Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structures
2.2. Photophysical Properties
2.3. DFT Calculations
2.4. Thermal Stability
3. Materials and Methods
3.1. General Methods
3.2. Synthetic Procedures
3.3. Photophysical Measurements
3.4. Thermal Stability Measurements
3.5. Single Crystal Structure Measurements
3.6. Density Functional Theory (DFT) Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bunzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, N.; Zhu, M.; Lv, W.; Shao, B. Luminescence and temperature sensing abilities of zincate phosphors co-doped bismuth Bi3+ and lanthanide Eu3+/Sm3+. Mater. Res. Bull. 2020, 129, 110869. [Google Scholar] [CrossRef]
- Kido, J.; Okamoto, Y. Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 2002, 102, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Yu, G.; Zhao, Z.; Liu, Z.; Bian, Z.; Huang, C. Constructing lanthanide Nd(III), Er(III) and Yb(III) complexes using a tridentate N, N, O-ligand for near-infrared organic light-emitting diodes. Dalton Trans. 2013, 42, 8951–8960. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Z.; Wei, C.; Wei, H.; Liu, Z.; Bian, Z.; Huang, C. Review on the electroluminescence study of lanthanide complexes. Adv. Opt. Mater. 2019, 7, 1801256. [Google Scholar] [CrossRef]
- Zhao, Z.; Bian, M.; Lin, C.; Fu, X.; Yu, G.; Wei, H.; Liu, Z.; Bian, Z.; Huang, C. Efficient green OLEDs achieved by a terbium(III) complex with photoluminescent quantum yield close to 100%. Sci. China Chem. 2021, 64, 1504–1509. [Google Scholar] [CrossRef]
- Wang, L.; Fang, P.; Zhao, Z.; Huang, Y.; Liu, Z.; Bian, Z. Rare earth complexes with 5d-4f transition: New emitters in organic light-emitting diodes. J. Phys. Chem. Lett. 2022, 13, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Chen, S.; Wang, C.; Zhang, L.; Ge, K.; Zhang, J. Ytterbium ion promotes apoptosis of primary mouse bone marrow stromal cells. J. Rare Earths 2015, 33, 445–452. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Eliseeva, S.V. Intriguing aspects of lanthanide luminescence. Chem. Sci. 2013, 4, 1939–1949. [Google Scholar] [CrossRef]
- Yu, J.; Parker, D.; Pal, R.; Poole, R.A.; Cann, M.J. A europium complex that selectively stains nucleoli of cells. J. Am. Chem. Soc. 2006, 128, 2294–2299. [Google Scholar] [CrossRef]
- Picot, A.; D’Aleo, A.; Baldeck, P.L. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy. J. Am. Chem. Soc. 2008, 130, 1532–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamon, N.; Roux, A.; Beyler, M.; Mulatier, J.C.; Tripier, R. Pyclen-based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. J. Am. Chem. Soc. 2020, 142, 10184–10197. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Ma, L.; Wei, H.; Liu, Z.; Bian, Z.; Huang, C. Advances in luminescent lanthanide complexes and applications. Sci. China Technol. Sci. 2018, 61, 1265–1285. [Google Scholar] [CrossRef]
- Wahsner, J.; Seitz, M. Perdeuterated 2,2′-bipyridine-6,6′-dicarboxylate: An extremely efficient sensitizer for thulium luminescence in solution. Inorg. Chem. 2013, 52, 13301–13303. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, L.; Zhao, Z.; Sun, B.; Zhan, G.; Liu, H.; Bian, Z.; Liu, Z. Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat. Commun. 2020, 11, 5218–5225. [Google Scholar] [CrossRef]
- Zhan, G.; Wang, L.; Zhao, Z.; Fang, P.; Bian, Z.; Liu, Z. Highly efficient and air-stable lanthanide Eu(II) complex: New emitter in organic light emitting diodes. Angew. Chem. Int. Ed. 2020, 59, 19011–19015. [Google Scholar] [CrossRef]
- Yin, H.; Carroll, P.J.; Anna, J.M.; Schelter, E.J. Luminescent Ce(III) complexes as stoichiometric and catalytic photoreductants for halogen atom abstraction reactions. J. Am. Chem. Soc. 2015, 137, 9234–9237. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Carroll, P.J.; Manor, B.C.; Anna, J.M.; Schelter, E.J. Cerium photosensitizers: Structure-function relationships and applications in photocatalytic aryl coupling reactions. J. Am. Chem. Soc. 2016, 138, 5984–5993. [Google Scholar] [CrossRef]
- Qiao, Y.; Sergentu, D.C.; Yin, H.; Zabula, A.V.; Cheisson, T.; Mcskimming, A.; Manor, B.C.; Carroll, P.J.; Anna, J.M.; Autschbach, J.; et al. Understanding and controlling the emission brightness and color of molecular cerium luminophores. J. Am. Chem. Soc. 2018, 140, 4588–4595. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, Z.; Zhan, G.; Sun, B.; Yan, W.; Wang, C.; Wang, L.; Liu, Z.; Bian, Z.; Huang, C. Air stable and efficient rare earth Eu(II) hydro-tris(pyrazolyl)borate complexes with tunable emission colors. Inorg. Chem. Front. 2020, 7, 4593–4599. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Zhan, G.; Fang, H.; Yang, H.; Huang, T.; Zhang, Y.; Jiang, N.; Duan, L.; Liu, Z.; et al. Deep-blue organic light-emitting diodes based on a doublet d-f transition cerium(III) complex with 100% exciton utilization efficiency. Light Sci. Appl. 2020, 9, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, L.; Zhan, G.; Liu, Z.; Bian, Z.; Huang, C. Efficient rare earth cerium(III) complex with nanosecond d-f emission for blue organic light-emitting diodes. Natl. Sci. Rev. 2020, 8, nwaa193. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Wang, L.; Zhan, G.; Yan, W.; Huo, P.; Ying, A.; Zhang, Y.; Zhao, Z.; Yu, G.; Huang, Y.; et al. Lanthanide cerium(III) tris(pyrazolyl)borate complexes: Efficient blue emitters for doublet organic light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 45686–45695. [Google Scholar] [CrossRef]
- Yan, W.; Wang, L.; Qi, H.; Zhan, G.; Fang, P.; Liu, Z.; Bian, Z. Highly efficient heteroleptic cerium(III) complexes with a substituted pyrazole ancillary ligand and their application in blue organic light-emitting diodes. Inorg. Chem. 2021, 60, 18103–18111. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R.; Hagan, L. Atomic Energy Levels: The Rare Earth Elements (the Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Ebrium, Thulium, Ytterbium, and Lutetium); NSRDS-NBS60, US GPO: Washington, DC, USA, 1978; p. 185. [Google Scholar]
- Jiang, J.; Higashiyama, N.; Machida, K.; Adachi, G. The luminescent properties of divalent europium complexes of crown ethers and cryptands. Coord. Chem. Rev. 1998, 170, 1–29. [Google Scholar] [CrossRef]
- Sabbatini, N.; Ciano, M.; Dellonte, S.; Bonazzi, A.; Bolletta, F.; Balzani, V. Photophysical properties of europium(II) cryptates. J. Phys. Chem. 1984, 88, 1534–1537. [Google Scholar] [CrossRef]
- Starynowicz, P. Europium(II) complexes with unsubstituted crown ethers. Polyhedron 2003, 22, 337–345. [Google Scholar] [CrossRef]
- Kuda-Wedagedara, A.N.; Wang, C.; Martin, P.D.; Allen, M.J. Aqueous EuII-containing complex with bright yellow luminescence. J. Am. Chem. Soc. 2015, 137, 4960–4963. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.X.; Bailey, M.D.; Allen, M.J. Unique EuII coordination environments with a janus cryptand. Inorg. Chem. 2016, 55, 9085–9090. [Google Scholar] [CrossRef]
- Corbin, B.A.; Hovey, J.L.; Thapa, B.; Schlegel, H.B.; Allen, M.J. Luminescence differences between two complexes of divalent europium. J. Organomet. Chem. 2018, 857, 88–93. [Google Scholar] [CrossRef]
- Jenks, T.C.; Bailey, M.D.; Corbin, B.A.; Kuda-Wedagedara, A.N.W.; Martin, P.D.; Schlegel, H.B.; Rabuffetti, F.A.; Allen, M.J. Photophysical characterization of a highly luminescent divalent-europium-containing azacryptate. Chem. Commun. 2018, 54, 4545–4548. [Google Scholar] [CrossRef] [PubMed]
- Poe, T.N.; Beltran-Leiva, M.J.; Celis-Barros, C.W.; Nelson, L.; Sperling, J.M.; Baumbach, R.E.; Ramanantoanina, H.; Speldrich, M.; Albrecht-Schonzart, T.E. Understanding the stabilization and tunability of divalent europium 2.2.2B cryptates. Inorg. Chem. 2021, 60, 7815–7826. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Li, T.; Cai, Z.; Qi, H.; Guo, R.; Huo, P.; Liu, Z.; Bian, Z. Systematic tuning of the emission colors and redox potential of Eu(II)-containing cryptates by changing the N/O ratio of cryptands. Inorg. Chem. Front. 2022, 9, 4794–4800. [Google Scholar] [CrossRef]
- Shipley, C.P.; Capecchi, S.; Salata, O.V.; Etchells, M.; Christou, V. Orange electroluminescence from a divalent europium complex. Adv. Mater. 1999, 11, 533–536. [Google Scholar] [CrossRef]
- Kühling, M.; Wickleder, C.; Ferguson, M.J.; Hrib, C.G.; McDonald, R.; Suta, M.; Hilfert, L.; Takats, J.; Edelmann, F.T. Investigation of the “bent sandwich-like” divalent lanthanide hydro-tris(pyrazolyl)borates Ln(TpiPr2)2 (Ln = Sm, Eu, Tm, Yb). New J. Chem. 2015, 39, 7617–7625. [Google Scholar] [CrossRef] [Green Version]
- Suta, M.; Marcel, K.; Liebing, P.; Edelmann, F.T.; Wickleder, C. Photoluminescence properties of the “bent sandwich-like” compounds [Eu(TpiPr2)2] and [Yb(TpiPr2)2]—Intermediates between nitride-based phosphors and metallocenes. J. Lumin. 2017, 187, 62–68. [Google Scholar] [CrossRef]
- Evans, W.J.; Hughes, L.A.; Hanusa, T.P. Synthesis and X-ray crystal-structure of bis(pentamethylcyclopentadienyl) complexes of samarium and europium: (C5Me5)2Sm and (C5Me5)2Eu. Organometallics 1986, 5, 1285–1291. [Google Scholar] [CrossRef]
- Sitzmann, H.; Dezember, T.; Schmitt, O.; Weber, F.; Wolmershauser, G.; Ruck, M. Reactions of free cyclopentadienyl radicals. 3 Metallocenes of samarium, europium, and ytterbium with the especially bulky cyclopentadienyl ligands C5H(CHMe2)4, C5H2(CMe3)3, and C5(CHMe2)5. Z. Anorg. Allg. Chem. 2000, 626, 2241–2244. [Google Scholar] [CrossRef]
- Harder, S.; Naglav, D.; Ruspic, C.; Wickleder, C.; Adlung, M.; Hermes, W.; Eul, M.; Pottgen, R.; Rego, D.B.; Poineau, F.; et al. Physical properties of superbulky lanthanide metallocenes: Synthesis and extraordinary luminescence of [EuII(CpBIG)2] (CpBIG=(4-nBu-C6H4)5-cyclopentadienyl). Chemistry 2013, 19, 12272–12280. [Google Scholar] [CrossRef]
- Kelly, R.P.; Bell, T.D.M.; Cox, R.P.; Daniels, D.P.; Deacon, G.B.; Jaroschik, F.; Junk, P.C.; Le Goff, X.F.; Lemercier, G.; Martinez, A.; et al. Divalent tetra- and penta-phenylcyclopentadienyl europium and samarium sandwich and half-sandwich complexes: Synthesis, characterization, and remarkable luminescence properties. Organometallics 2015, 34, 5624–5636. [Google Scholar] [CrossRef]
- Marks, S.; Heck, J.G.; Habicht, M.H.; Ona-Burgos, P.; Feldmann, C.; Roesky, P.W. [Ln(BH4)2(THF)2] (Ln = Eu, Yb)—A highly luminescent material. Synthesis, properties, reactivity, and NMR studies. J. Am. Chem. Soc. 2012, 134, 16983–16986. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Huo, P.; Yu, G.; Guo, R.; Zhao, Z.; Yan, W.; Wang, L.; Bian, Z.; Liu, Z. Europium(II) complexes with substituted tris(2-aminoethyl)amine/triethanolamine ligand and their application in blue spin-coated organic light-emitting diodes. Adv. Opt. Mater. 2022, 2200952. [Google Scholar] [CrossRef]
- Trofimenko, S. Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)-borates. J. Am. Chem. Soc. 1967, 89, 3170–3177. [Google Scholar] [CrossRef]
- Meihaus, K.R.; Minasian, S.G.; Lukens, W.W.; Kozimor, S.A.; Shuh, D.K.; Tyliszczak, T.; Long, J.R. Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes. J. Am. Chem. Soc. 2014, 136, 6056–6068. [Google Scholar] [CrossRef]
- Pellei, M.; Alidori, S.; Papini, G.; Lobbia, G.G.; Gorden, J.G.; Dias, H.V.R.; Santini, C. Silver(I)-organophosphane complexes of electron withdrawing CF3- or NO2-substituted scorpionate ligands. Dalton Trans. 2007, 42, 4845–4853. [Google Scholar] [CrossRef]
- Denault, K.A.; Brgoch, J.; Gaultois, M.W.; Mikhailovsky, A.; Seshadri, R. Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2−xSiO4:Eu2+ orthosilicate phosphors. Chem. Mater. 2014, 26, 2275–2282. [Google Scholar] [CrossRef]
- Guo, R.; Wang, L.; Cai, Z.; Zhao, Z.; Bian, Z.; Liu, Z. Complexes of Ce(III) and bis(pyrazolyl)borate ligands: Synthesis, structures, and luminescence properties. Inorg. Chem. 2022, 61, 14164–14172. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XIV. An extended Gaussian-type basis for molecular orbital studies of organic molecules. Inclusion of second row elements. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
Bond | Eu-Bp (Å) | Eu-BpMe (Å) | Eu-BpMe2 (Å) | Eu-BpCF3 (Å) |
---|---|---|---|---|
Eu-N1 | 2.638 | 2.606 | 2.630 | 2.665 |
Eu-N2 | 2.654 | 2.664 | 2.651 | 2.706 |
Eu-N3 | 2.642 | 2.619 | 2.630 | 2.681 |
Eu-N4 | 2.674 | 2.648 | 2.651 | 2.716 |
Eu-O1 | 2.603 | 2.571 | 2.579 | 2.558 |
Eu-O2 | 2.618 | 2.572 | 2.579 | 2.558 |
Eu-O3 | 2.666 | / | / | / |
Complex | State | λem (nm) | PLQYs (%) | τ (ns) | FWHMs (nm) | CIE | kr (106 s−1) | knr (106 s−1) |
---|---|---|---|---|---|---|---|---|
Eu-Bp | solution | 556 | 11 a | 78 | 96 | (0.41, 0.55) | 1.41 | 11.41 |
solid | 542 | 37 b | 379 | 94 | (0.38, 0.58) | 0.98 | 1.67 | |
Eu-BpMe | solution | 546 | 76 a | 530 | 88 | (0.39, 0.57) | 1.89 | 0.60 |
solid | 554 | 100 c | 543 | 86 | (0.42, 0.56) | 1.84 | 0 | |
Eu-BpMe2 | solution | 553 | 76 a | 475 | 83 | (0.40, 0.56) | 1.60 | 0.51 |
solid | 526 | 100 c | 488 | 66 | (0.28, 0.63) | 2.05 | 0 | |
Eu-BpCF3 | solution | 541 | 5 a | 31 | 109 | (0.36, 0.54) | 1.61 | 30.59 |
solid | 497 | 20 d | 153 | 81 | (0.22, 0.44) | 1.31 | 5.24 |
Complex | Initial Value | First Weight Loss (-THF) | Second Weight Loss (-Eu-Tp a) | |
---|---|---|---|---|
Eu-Bp | Molecular formula | C24H40B2EuN8O3 | C12H16B2EuN8 | 1/2 C6H12B2EuN4 |
Molecular weight | 666.3 | 447.1 | 157.5 | |
Residual mass | 100% | 67% | 24% | |
Eu-BpMe | Molecular formula | C24H40B2EuN8O2 | C16H24B2EuN8 | 1/2 C8H16B2EuN4 |
Molecular weight | 647.3 | 503.2 | 171.5 | |
Residual mass | 100% | 78% | 26% | |
Eu-BpMe2 | Molecular formula | C28H48B2EuN8O2 | C20H32B2EuN8 | 1/2 C10H20B2EuN4 |
Molecular weight | 703.3 | 559.2 | 185.6 | |
Residual mass | 100% | 80% | 26% | |
Eu-BpCF3 | Molecular formula | C24H28B2EuF12N8O2 | C16H12B2EuF12N8 | 1/2 C8H8B2EuF8N4 |
Molecular weight | 863.2 | 763.2 | 243.5 | |
Residual mass | 100% | 88% | 28% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Zhao, Z.; Wu, A.; Li, Y.; Wang, K.; Bian, Z.; Liu, Z. Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. Molecules 2022, 27, 8053. https://doi.org/10.3390/molecules27228053
Guo R, Zhao Z, Wu A, Li Y, Wang K, Bian Z, Liu Z. Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. Molecules. 2022; 27(22):8053. https://doi.org/10.3390/molecules27228053
Chicago/Turabian StyleGuo, Ruoyao, Zifeng Zhao, Aoben Wu, Yuqin Li, Kezhi Wang, Zuqiang Bian, and Zhiwei Liu. 2022. "Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency" Molecules 27, no. 22: 8053. https://doi.org/10.3390/molecules27228053
APA StyleGuo, R., Zhao, Z., Wu, A., Li, Y., Wang, K., Bian, Z., & Liu, Z. (2022). Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. Molecules, 27(22), 8053. https://doi.org/10.3390/molecules27228053