Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Carbonic Anhydrase Inhibition: Structure-Activity Relationship (SAR) Studies
3. Materials and Methods
3.1. Chemistry
3.2. General Procedure for the Synthesis of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic Acid (3)
3.3. General Procedure for the Synthesis of 2-(4-oxo-2-thioxothiazolidin-3-yl)-N-(4-sulfamoylphenyl)acetamide (5)
3.4. General Procedure for the Synthesis of Benzylidene/Oxoindolin-Containing Thioxothiazolidin-Linked Benzenesulfonamides (7a–u, 9a–d)
3.5. Characterization Data for New Compounds
3.6. Carbonic Anhydrase Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Krátký, M.; Štěpánková, Š.; Vorčáková, K.; Vinšová, J. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorg Chem. 2016, 68, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Kumari, P.; Ravi, V. Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective: Recent Advances in the Biological Importance of Rhodanine Derivatives; IntechOpen: London, UK, 2016; Chapter 2. [Google Scholar] [CrossRef] [Green Version]
- Mermer, A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev. Med. Chem. 2021, 21, 738–789. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1132–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepański, J.; Tuszewska, H.; Trotsko, N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. Molecules 2022, 27, 3750. [Google Scholar] [CrossRef]
- Maddila, S.; Gorle, S.; Jonnalagadda, S.B. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin. Drug Discov. 2020, 15, 203–229. [Google Scholar] [CrossRef]
- Bayindir, S.; Caglayan, C.; Karaman, M.; Gülcin, İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg. Chem. 2019, 90, 103096. [Google Scholar] [CrossRef]
- Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin. Drug Discov. 2017, 12, 1233–1252. [Google Scholar] [CrossRef]
- Mermer, A.; Demirbas, N.; Colak, A.; Demir, E.A.; Kulabas, N.; Demirbas, A. One-pot, Four-Component Green Synthesis, Carbonic Anhydrase II Inhibition and Docking Studies of 5-Arylidenerhodanines. Chem. Select. 2018, 3, 12234–12242. [Google Scholar] [CrossRef]
- Yin, L.J.; Bin Ahmad Kamar, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022, 145, 112406. [Google Scholar] [CrossRef]
- Swain, B.; Sahoo, S.K.; Singh, P.; Angeli, A.; Yaddanapudi, V.M.; Supuran, C.T.; Arifuddin, M. Exploration of 2-phenylquinoline-4-carboxamide linked benzene sulfonamide derivatives as isoform selective inhibitors of transmembrane human carbonic anhydrases. Eur. J. Med. Chem. 2022, 234, 114247. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. Anti-infective carbonic anhydrase inhibitors: A patent and literature review. Expert Opin. Ther. Pat. 2013, 23, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Vermelho, A.B.; Scozzafava, A.; Parkkila, S.; Capasso, C.; Supuran, C.T. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease. Bioorganic Med. Chem. 2013, 21, 4472–4476. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases. Bioorganic Med. Chem. Lett. 2014, 24, 4389–4396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supuran, C.T.; Capasso, C. The η-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin. Ther. Targets 2015, 19, 551–563. [Google Scholar] [CrossRef]
- Güzel-Akdemir, Ö.; Akdemir, A.; Pan, P.; Vermelho, A.B.; Parkkila, S.; Scozzafava, A.; Capasso, C.; Supuran, C.T. A class of sulfonamides with strong inhibitory action against the α-carbonic anhydrase from Trypanosoma cruzi. J. Med. Chem. 2013, 56, 5773–5781. [Google Scholar] [CrossRef]
- Arechederra, R.L.; Waheed, A.; Sly, W.S.; Supuran, C.T.; Minteer, S.D. Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion. Bioorganic Med. Chem. 2013, 21, 1544–1548. [Google Scholar] [CrossRef]
- McDonald, P.C.; Chafe, S.C.; Supuran, C.T.; Dedhar, S. Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers 2022, 14, 3297. [Google Scholar] [CrossRef]
- Deniz, S.; Uysal, T.K.; Capasso, C.; Supuran, C.T.; Ozensoy Guler, O. Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infection? J. Enzym. Inhib. Med. Chem. 2021, 36, 1230–1235. [Google Scholar] [CrossRef]
- Aggarwal, M.; McKenna, R. Update on carbonic anhydrase inhibitors: A patent review (2008–2011). Expert Opin. Ther. Pat. 2012, 22, 903–915. [Google Scholar] [CrossRef]
- Touisni, N.; Maresca, A.; McDonald, P.C.; Lou, Y.; Scozzafava, A.; Dedhar, S.; Winum, J.Y.; Supuran, C.T. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J. Med. Chem. 2011, 54, 8271–8277. [Google Scholar] [CrossRef] [Green Version]
- Scozzafava, A.; Supuran, C.T.; Carta, F. Antiobesity carbonic anhydrase inhibitors: A literature and patent review. Expert Opin. Ther. Pat. 2013, 23, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Fabrizi, F.; Mincione, F.; Somma, T.; Scozzafava, G.; Galassi, F.; Masini, E.; Impagnatiello, F.; Supuran, C.T. A new approach to antiglaucoma drugs: Carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J. Enzym. Inhib. Med. Chem. 2012, 27, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appetecchia, F.; Consalvi, S.; Berrino, E.; Gallorini, M.; Granese, A.; Campestre, C.; Carradori, S.; Biava, M.; Poce, G. A Novel Class of Dual-Acting DCH-CORMs Counteracts Oxidative Stress-Induced Inflammation in Human Primary Tenocytes. Antioxidants 2021, 10, 1828. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Purnachander Yadav, P.; Swain, B.; Thacker, P.S.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorganic Chem. 2021, 108, 104647. [Google Scholar] [CrossRef]
- Singh, P.; Sridhar Goud, N.; Swain, B.; Kumar Sahoo, S.; Choli, A.; Angeli, A.; Singh Kushwah, B.; Madhavi Yaddanapudi, V.; Supuran, C.T.; Arifuddin, M. Synthesis of a new series of quinoline/pyridine indole-3-sulfonamide hybrids as selective carbonic anhydrase IX inhibitors. Bioorganic Med. Chem. Lett. 2022, 70, 128809. [Google Scholar] [CrossRef]
- Elkamhawy, A.; Woo, J.; Nada, H.; Angeli, A.; Bedair, T.M.; Supuran, C.T.; Lee, K. Identification of Novel and Potent Indole-Based Benzenesulfonamides as Selective Human Carbonic Anhydrase II Inhibitors: Design, Synthesis, In Vitro, and In Silico Studies. Int. J. Mol. Sci. 2022, 23, 2540. [Google Scholar] [CrossRef]
- Singh, P.; Choli, A.; Swain, B.; Angeli, A.; Sahoo, S.K.; Yaddanapudi, V.M.; Supuran, C.T.; Arifuddin, M. Design and development of novel series of indole-3-sulfonamide ureido derivatives as selective carbonic anhydrase II inhibitors. Arch. Pharm. 2022, 355, e2100333. [Google Scholar] [CrossRef]
- Demir-Yazıcı, K.; Bua, S.; Akgüneş, N.M.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Indole-Based Hydrazones Containing A Sulfonamide Moiety as Selective Inhibitors of Tumor-Associated Human Carbonic Anhydrase Isoforms IX and XII. Int. J. Mol. Sci. 2019, 20, 2354. [Google Scholar] [CrossRef] [Green Version]
- Żeslawska, E.; Nitek, W.; Tejchman, W. The Synthesis and Crystal Structures of the Homologues of Epalrestat. J. Chem. Crystallogr. 2015, 45, 151–157. [Google Scholar] [CrossRef]
- Negah, S.; Mehdi, K.; Mohsen, A.; Amirhossein, S.; Hamid, N.; Alireza, M.; Saeed, E.; Ebrahim, S.M.; Alireza, F.; Abbas, S. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J. Enzym. Inhib. Med. Chem. 2015, 30, 389–395. [Google Scholar]
- Bourahla, K.; Guihéneuf, S.; Limanton, E.; Paquin, L.; Le Guével, R.; Charlier, T.; Rahmouni, M.; Durieu, E.; Lozach, O.; Carreaux, F.; et al. Design and Microwave Synthesis of New (5Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5Z) 2-Amino-5-arylidene-1,3-thiazol-4(5H)-one as New Inhibitors of Protein Kinase DYRK1A. Pharmaceuticals 2021, 14, 1086. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Liguori, F.; Carradori, S.; Ronca, R.; Rezzola, S.; Filiberti, S.; Carta, F.; Turati, M.; Supuran, C.T. Benzenesulfonamides with different rigidity-conferring linkers as carbonic anhydrase inhibitors: An insight into the antiproliferative effect on glioblastoma, pancreatic, and breast cancer cells. J. Enzym. Inhib. Med. Chem. 2022, 37, 1857–1869. [Google Scholar] [CrossRef] [PubMed]
- Güzel-Akdemir, Ö.; Demir-Yazıcı, K.; Vullo, D.; Supuran, C.T.; Akdemir, A. New Pyridinium Salt Derivatives of 2-(Hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide as Selective Inhibitors of Tumour-Related Human Carbonic Anhydrase Isoforms IX and XII. Anti-Cancer Agents Med. Chem. 2022, 22, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Clare, B.W. Carbonic anhydrase inhibitors—Part 57: Quantum chemical QSAR of a group of 1,3,4-thiadiazole- and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur. J. Med. Chem. 1999, 34, 41–50. [Google Scholar] [CrossRef]
- Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem. 2014, 6, 1149–1165. [Google Scholar] [CrossRef]
KI (nM) * | |||||
Compound | R | hCA I | hCA II | hCA IX | hCA XII |
7a | H | 184.6 | 69.2 | 8.7 | 32.5 |
7b | 4-Cl | 349.0 | 51.6 | 35.7 | 9.1 |
7c | 4-OCF3 | 2410 | 954.2 | 9.7 | 158.3 |
7d | 2-F | 223.7 | 139.6 | 14.3 | 65.4 |
7e | 4-CF3 | 853.6 | 77.5 | 8.0 | 9.6 |
7f | 4-allyloxy | 688.5 | 320.1 | 5.6 | 67.6 |
7g | 3,4,5-triOMe | 173.0 | 31.6 | 4.2 | 46.0 |
7h | 3-EtO-4-OH | 22.4 | 7.3 | 5.6 | 63.7 |
7i | 4-CN | 124.9 | 56.6 | 7.3 | 9.0 |
7j | 3-OMe | 227.6 | 46.1 | 15.8 | 73.6 |
7k | 4-OMe | 78.6 | 12.7 | 9.3 | 58.2 |
7l | 4-iPr | 430.3 | 68.6 | 51.5 | 41.6 |
7m | 3-OPh | 470.8 | 55.5 | 28.2 | 47.0 |
7n | 3,4-diOMe | 84.0 | 15.4 | 8.1 | 38.5 |
7o | 2,4,5-triOMe | 338.9 | 176.3 | 34.7 | 9.5 |
7p | 2,4-diOMe | 385.6 | 8.0 | 17.7 | 9.8 |
7q | 2,4,6-triOMe | 298.5 | 53.1 | 23.6 | 26.3 |
7r | 3,4-diF | 212.7 | 19.6 | 13.5 | 9.6 |
7s | 3-NO2 | 77.9 | 14.6 | 8.4 | 9.0 |
7t | 4-OH-3,5-diOMe | 77.5 | 9.6 | 7.2 | 30.2 |
7u | 4-NO2 | 70.6 | 8.9 | 7.7 | 9.5 |
9a | H | 41.6 | 4.3 | 4.7 | 56.2 |
9b | 5-Me | 92.2 | 5.5 | 8.9 | 40.6 |
9c | 5-CF3 | 319.2 | 67.8 | 13.3 | 37.8 |
9d | 5-Cl | 35.8 | 5.2 | 6.0 | 26.3 |
AAZ | 250.0 | 12.1 | 25.8 | 5.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swain, B.; Khan, A.; Singh, P.; Marde, V.S.; Angeli, A.; Chinchilli, K.K.; Yaddanapudi, V.M.; Carradori, S.; Supuran, C.T.; Arifuddin, M. Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. Molecules 2022, 27, 8028. https://doi.org/10.3390/molecules27228028
Swain B, Khan A, Singh P, Marde VS, Angeli A, Chinchilli KK, Yaddanapudi VM, Carradori S, Supuran CT, Arifuddin M. Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. Molecules. 2022; 27(22):8028. https://doi.org/10.3390/molecules27228028
Chicago/Turabian StyleSwain, Baijayantimala, Abrar Khan, Priti Singh, Vaibhav S. Marde, Andrea Angeli, Krishna Kartheek Chinchilli, Venkata Madhavi Yaddanapudi, Simone Carradori, Claudiu T. Supuran, and Mohammed Arifuddin. 2022. "Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors" Molecules 27, no. 22: 8028. https://doi.org/10.3390/molecules27228028
APA StyleSwain, B., Khan, A., Singh, P., Marde, V. S., Angeli, A., Chinchilli, K. K., Yaddanapudi, V. M., Carradori, S., Supuran, C. T., & Arifuddin, M. (2022). Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. Molecules, 27(22), 8028. https://doi.org/10.3390/molecules27228028