Carbonic Anhydrase Inhibition Activities of Schiff’s Bases Based on Quinazoline-Linked Benzenesulfonamide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. CA Inhibitory Activity
2.2.1. CA I Inhibitory Activity
2.2.2. CA II Inhibitory Activity
2.2.3. CA IX Inhibitory Activity
2.2.4. CA XII Inhibitory Activity
3. Conclusions
4. Materials and Methods
4.1. Chemistry
4.1.1. Ethyl 2-((4-oxo-3-(4-sulfamoylphenethyl)-3,4-dihydroquinazolin-2-yl)thio)acetate (2)
4.1.2. 4-(2-(2-((2-Hydrazineyl-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (3)
4.1.3. Synthesis of Compounds 4–27
4-(2-(2-((2-(2-Benzylidenehydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (4)
4-(2-(2-((2-(2-(2-Chlorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (5)
4-(2-(2-((2-(2-(4-Chlorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (6)
4-(2-(2-((2-(2-(2,4-Dichlorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (7)
4-(2-(2-((2-(2-(3,4-Dichlorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (8)
4-(2-(2-((2-(2-(2,6-Dichlorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (9)
4-(2-(2-((2-(2-(2-Fluorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (10)
4-(2-(2-((2-(2-(4-Fluorobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (11)
4-(2-(2-((2-(2-(2-Methylbenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (12)
4-(2-(2-((2-(2-(2-Nitrobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (13)
4-(2-(2-((2-(2-(4-Nitrobenzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (14)
4-(2-(2-((2-(2-(4-(Dimethylamino)benzylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (15)
4-(2-(4-Oxo-2-((2-oxo-2-(2-(pyridin-3-ylmethylene)hydrazineyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (16)
4-(2-(4-Oxo-2-((2-oxo-2-(2-(1-phenylethylidene)hydrazineyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (17)
4-(2-(2-((2-(2-(1-(2-Aminophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (18)
4-(2-(2-((2-(2-(1-(4-Aminophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (19)
4-(2-(2-((2-(2-(1-(4-Bromophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (20)
4-(2-(2-((2-(2-(1-(2-Chlorophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (21)
4-(2-(2-((2-(2-(1-(3-Chlorophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (22)
4-(2-(2-((2-(2-(1-(4-Chlorophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (23)
4-(2-(2-((2-(2-(1-(4-Fluorophenyl)ethylidene)hydrazineyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (24)
4-(2-(4-Oxo-2-((2-oxo-2-(2-(1-(p-tolyl)ethylidene)hydrazineyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (25)
4-(2-(4-Oxo-2-((2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazineyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (26)
4-(2-(4-Oxo-2-((2-oxo-2-(2-(1-(pyridin-3-yl)ethylidene)hydrazineyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (27)
4.2. CA Inhibition
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.; Vats, L.; Bua, S.; Supuran, C.T.; Sharma, P.K. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur. J. Med. Chem. 2018, 155, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Sly, W.S. Carbonic anhydrase XII functions in health and disease. Gene 2017, 623, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Senturk, M.; Gulcin, I.; Dastan, A.; Kufrevioglu, O.I.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg. Med. Chem. 2009, 17, 3207–3211. [Google Scholar] [CrossRef] [PubMed]
- Mboge, M.Y.; McKenna, R.; Frost, S.C. Advances in Anti-Cancer Drug Development Targeting Carbonic Anhydrase IX and XII. Top. Anti-Cancer Res. 2015, 5, 3–42. [Google Scholar]
- Supuran, C.T.; Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Carta, F.; Monti, S.M.; De Simone, G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med. Res. Rev. 2018, 38, 1799–1836. [Google Scholar] [CrossRef] [PubMed]
- Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev. 2012, 112, 4421–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Abou-Zeid, L.A.; ElTahir, K.E.; Abdel-Aziz, N.I.; Ayyad, R.R.; Al-Obaid, A.M. Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5,5-diphenylimidazolidine-2,4-dione scaffold: Molecular docking studies. Eur. J. Med. Chem. 2016, 115, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Alanazi, A.M.; Asiri, Y.A.; Al-Suwaidan, I.A.; Maarouf, A.R.; Ayyad, R.R.; Shawer, T.Z. Synthesis and potential antitumor activity of 7-(4-substituted piperazin-1-yl)-4-oxoquinolines based on ciprofloxacin and norfloxacin scaffolds: In silico studies. J. Enzyme Inhib. Med. Chem. 2016, 31, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Al-Suwaidan, I.A.; Alanazi, A.M.; El-Azab, A.S.; Al-Obaid, A.M.; ElTahir, K.E.; Maarouf, A.R.; Abu El-Enin, M.A.; Abdel-Aziz, A.A. Molecular design, synthesis and biological evaluation of cyclic imides bearing benzenesulfonamide fragment as potential COX-2 inhibitors. Part 2. Bioorg. Med. Chem. Lett. 2013, 23, 2601–2605. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; Angeli, A.; El-Azab, A.S.; Hammouda, M.E.A.; El-Sherbeny, M.A.; Supuran, C.T. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg. Chem. 2019, 84, 260–268. [Google Scholar] [CrossRef]
- Alaa, A.-M.; El-Azab, A.S.; El-Subbagh, H.I.; Al-Obaid, A.M.; Alanazi, A.M.; Al-Omar, M.A. Design, synthesis, single-crystal and preliminary antitumor activity of novel arenesulfonylimidazolidin-2-ones. Bioorg. Med. Chem. Lett. 2012, 22, 2008–2014. [Google Scholar]
- Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: Is the tail more important than the ring? J. Med. Chem. 1999, 42, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Abu El-Enin, M.A.; Almehizia, A.A.; Supuran, C.T.; Nocentini, A. Synthesis of novel isoindoline-1,3-dione-based oximes and benzenesulfonamide hydrazones as selective inhibitors of the tumor-associated carbonic anhydrase IX. Bioorg. Chem. 2018, 80, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Ekinci, D.; Senturk, M.; Supuran, C.T. Investigation of arenesulfonyl-2-imidazolidinones as potent carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2015, 30, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Angeli, A.; Abdel-Aziz, A.A.; Nocentini, A.; El-Azab, A.S.; Gratteri, P.; Supuran, C.T. Synthesis and carbonic anhydrase inhibition of polycyclic imides incorporating N-benzenesulfonamide moieties. Bioorg. Med. Chem. 2017, 25, 5373–5379. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Abdel-Aziz, A.A.; Sakr, H.M.; El-Azab, A.S.; Bua, S.; Supuran, C.T. Synthesis and human/bacterial carbonic anhydrase inhibition with a series of sulfonamides incorporating phthalimido moieties. Bioorg. Med. Chem. 2017, 25, 2524–2529. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; Angeli, A.; El-Azab, A.S.; Abu El-Enin, M.A.; Supuran, C.T. Synthesis and biological evaluation of cyclic imides incorporating benzenesulfonamide moieties as carbonic anhydrase I, II, IV and IX inhibitors. Bioorg. Med. Chem. 2017, 25, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Ceruso, M.; Supuran, C.T. Carbonic anhydrase inhibitory activity of sulfonamides and carboxylic acids incorporating cyclic imide scaffolds. Bioorg. Med. Chem. Lett. 2014, 24, 5185–5189. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.A.; Ayyad, R.R.; Ceruso, M.; Supuran, C.T. Inhibition of carbonic anhydrase isoforms I, II, IV, VII and XII with carboxylates and sulfonamides incorporating phthalimide/phthalic anhydride scaffolds. Bioorg. Med. Chem. 2016, 24, 20–25. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Ghiaty, A.H.; Gratteri, P.; Supuran, C.T.; Nocentini, A. 4-Substituted benzenesulfonamides featuring cyclic imides moieties exhibit potent and isoform-selective carbonic anhydrase II/IX inhibition. Bioorg. Chem. 2019, 83, 198–204. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; El-Azab, A.S.; Bua, S.; Nocentini, A.; Abu El-Enin, M.A.; Alanazi, M.M.; AlSaif, N.A.; Hefnawy, M.M.; Supuran, C.T. Design, synthesis, and carbonic anhydrase inhibition activity of benzenesulfonamide-linked novel pyrazoline derivatives. Bioorg. Chem. 2019, 87, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Kurt, B.Z.; Sönmez, F.; Bilen, Ç.; Ergun, A.; Gençer, N.; Arslan, O.; Kucukislamoglu, M. Synthesis, antioxidant and carbonic anhydrase I and II inhibitory activities of novel sulphonamide-substituted coumarylthiazole derivatives. J. Enzyme Inhib. Med. Chem. 2016, 31, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Kılıcaslan, S.; Arslan, M.; Ruya, Z.; Bilen, Ç.; Ergün, A.; Gençer, N.; Arslan, O. Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hCA I and hCA II. J. Enzyme Inhib. Med. Chem. 2016, 31, 1300–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Azab, A.S.; Alaa, A.-M.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Almehizia, A.A.; Alanazi, M.M.; Hefnawy, M.M.; Supuran, C.T. New anthranilic acid-incorporating N-benzenesulfonamidophthalimides as potent inhibitors of carbonic anhydrases I, II, IX, and XII: Synthesis, in vitro testing, and in silico assessment. Eur. J. Med. Chem. 2019, 181, 111573. [Google Scholar] [CrossRef] [PubMed]
- Gökce, H.; Öztürk, N.; Sert, Y.; El-Azab, A.S.; AlSaif, N.A.; Abdel-Aziz, A.A.M. 4-[(1, 3-Dioxoisoindolin-2-yl) methyl] benzenesulfonamide: Full Structural and Spectroscopic Characterization and Molecular Docking with Carbonic Anhydrase II. ChemistrySelect 2018, 3, 10113–10124. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrases. Bioorg. Med. Chem. 2013, 21, 1377–1378. [Google Scholar] [CrossRef]
- Borras, J.; Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis of water-soluble, topically effective intraocular pressure lowering aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties: Is the tail more important than the ring? Bioorg. Med. Chem. 1999, 7, 2397–2406. [Google Scholar] [CrossRef]
- Scozzafava, A.; Menabuoni, L.; Mincione, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis of sulfonamides incorporating dtpa tails and of their zinc complexes with powerful topical antiglaucoma properties. Bioorg. Med. Chem. Lett. 2001, 11, 575–582. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, A.A.; Abou-Zeid, L.A.; ElTahir, K.E.; Mohamed, M.A.; Abu El-Enin, M.A.; El-Azab, A.S. Design, synthesis of 2,3-disubstitued 4(3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents: COX-1/2 inhibitory activities and molecular docking studies. Bioorg. Med. Chem. 2016, 24, 3818–3828. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Abdel-Aziz, A.A.; Al-Suwaidan, I.A.; Abdel-Hamide, S.G.; Shawer, T.Z.; El-Azab, A.S. Design, synthesis and biological evaluation of some novel substituted quinazolines as antitumor agents. Eur. J. Med. Chem. 2014, 79, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.M.; Al-Suwaidan, I.A.; Alaa, A.-M.; Mohamed, M.A.; El_Morsy, A.M.; El-Azab, A.S. Design, synthesis and biological evaluation of some novel substituted 2-mercapto-3-phenethylquinazolines as antitumor agents. Med. Chem. Res. 2013, 22, 5566–5577. [Google Scholar] [CrossRef]
- Al-Obaid, A.M.; Abdel-Hamide, S.G.; El-Kashef, H.A.; Abdel-Aziz, A.A.; El-Azab, A.S.; Al-Khamees, H.A.; El-Subbagh, H.I. Substituted quinazolines, part 3. Synthesis, in vitro antitumor activity and molecular modeling study of certain 2-thieno-4(3H)-quinazolinone analogs. Eur. J. Med. Chem. 2009, 44, 2379–2391. [Google Scholar] [CrossRef] [PubMed]
- Al-Suwaidan, I.A.; Abdel-Aziz, A.A.; Shawer, T.Z.; Ayyad, R.R.; Alanazi, A.M.; El-Morsy, A.M.; Mohamed, M.A.; Abdel-Aziz, N.I.; El-Sayed, M.A.; El-Azab, A.S. Synthesis, antitumor activity and molecular docking study of some novel 3-benzyl-4(3H)quinazolinone analogues. J. Enzyme Inhib. Med. Chem. 2016, 31, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Suwaidan, I.A.; Alanazi, A.M.; Abdel-Aziz, A.A.; Mohamed, M.A.; El-Azab, A.S. Design, synthesis and biological evaluation of 2-mercapto-3-phenethylquinazoline bearing anilide fragments as potential antitumor agents: Molecular docking study. Bioorg. Med. Chem. Lett. 2013, 23, 3935–3941. [Google Scholar] [CrossRef] [PubMed]
- El-Azab, A.S.; Abdel-Hamide, S.G.; Sayed-Ahmed, M.M.; Hassan, G.S.; El-Hadiyah, T.M.; Al-Shabanah, O.A.; Al-Deeb, O.A.; El-Subbagh, H.I. Novel 4 (3H)-quinazolinone analogs: Synthesis and anticonvulsant activity. Med. Chem. Res. 2013, 22, 2815–2827. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.; Abdel-Aziz, N.I.; el-Sayed, M.A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur. J. Med. Chem. 2010, 45, 4188–4198. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Eltahir, K.E. Synthesis and anticonvulsant evaluation of some new 2,3,8-trisubstituted-4(3H)-quinazoline derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 327–333. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.-M.; Ng, S.W.; Tiekink, E.R. 6-Methyl-3-phenyl-2-sulfanylidene-1, 2, 3, 4-tetrahydroquinazolin-4-one. Acta Crystallogr. Sect. E Struct. Rep. Online 2012, 68, o862. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.A.; Bua, S.; Nocentini, A.; El-Gendy, M.A.; Mohamed, M.A.; Shawer, T.Z.; AlSaif, N.A.; Supuran, C.T. Synthesis of benzensulfonamides linked to quinazoline scaffolds as novel carbonic anhydrase inhibitors. Bioorg. Chem. 2019, 87, 78–90. [Google Scholar] [CrossRef]
- El-Azab, A.S.; ElTahir, K.E.; Attia, S.M. Synthesis and anticonvulsant evaluation of some novel 4 (3H)-quinazolinones. Mon. Chem.-Chem. Mon. 2011, 142, 837–848. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Ayyad, R.R.; Shawer, T.Z.; Abdel-Aziz, A.A.; El-Azab, A.S. Synthesis and antitumor evaluation of trimethoxyanilides based on 4(3H)-quinazolinone scaffolds. Eur. J. Med. Chem. 2016, 112, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.M.; Abdel-Aziz, A.A.; Shawer, T.Z.; Ayyad, R.R.; Al-Obaid, A.M.; Al-Agamy, M.H.; Maarouf, A.R.; El-Azab, A.S. Synthesis, antitumor and antimicrobial activity of some new 6-methyl-3-phenyl-4(3H)-quinazolinone analogues: In silico studies. J. Enzyme Inhib. Med. Chem. 2016, 31, 721–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline-isatin conjugates: Epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enzyme Inhib. Med. Chem. 2017, 32, 935–944. [Google Scholar] [CrossRef] [Green Version]
- El-Azab, A.S.; Abdel-Aziz, A.A.; Ghabbour, H.A.; Al-Gendy, M.A. Synthesis, in vitro antitumour activity, and molecular docking study of novel 2-substituted mercapto-3-(3,4,5-trimethoxybenzyl)-4(3H)-quinazolinone analogues. J. Enzyme Inhib. Med. Chem. 2017, 32, 1229–1239. [Google Scholar] [CrossRef] [Green Version]
- Al-Omary, F.A.; Abou-Zeid, L.A.; Nagi, M.N.; Habib, E.-S.E.; Alaa, A.-M.; El-Azab, A.S.; Abdel-Hamide, S.G.; Al-Omar, M.A.; Al-Obaid, A.M.; El-Subbagh, H.I. Non-classical antifolates. Part 2: Synthesis, biological evaluation, and molecular modeling study of some new 2, 6-substituted-quinazolin-4-ones. Bioorg. Med. Chem. 2010, 18, 2849–2863. [Google Scholar] [CrossRef]
- El-Azab, A.S.; ElTahir, K.E. Design and synthesis of novel 7-aminoquinazoline derivatives: Antitumor and anticonvulsant activities. Bioorg. Med. Chem. Lett. 2012, 22, 1879–1885. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; Abou-Zeid, L.A.; ElTahir, K.E.H.; Ayyad, R.R.; El-Sayed, M.A.; El-Azab, A.S. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibitory activities and molecular docking studies of substituted 2-mercapto-4(3H)-quinazolinones. Eur. J. Med. Chem. 2016, 121, 410–421. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.A.; AlSaif, N.A.; Alkahtani, H.M.; Alanazi, M.M.; Obaidullah, A.J.; Eskandrani, R.O.; Alharbi, A. Antitumor activity, multitarget mechanisms, and molecular docking studies of quinazoline derivatives based on a benzenesulfonamide scaffold: Cell cycle analysis. Bioorg. Chem. 2020, 104, 104345. [Google Scholar] [CrossRef]
- Hamdi, A.; El-Shafey, H.W.; Othman, D.I.A.; El-Azab, A.S.; AlSaif, N.A.; Abdel-Aziz, A.A. Design, synthesis, antitumor, and VEGFR-2 inhibition activities of novel 4-anilino-2-vinyl-quinazolines: Molecular modeling studies. Bioorg. Chem. 2022, 122, 105710. [Google Scholar] [CrossRef]
- Altamimi, A.S.; El-Azab, A.S.; Abdelhamid, S.G.; Alamri, M.A.; Bayoumi, A.H.; Alqahtani, S.M.; Alabbas, A.B.; Altharawi, A.I.; Alossaimi, M.A.; Mohamed, M.A. Synthesis, Anticancer Screening of Some Novel Trimethoxy Quinazolines and VEGFR2, EGFR Tyrosine Kinase Inhibitors Assay; Molecular Docking Studies. Molecules 2021, 26, 2992. [Google Scholar] [CrossRef] [PubMed]
- El-Azab, A.S. Synthesis of some new substituted 2-mercaptoquinazoline analogs as potential antimicrobial agents. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 333–348. [Google Scholar] [CrossRef]
- Aziza, M.; Nassar, M.; AbdelHamide, S.; ElHakim, A.; El-Azab, A. Synthesis and antimicrobial activities of some new 3-heteroaryl-quinazolin-4-ones. Indian J. Heterocycl. Chem. 1996, 6, 25–30. [Google Scholar]
- Alafeefy, A.M.; Kadi, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Daba, M.H.Y. Synthesis, Analgesic and Anti-Inflammatory Evaluation of Some New 3H-Quinazolin-4-one Derivatives. Arch. Pharm. 2008, 341, 377–385. [Google Scholar] [CrossRef] [PubMed]
- El-Azab, A.S.; Abdel-Aziz, A.A.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Alanazi, M.M.; El-Gendy, M.A.; Ahmed, H.E.A.; Supuran, C.T. S-substituted 2-mercaptoquinazolin-4(3H)-one and 4-ethylbenzensulfonamides act as potent and selective human carbonic anhydrase IX and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35, 733–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkahtani, H.M.; Abdalla, A.N.; Obaidullah, A.J.; Alanazi, M.M.; Almehizia, A.A.; Alanazi, M.G.; Ahmed, A.Y.; Alwassil, O.I.; Darwish, H.W.; Abdel-Aziz, A.A.; et al. Synthesis, cytotoxic evaluation, and molecular docking studies of novel quinazoline derivatives with benzenesulfonamide and anilide tails: Dual inhibitors of EGFR/HER2. Bioorg. Chem. 2020, 95, 103461. [Google Scholar] [CrossRef] [PubMed]
- El-Azab, A.S.; Alaa, A.-M.; Bua, S.; Nocentini, A.; Alanazi, M.M.; AlSaif, N.A.; Al-Suwaidan, I.A.; Hefnawy, M.M.; Supuran, C.T. Synthesis and comparative carbonic anhydrase inhibition of new Schiff’s bases incorporating benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. Bioorg. Chem. 2019, 92, 103225. [Google Scholar] [CrossRef]
- Nocentini, A.; Bonardi, A.; Gratteri, P.; Cerra, B.; Gioiello, A.; Supuran, C.T. Steroids interfere with human carbonic anhydrase activity by using alternative binding mechanisms. J. Enzyme Inhib. Med. Chem. 2018, 33, 1453–1459. [Google Scholar] [CrossRef] [Green Version]
- El-Azab, A.S.; Abdel-Aziz, A.A.; Ahmed, H.E.A.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Obaidullah, A.J.; Hefnawy, M.M.; Supuran, C.T. Exploring structure-activity relationship of S-substituted 2-mercaptoquinazolin-4(3H)-one including 4-ethylbenzenesulfonamides as human carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Durgun, M.; Turkmen, H.; Ceruso, M.; Supuran, C.T. Synthesis of Schiff base derivatives of 4-(2-aminoethyl)-benzenesulfonamide with inhibitory activity against carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett. 2015, 25, 2377–2381. [Google Scholar] [CrossRef]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
Comps | R | R1 | Ki (nM) a | Selectivity Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
hCA I | hCA II | hCA IX | hCA XII | hCA I/IX | hCA I/XII | hCA II/IX | hCA II/XII | |||
1 | 31.5 | 0.62 | 0.59 | 53.12 | 1.05 | |||||
2 | OCH2CH3 | 106.7 | 21.3 | 10.5 | 34.7 | 10.16 | 3.07 | 2.02 | 0.61 | |
3 | NHNH2 | 87.6 | 16.9 | 52.1 | 5.4 | 1.68 | 16.22 | 0.32 | 3.12 | |
4 | Ph | H | 152.4 | 52.6 | 61.7 | 38.4 | 2.47 | 3.96 | 0.85 | 1.37 |
5 | 2-Cl-Ph | H | 940.3 | 251.3 | 26.4 | 46.1 | 35.6 | 20.39 | 9.51 | 5.45 |
6 | 4-Cl-Ph | H | 567.6 | 126.8 | 89.1 | 67.8 | 6.37 | 8.37 | 1.42 | 1.87 |
7 | 2,4-di-Cl-Ph | CH3 | 2354 | 432.8 | 22.0 | 89.4 | 107 | 26.33 | 19.67 | 4.84 |
8 | 3,4-di-Cl-Ph | H | 1827 | 324.9 | 34.8 | 63.4 | 52.5 | 28.81 | 9.33 | 5.12 |
9 | 2,6-di-Cl-Ph | H | 2256 | 164.8 | 49.2 | 55.9 | 45.85 | 40.35 | 3.35 | 2.95 |
10 | 2-F-Ph | H | 274.1 | 35.8 | 19.7 | 22.9 | 13.91 | 11.96 | 1.81 | 1.56 |
11 | 4-F-Ph | H | 132.0 | 49.5 | 15.4 | 15.8 | 8.57 | 8.35 | 3.21 | 3.13 |
12 | 2-CH3-Ph | H | 337.8 | 69.4 | 29.6 | 63.5 | 11.41 | 5.31 | 2.34 | 1.09 |
13 | 2-NO2-Ph | H | 991.7 | 569.4 | 58.5 | 21.4 | 16.95 | 46.34 | 9.73 | 26.60 |
14 | 4-NO2-Ph | H | 635.4 | 220.7 | 26.9 | 30.5 | 23.62 | 20.83 | 8.20 | 7.23 |
15 | 4-N-(CH3)2-Ph | H | 582.0 | 82.1 | 88.6 | 6.8 | 6.56 | 85.58 | 0.92 | 12.07 |
16 | 3-pyridyl | H | 207.9 | 23.8 | 37.8 | 20.8 | 5.5 | 10.0 | 0.63 | 1.14 |
17 | Ph | CH3 | 124.3 | 67.5 | 55.7 | 12.7 | 2.23 | 9.78 | 1.21 | 5.31 |
18 | 2-NH2-Ph | CH3 | 824.3 | 35.2 | 36.7 | 18.3 | 22.46 | 45.04 | 0.96 | 1.92 |
19 | 4-NH2-Ph | CH3 | 439.5 | 59.3 | 5.8 | 15.9 | 75.77 | 27.64 | 10.22 | 3.72 |
20 | 4-Br-Ph | CH3 | 1356 | 698.2 | 99.6 | 88.8 | 13.6 | 15.27 | 7.01 | 7.86 |
21 | 2-Cl-Ph | CH3 | 1145 | 324.2 | 45.3 | 58.0 | 25.27 | 19.74 | 7.15 | 5.59 |
22 | 3-Cl-Ph | CH3 | 867.2 | 339.4 | 75.3 | 46.9 | 11.51 | 18.49 | 4.50 | 7.23 |
23 | 4-Cl-Ph | CH3 | 563.5 | 157.0 | 65.0 | 61.2 | 8.67 | 9,20 | 2.41 | 2.56 |
24 | 4-F-Ph | CH3 | 186.9 | 39.5 | 28.5 | 25.4 | 6.55 | 7.35 | 1.38 | 1.55 |
25 | 4-CH3-Ph | CH3 | 627.3 | 126.0 | 43.9 | 57.5 | 14.28 | 10.90 | 2.87 | 2.19 |
26 | 2-pyridyl | CH3 | 52.8 | 22.8 | 68.2 | 28.5 | 0.77 | 1.85 | 0.33 | 0.80 |
27 | 3-pyridyl | CH3 | 238.4 | 10.8 | 33.7 | 34.7 | 7.07 | 6.87 | 0.32 | 0.31 |
AAZ | 250.0 | 12.0 | 25.0 | 5.7 | 10 | 43.86 | 0.48 | 2.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Azab, A.S.; Abdel-Aziz, A.A.-M.; Ghabbour, H.A.; Bua, S.; Nocentini, A.; Alkahtani, H.M.; Alsaif, N.A.; Al-Agamy, M.H.M.; Supuran, C.T. Carbonic Anhydrase Inhibition Activities of Schiff’s Bases Based on Quinazoline-Linked Benzenesulfonamide. Molecules 2022, 27, 7703. https://doi.org/10.3390/molecules27227703
El-Azab AS, Abdel-Aziz AA-M, Ghabbour HA, Bua S, Nocentini A, Alkahtani HM, Alsaif NA, Al-Agamy MHM, Supuran CT. Carbonic Anhydrase Inhibition Activities of Schiff’s Bases Based on Quinazoline-Linked Benzenesulfonamide. Molecules. 2022; 27(22):7703. https://doi.org/10.3390/molecules27227703
Chicago/Turabian StyleEl-Azab, Adel S., Alaa A.-M. Abdel-Aziz, Hazem A. Ghabbour, Silvia Bua, Alessio Nocentini, Hamad M. Alkahtani, Nawaf A. Alsaif, Mohamed H. M. Al-Agamy, and Claudiu T. Supuran. 2022. "Carbonic Anhydrase Inhibition Activities of Schiff’s Bases Based on Quinazoline-Linked Benzenesulfonamide" Molecules 27, no. 22: 7703. https://doi.org/10.3390/molecules27227703
APA StyleEl-Azab, A. S., Abdel-Aziz, A. A. -M., Ghabbour, H. A., Bua, S., Nocentini, A., Alkahtani, H. M., Alsaif, N. A., Al-Agamy, M. H. M., & Supuran, C. T. (2022). Carbonic Anhydrase Inhibition Activities of Schiff’s Bases Based on Quinazoline-Linked Benzenesulfonamide. Molecules, 27(22), 7703. https://doi.org/10.3390/molecules27227703