | 5 | 1000 | |
Permethrin | I | 23.09 | 17 | 17.00 ± 0.00 | 0.3 | 1 | 50 | |
Phosmet | I | 19.41 | 20–93 | 55.67 ± 36.53 | 17 | 50 | 500 | |
Propargite | I | 11.32 | 16–20 | 18.00 ± 2.00 | 2 | 5 | 10 | |
Tebuconazole | F | 8.59 | 31–99 | 66.33 ± 34.08 | 1.7 | 10 | 300 | |
Thiophanate methyl | F | 5.44 | 20–44 | 31.33 ± 12.06 | 0.3 | 1 | 500 | |
Apricot | ||||||||
Acetamprid | I | 4.64 | 30–120 | 79.67 ± 45.72 | 0.3 | 10 | 800 | |
Azoxystrobin | F | 7.95 | 13–76 | 43.67 ± 31.53 | 1.3 | 4 | 2000 | |
Boscalid | F | 8.03 | 10 | 10.00 ± 0.00 | 0.5 | 1 | 5000 | |
Buprofezin | I | 9.19 | 90–199 | 147.00 ± 54.67 | 1 | 5 | 10 | |
Carbendazim | F | 4.92 | 131–340 | 231.67 ± 104.71 | 0.3 | 10 | 200 | |
Chlorpyrifos | I | 11.02 | 86–311 | 183.00 ± 115.66 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 109–261 | 177.67 ± 77.05 | 4 | 25 | 2000 | |
Deltamethrin | I | 35.01 | 9–45 | 26.67 ± 18.01 | 1.8 | 10 | 150 | |
Dimethoate | I | 4.95 | 14 | 14.00 ± 0.00 | 0.3 | 1 | 10 | |
Fenvalerate | I | 45.07 | 23–29 | 26.00 ± 3.00 | 0.3 | 25 | 200 | |
Imidacloprid | I | 4.93 | 11–41 | 25.67 ± 15.01 | 0.3 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 22–101 | 64.33 ± 39.80 | 0.5 | 10 | 150 | |
Metamitron | H | 4.29 | 9–219 | 108.67 ± 105.41 | 3.3 | 10 | 10 | |
Profenofos | I | 10.46 | 86–230 | 155.33 ± 72.15 | 10 | 25 | 10 | |
Banana | ||||||||
Thiamethoxam | I | 4.78 | 10 | 10.00 ± 0.00 | 1.7 | 5 | 20 | |
Cantaloupe | ||||||||
Acetamprid | I | 4.64 | 7–111 | 44.33 ± 57.87 | 0.3 | 10 | 200 | |
Cypermethrin | I | 41.95 | 18–29 | 22.33 ± 5.86 | 4 | 25 | 200 | |
Lambda-cyhalothrin | I | 35.88 | 9–31 | 19.00 ± 11.14 | 0.5 | 10 | 60 | |
Lufenuron | I | 11.08 | 11 | 11.00 ± 0.00 | 0.5 | 5 | 400 | |
Permethrin | I | 23.09 | 13–22 | 17.00 ± 4.58 | 0.3 | 1 | 50 | |
Dates | ||||||||
Carbendazim | F | 4.92 | 5–71 | 33.67 ± 33.84 | 0.3 | 10 | 100 | |
Chlorpyrifos | I | 11.02 | 14 | 14.00 ± 0.00 | 1.7 | 5 | 10 | |
Omethoate | I | 7.38 | 53 | 53.00 ± 0.00 | 3.3 | 5 | 10 | |
Thiophanate methyl | F | 5.44 | 41–60 | 50.00 ± 9.54 | 0.3 | 1 | 100 | |
Grapes | ||||||||
Acetamprid | I | 4.64 | 9–28 | 16.07 ± 10.39 | 0.3 | 10 | 500 | |
Boscalid | F | 8.03 | 13–60 | 36.67 ± 23.50 | 0.5 | 1 | 5000 | |
Carbendazim | F | 4.92 | 40–569 | 277.00 ± 268.75 | 0.3 | 10 | 300 | |
Chlorfenapyr | I | 10.70 | 30–172 | 99.67 ± 71.04 | 2.5 | 10 | 10 | |
Chlorpyrifos | I | 11.02 | 18–24 | 20.67 ± 3.06 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 10–50 | 30.00 ± 20.00 | 4 | 25 | 500 | |
Deltamethrin | I | 35.01 | 14 | 14.00 ± 0.00 | 1.8 | 10 | 200 | |
Dimethoate | I | 4.95 | 32–108 | 73.33 ± 38.44 | 0.3 | 1 | 10 | |
Imidacloprid | I | 4.93 | 60–123 | 94.00 ± 31.80 | 0.3 | 5 | 700 | |
Lambda-cyhalothrin | I | 35.88 | 10 | 10.00 ± 0.00 | 0.5 | 10 | 80 | |
Myclobutanil | F | 8.26 | 20 | 20.00 ± 0.00 | 1.7 | 5 | 1500 | |
Omethoate | I | 7.38 | 10–44 | 28.00 ± 17.09 | 3.3 | 5 | 10 | |
Permethrin | I | 23.09 | 6–21 | 14.00 ± 7.55 | 0.3 | 1 | 50 | |
Pyraclostrobin | F | 9.70 | 19 | 19.00 ± 0.00 | 0.3 | 5 | 300 | |
Pyriproxyfen | I | 10.05 | 10 | 10.00 ± 0.00 | 1.7 | 5 | 50 | |
Thiacloprid | I | 5.06 | 90–300 | 167.33 ± 115.42 | 0.5 | 10 | 10 | |
Thiamethoxam | I | 4.78 | 10–96 | 53.67 ± 43.02 | 1.7 | 5 | 400 | |
Thiophanate methyl | F | 5.44 | 86–635 | 368.00 ± 274.81 | 0.3 | 1 | 100 | |
Guava | ||||||||
Carbendazim | F | 4.92 | 14–61 | 36.33 ± 23.59 | 0.3 | 10 | 100 | |
Chlorpyrifos | I | 11.02 | 18 | 18.00 ± 0.00 | 1.7 | 5 | 10 | |
Fipronil | I | 9.25 | 17 | 17.00 ± 0.00 | 0.3 | 5 | 5 | |
Lambda-cyhalothrin | I | 35.88 | 11–24 | 17.33 ± 6.51 | 0.5 | 10 | 10 | |
Methomyl | I | 4.97 | 124 | 124.00 ± 0.00 | 5 | 10 | 10 | |
Thiophanate methyl | F | 5.44 | 18 | 18.00 ± 0.00 | 0.3 | 1 | 100 | |
Kaki | ||||||||
Chlorpyrifos | I | 11.02 | 123 | 123.00 ± 0.00 | 1.7 | 5 | 10 | |
Dimethoate | I | 4.95 | 520–990 | 775.00 ± 237.54 | 0.3 | 1 | 10 | |
Fluazifop-p-butyl | H | 10.74 | 26 | 26.00 ± 0.00 | 0.3 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 44–126 | 86.33 ± 41.06 | 0.5 | 10 | 90 | |
Thiophanate methyl | F | 5.44 | 8–25 | 16.00 ± 8.54 | 0.3 | 1 | 100 | |
Mango | ||||||||
2 phenylphenol | F | 5.21 | 40–59 | 46.67 ± 10.69 | 11 | 20 | 10 | |
Carbendazim | F | 4.92 | 17–25 | 21.00 ± 5.66 | 0.3 | 10 | 500 | |
Chlorfenapyr | I | 10.70 | 21 | 21.00 ± 0.00 | 2.5 | 10 | 10 | |
Chlorpyrifos | I | 11.02 | 12 | 12.00 ± 0.00 | 1.7 | 5 | 10 | |
Cypermethrin | I | 41.95 | 25–61 | 39.00 ± 19.29 | 4 | 25 | 700 | |
Lambda-cyhalothrin | I | 35.88 | 10–70 | 39.33 ± 30.02 | 0.5 | 10 | 200 | |
Permethrin | I | 23.09 | 18 | 18.00 ± 0.00 | 0.3 | 1 | 50 | |
Orange | ||||||||
Chlorpyrifos | I | 11.02 | 11 | 11.00 ± 0.00 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 8 | 8.00 ± 0.00 | 0.5 | 10 | 200 | |
Lufenuron | I | 11.08 | 90–216 | 157.33 ± 63.45 | 0.5 | 5 | 300 | |
Omethoate | I | 7.38 | 9 | 9.00 ± 0.00 | 3.3 | 5 | 10 | |
Strawberry | ||||||||
Boscalid | F | 8.03 | 10 | 10.00 ± 0.00 | 0.5 | 1 | 6000 | |
Carbendazim | F | 4.92 | 65–269 | 150.33 ± 106.01 | 0.3 | 10 | 100 | |
Chlorpyrifos | I | 11.02 | 111–301 | 193.33 ± 97.50 | 1.7 | 5 | 10 | |
Lambda-cyhalothrin | I | 35.88 | 46–66 | 54.33 ± 10.41 | 0.5 | 10 | 200 | |
Omethoate | I | 7.38 | 132–992 | 575.00 ± 430.59 | 3.3 | 5 | 10 | |
Thiophanate methyl | F | 5.44 | 66–310 | 191.67 ± 122.17 | 0.3 | 1 | 100 |
Pesticides/Samples | ARfD | Acute Dietary Exposure (%ARfD) | ADI | Chronic Dietary Exposure (%ADI) | ||||
---|---|---|---|---|---|---|---|---|
Child A | Teenager B | Adult C | Child A | Teenager B | Adult C | |||
Vegetables: | ||||||||
Carrot | ||||||||
Lufenuron | 0.0150 | 8.80 | 3.77 | 2.20 | 0.015 | 2.76 | 1.18 | 0.69 |
Cabbage | ||||||||
Chlorpyrifos | 0.0100 | 1.33 | 0.57 | 0.33 | 0.01 | 0.49 | 0.21 | 0.12 |
Cucumber | ||||||||
Chlorfenapyr | 0.0150 | 3.20 | 1.37 | 0.80 | 0.015 | 1.27 | 0.55 | 0.32 |
Chlorpyrifos | 0.0100 | 13.33 | 5.71 | 3.33 | 0.01 | 3.96 | 1.70 | 0.99 |
Fenvalerate | 0.0125 | 8.53 | 3.66 | 2.13 | 0.0125 | 3.50 | 1.50 | 0.88 |
Fipronil | 0.0090 | 1.63 | 0.70 | 0.41 | 0.0002 | 36.67 | 15.71 | 9.17 |
Imidacloprid | 0.0800 | 0.53 | 0.23 | 0.13 | 0.06 | 0.24 | 0.10 | 0.06 |
Methomyl | 0.0025 | 25.60 | 10.97 | 6.40 | 0.0025 | 12.80 | 5.49 | 3.20 |
Oxamyl | 0.0010 | 22.67 | 9.71 | 5.67 | 0.001 | 11.33 | 4.86 | 2.83 |
Thiophanate methyl | 0.2000 | 0.67 | 0.29 | 0.17 | 0.08 | 0.71 | 0.30 | 0.18 |
Eggplant | ||||||||
Chlorpyrifos | 0.0100 | 1.47 | 0.63 | 0.37 | 0.01 | 0.73 | 0.31 | 0.18 |
Propargite | 0.0600 | 0.24 | 0.10 | 0.06 | 0.03 | 0.24 | 0.10 | 0.06 |
Green Beans | ||||||||
Lufenuron | 0.0150 | 40.27 | 17.26 | 10.07 | 0.015 | 14.59 | 6.25 | 3.65 |
Green Onion | ||||||||
Chlorpyrifos | 0.0100 | 2.53 | 1.09 | 0.63 | 0.01 | 0.84 | 0.36 | 0.21 |
Profenofos | 1.0000 | 1.27 | 0.54 | 0.32 | 0.03 | 21.13 | 9.06 | 5.28 |
Green Peas | ||||||||
Chlorpyrifos | 0.0100 | 2.13 | 0.91 | 0.53 | 0.01 | 1.07 | 0.46 | 0.27 |
Lufenuron | 0.0150 | 8.53 | 3.66 | 2.13 | 0.015 | 3.01 | 1.29 | 0.75 |
Okra | ||||||||
Chlorpyrifos | 0.0100 | 1.87 | 0.80 | 0.47 | 0.01 | 1.07 | 0.46 | 0.27 |
Deltamethrin | 0.0100 | 1.47 | 0.63 | 0.37 | 0.01 | 0.73 | 0.31 | 0.18 |
Fenvalerate | 0.0125 | 5.33 | 2.29 | 1.33 | 0.0125 | 1.44 | 0.62 | 0.36 |
Fipronil | 0.0090 | 3.85 | 1.65 | 0.96 | 0.0002 | 86.67 | 37.14 | 21.67 |
Propargite | 0.0600 | 0.31 | 0.13 | 0.08 | 0.03 | 0.31 | 0.13 | 0.08 |
Pepper | ||||||||
Carbendazim | 0.0200 | 22.00 | 9.43 | 5.50 | 0.02 | 7.76 | 3.32 | 1.94 |
Chlorpyrifos | 0.0100 | 3.20 | 1.37 | 0.80 | 0.01 | 1.60 | 0.69 | 0.40 |
Dimethoate | 0.0020 | 7.33 | 3.14 | 1.83 | 0.002 | 3.67 | 1.57 | 0.92 |
Fluazifop-p-butyl | 0.0170 | 7.06 | 3.03 | 1.76 | 0.01 | 5.16 | 2.21 | 1.29 |
Methomyl | 0.0025 | 32.00 | 13.71 | 8.00 | 0.0025 | 8.53 | 3.66 | 2.13 |
Profenofos | 1.0000 | 0.05 | 0.02 | 0.01 | 0.03 | 0.78 | 0.33 | 0.19 |
Potatoes | ||||||||
Chlorpyrifos | 0.0100 | 1.73 | 0.74 | 0.43 | 0.01 | 0.90 | 0.39 | 0.23 |
Lufenuron | 0.0150 | 10.67 | 4.57 | 2.67 | 0.015 | 3.87 | 1.66 | 0.97 |
Spinach | ||||||||
Chlorpyrifos | 0.0100 | 1.60 | 0.69 | 0.40 | 0.01 | 0.80 | 0.34 | 0.20 |
Lambda-cyhalothrin | 0.0050 | 138.93 | 59.54 | 34.73 | 0.0025 | 115.82 | 49.64 | 28.96 |
Omethoate | 0.0020 | 8.00 | 3.43 | 2.00 | 0.002 | 4.00 | 1.71 | 1.00 |
Tomato | ||||||||
Chlorpyrifos | 0.0100 | 6.93 | 2.97 | 1.73 | 0.01 | 3.47 | 1.49 | 0.87 |
Lambda-cyhalothrin | 0.0050 | 19.20 | 8.23 | 4.80 | 0.0025 | 13.78 | 5.90 | 3.44 |
Propargite | 0.0600 | 4.87 | 2.09 | 1.22 | 0.03 | 3.38 | 1.45 | 0.84 |
Thiophanate methyl | 0.2000 | 1.40 | 0.60 | 0.35 | 0.08 | 1.36 | 0.58 | 0.34 |
Zucchini | ||||||||
Chlorpyrifos | 0.0100 | 2.13 | 0.91 | 0.53 | 0.01 | 3.20 | 1.37 | 0.80 |
Diazenon | 0.0250 | 0.59 | 0.25 | 0.15 | 0.0002 | 36.67 | 15.71 | 9.17 |
Fipronil | 0.0090 | 4.89 | 2.10 | 1.22 | 0.0002 | 110.00 | 47.14 | 27.50 |
Imidacloprid | 0.0800 | 9.02 | 3.86 | 2.25 | 0.06 | 3.56 | 1.53 | 0.89 |
Lambda-cyhalothrin | 0.0050 | 18.13 | 7.77 | 4.53 | 0.0025 | 32.27 | 13.83 | 8.07 |
Thiophanate methyl | 0.2000 | 0.70 | 0.30 | 0.18 | 0.08 | 0.88 | 0.38 | 0.22 |
Fruites: | ||||||||
Apple | ||||||||
Chlorpyrifos | 0.0100 | 52.53 | 22.51 | 13.13 | 0.01 | 13.02 | 5.58 | 3.26 |
Fipronil | 0.0090 | 2.52 | 1.08 | 0.63 | 0.0002 | 56.67 | 24.29 | 14.17 |
Fluazifop-p-butyl | 0.0170 | 1.25 | 0.54 | 0.31 | 0.01 | 1.07 | 0.46 | 0.27 |
Imidacloprid | 0.0800 | 1.02 | 0.44 | 0.25 | 0.06 | 0.39 | 0.17 | 0.10 |
Propargite | 0.0600 | 0.44 | 0.19 | 0.11 | 0.03 | 0.40 | 0.17 | 0.10 |
Apricot | ||||||||
Buprofezin | 0.5000 | 0.53 | 0.23 | 0.13 | 0.01 | 9.80 | 4.20 | 2.45 |
Carbendazim | 0.0200 | 22.67 | 9.71 | 5.67 | 0.02 | 7.72 | 3.31 | 1.93 |
Chlorpyrifos | 0.0100 | 41.47 | 17.77 | 10.37 | 0.01 | 12.20 | 5.23 | 3.05 |
Dimethoate | 0.0020 | 9.33 | 4.00 | 2.33 | 0.002 | 4.67 | 2.00 | 1.17 |
Imidacloprid | 0.0800 | 0.68 | 0.29 | 0.17 | 0.06 | 0.29 | 0.12 | 0.07 |
Metamitron | 0.1000 | 2.92 | 1.25 | 0.73 | 0.03 | 2.41 | 1.03 | 0.60 |
Profenofos | 1.0000 | 0.31 | 0.13 | 0.08 | 0.03 | 3.45 | 1.48 | 0.86 |
Cantaloupe | ||||||||
Dates | ||||||||
Chlorpyrifos | 0.0100 | 1.87 | 0.80 | 0.47 | 0.01 | 0.93 | 0.40 | 0.23 |
Omethoate | 0.0020 | 35.33 | 15.14 | 8.83 | 0.002 | 17.67 | 7.57 | 4.42 |
Grapes | ||||||||
Carbendazim | 0.0200 | 37.93 | 16.26 | 9.48 | 0.02 | 9.23 | 3.96 | 2.31 |
Chlorfenapyr | 0.0150 | 15.29 | 6.55 | 3.82 | 0.015 | 4.43 | 1.90 | 1.11 |
Chlorpyrifos | 0.0100 | 3.20 | 1.37 | 0.80 | 0.01 | 1.38 | 0.59 | 0.34 |
Dimethoate | 0.0020 | 72.00 | 30.86 | 18.00 | 0.002 | 24.44 | 10.48 | 6.11 |
Omethoate | 0.0020 | 29.33 | 12.57 | 7.33 | 0.002 | 9.33 | 4.00 | 2.33 |
Thiacloprid | 0.0200 | 20.00 | 8.57 | 5.00 | 0.01 | 11.16 | 4.78 | 2.79 |
Thiophanate methyl | 0.2000 | 4.23 | 1.81 | 1.06 | 0.08 | 3.07 | 1.31 | 0.77 |
Guava | ||||||||
Chlorpyrifos | 0.0100 | 2.40 | 1.03 | 0.60 | 0.01 | 1.20 | 0.51 | 0.30 |
Fipronil | 0.0090 | 2.52 | 1.08 | 0.63 | 0.0002 | 56.67 | 24.29 | 14.17 |
Lambda-cyhalothrin | 0.0050 | 6.40 | 2.74 | 1.60 | 0.0025 | 4.62 | 1.98 | 1.16 |
Methomyl | 0.0025 | 66.13 | 28.34 | 16.53 | 0.0025 | 33.07 | 14.17 | 8.27 |
Kaki | ||||||||
Chlorpyrifos | 0.0100 | 16.40 | 7.03 | 4.10 | 0.01 | 8.20 | 3.51 | 2.05 |
Dimethoate | 0.0020 | 660.00 | 282.86 | 165.00 | 0.002 | 258.33 | 110.71 | 64.58 |
Fluazifop-p-butyl | 0.0170 | 2.04 | 0.87 | 0.51 | 0.01 | 1.73 | 0.74 | 0.43 |
Lambda-cyhalothrin | 0.0050 | 33.60 | 14.40 | 8.40 | 0.0025 | 23.02 | 9.87 | 5.76 |
Mango | ||||||||
2 phenylphenol | 0.4000 | 0.20 | 0.08 | 0.05 | 0.4 | 0.08 | 0.03 | 0.02 |
Chlorfenapyr | 0.0150 | 1.87 | 0.80 | 0.47 | 0.015 | 0.93 | 0.40 | 0.23 |
Chlorpyrifos | 0.0100 | 1.60 | 0.69 | 0.40 | 0.01 | 0.80 | 0.34 | 0.20 |
Orange | ||||||||
Chlorpyrifos | 0.0100 | 1.47 | 0.63 | 0.37 | 0.01 | 0.73 | 0.31 | 0.18 |
Strawberry | ||||||||
Carbendazim | 0.0200 | 17.93 | 7.69 | 4.48 | 0.02 | 5.01 | 2.15 | 1.25 |
Chlorpyrifos | 0.0100 | 40.13 | 17.20 | 10.03 | 0.01 | 12.89 | 5.52 | 3.22 |
Omethoate | 0.0020 | 661.33 | 283.43 | 165.33 | 0.002 | 191.67 | 82.14 | 47.92 |
Thiophanate methyl | 0.2000 | 2.07 | 0.89 | 0.52 | 0.08 | 1.60 | 0.68 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sheikh, E.-S.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.-B.; Hammock, B.D. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022, 27, 8072. https://doi.org/10.3390/molecules27228072
El-Sheikh E-SA, Ramadan MM, El-Sobki AE, Shalaby AA, McCoy MR, Hamed IA, Ashour M-B, Hammock BD. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules. 2022; 27(22):8072. https://doi.org/10.3390/molecules27228072
Chicago/Turabian StyleEl-Sheikh, El-Sayed A., Mahmoud M. Ramadan, Ahmed E. El-Sobki, Ali A. Shalaby, Mark R. McCoy, Ibrahim A. Hamed, Mohamed-Bassem Ashour, and Bruce D. Hammock. 2022. "Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks" Molecules 27, no. 22: 8072. https://doi.org/10.3390/molecules27228072
APA StyleEl-Sheikh, E. -S. A., Ramadan, M. M., El-Sobki, A. E., Shalaby, A. A., McCoy, M. R., Hamed, I. A., Ashour, M. -B., & Hammock, B. D. (2022). Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules, 27(22), 8072. https://doi.org/10.3390/molecules27228072