Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Results
2.1. The Taxonomic Identification (Phenotypic and Genotypic Data) of Acrocarpospora punica
2.1.1. Cellular Biochemistry
2.1.2. Phylogeny
2.2. Structure Elucidation of Compounds
3. Discussion
Biological Studies
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Microorganism, Cultivation, and Preparation of the Actinobacteria Strain
4.3. Isolation and Characterization of Secondary Metabolites
4.4. Determination of NO Production and Cell Viability Assay
4.5. Reverse Transcription-PCR
4.6. Real-Time PCR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Barman, D.; Dkhar, M.S. Seasonal variation influence endophytic Actinobacterial communities of medicinal plants from tropical deciduous forest of Meghalaya and characterization of their plant growth-promoting potentials. Curr. Microbiol. 2020, 77, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dubey, A.K. Diversity and applications of endophytic Actinobacteria of plants in special and other ecological niches. Front. Microbiol. 2018, 9, 1767. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ye, Y.; Wang, R.; Zhang, Y.; Wu, C.; Debnath, S.C.; Ma, Z.; Wang, J.; Wu, M. Streptomyces Nigra Sp. Nov. Is a Novel Actinobacterium Isolated from Mangrove Soil and Exerts a Potent Antitumor Activity in vitro. Front. Microbiol. 2018, 9, 1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Pokhrel, A.R.; Nguyen, C.T.; Pham, V.T.T.; Dhakal, D.; Lim, H.N.; Jung, H.J.; Kim, T.S.; Yamaguchi, T.; Sohng, J.K. Streptomyces Sp. VN1, a Producer of Diverse Metabolites Including Non-Natural Furan-Type Anticancer Compound. Sci. Rep. 2020, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.A.; Hentschel, U.; Abdelmohsen, U.R. Isolation of Petrocidin a, a New Cytotoxic Cyclic Dipeptide from the Marine Sponge-Derived Bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef] [Green Version]
- Jinendiran, S.; Teng, W.; Dahms, H.U.; Liu, W.; Ponnusamy, V.K.; Chiu, C.C.C.; Kumar, B.S.D.; Sivakumar, N. Induction of Mitochondria-Mediated Apoptosis and Suppression of Tumor Growth in Zebrafish Xenograft Model by Cyclic Dipeptides Identified from Exiguobacterium acetylicum. Sci. Rep. 2020, 10, 13721. [Google Scholar] [CrossRef]
- Farnaes, L.; Coufal, N.G.; Kauffman, C.A.; Rheingold, A.L.; Dipasquale, A.G.; Jensen, P.R.; Fenical, W. Napyradiomycin Derivatives, Produced by a Marine-Derived Actinomycete, Illustrate Cytotoxicity by Induction of Apoptosis. J. Nat. Prod. 2014, 77, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Suzuki, S.; Hatano, K. Acrocarpospora gen. nov., a new genus of the order Actinomycetales. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 3, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Komaki, H.; Oguchi, A.; Tamura, T.; Hamada, M.; Ichikawa, N. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters in the genus Acrocarpospora. J. Gen. Appl. Microbiol. 2021, 66, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.R. Analysis of recombinase A (recA/RecA) in the actinobacterial family Streptosporangiaceae and identification of molecular signatures. Syst. Appl. Microbiol. 2015, 38, 567–577. [Google Scholar] [CrossRef]
- Niemhom, N.; Suriyachadkun, C.; Tamura, T.; Thawai, C. Acrocarpospora phusangensis sp. nov., isolated from a temperate peat swamp forest soil. Int. J. Syst. Evol. Microbiol. 2013, 63, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, B.; Lim, Y.J.; Hwang, S.H.; Lee, D.W.; Park, S.H.; Kwon, H.J. Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant. J. Appl. Biol. Chem. 2017, 60, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Goda, Y.; Sakamoto Sasaki, S.; Shibata, H.; Maitani, T.; Yamada, T. Identification of major pigments containing D-amino acid units in commerical Monascus pigments. Chem. Pharm. Bull. 1997, 45, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Sweeny, J.G.; Estrada-Valdes, M.C.; Iacobucci, G.A.; Sato, H.; Sakamura, S. Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J. Agric. Food Chem. 1981, 29, 1189–1193. [Google Scholar] [CrossRef]
- Ohashi, M.; Kumasaki, S.; Yamamura, S.; Nakanishi, K.; Koike, H. Monascorubrin I: Monascaminone, A Degradation Product. J. Am. Chem. Soc. 1959, 81, 6339. [Google Scholar] [CrossRef]
- Nakanishi, K.; Ohashi, M.; Kumasaki, S.; Yamamura, S. Monascorubrin II: Structures of Monascorubrin and Monascamine. J. Am. Chem. Soc. 1959, 81, 6339. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, S.; Xu, Y.; Li, L.; Li, Y. Structural characterization of two new orange pigments with strong yellow fluorescence. Phytochem. Lett. 2014, 10, 140–144. [Google Scholar] [CrossRef]
- Cheng, M.J.; Yang, P.H.; Wu, M.D.; Chen, I.S.; Hsieh, M.T.; Chen, Y.L.; Yuan, G.F. Secondary metabolites from the fungus Monascus purpureus and evaluation of their cytotoxic activity. Helv. Chim. Acta 2011, 94, 1638–1650. [Google Scholar] [CrossRef]
- Akihisa, T.; Yasukawa, K.; Yamaura, M.; Ukiya, M.; Kimura, Y.; Shimizu, N.; Arai, K. Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J. Agric. Food. Chem. 2000, 48, 2313–2319. [Google Scholar] [CrossRef]
- Cheng, M.J.; Cheng, Y.C.; Hsieh, M.T.; Chen, I.S.; Tseng, M.; Yuan, G.F.; Chang, H.S. Chemical Constituents of Metabolites Produced by the Actinomycete Acrocarpospora punica. Chem. Nat. Compd. 2014, 50, 606–610. [Google Scholar] [CrossRef]
- Gieni, R.S.; Li, Y.; Hay Glass, K.T. Comparison of [3H]thymidine incorporation with MTT- and MTS-based bioassays for human and murine IL-2 and IL-4 analysis. Tetrazolium assays provide markedly enhanced sensitivity. J. Immunol. Methods 1995, 70, 85–93. [Google Scholar] [CrossRef]
- Johansson, M.; Kopcke, B.; Anke, H.; Sterner, O. Biologically active secondary metabolites from the ascomycete A111-95. 2. Structure elucidation. J. Antibiot. 2002, 55, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Berdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 65, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Pharmaceutically active secondary metabolites of marine Actinobacteria. Microbiol. Res. 2014, 169, 262–278. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Reaction * |
---|---|
Growth temperature (°C) | 20–30 |
Decomposition of: | |
Adenine | − |
Aesculin | + |
Casein | + |
Hypoxanthine | − |
L-tyrosine | − |
Xanthine | − |
Production of: | |
Amylase | − |
Melanin | − |
Nitrate reductase | − |
Urease | + |
Probe | 04170M-2T (%) | A. corrugataT (%) |
---|---|---|
04107M-2T | 100 | 14.9 |
A. corrugataT | 12.8 | 100.0 |
A. macrocephalaT | 8.4 | 4.5 |
A. pleiomorphaT | 0.9 | 7.8 |
No | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
δH | δH | δH | δH | δH | δH | |
1 | 7.77, d (0.6) | 7.77, d (0.6) | 8.79, s | 2.94, s | 1.84, m 1.12, m | 3.01, t (6.4) |
2 | 1.88, m 1.61, m | 1.93, m | ||||
2a | 3.91, qd (7.2, 1.2) | 3.91, qd (7.2, 1.2) | ||||
2b | 1.44, t (7.2) | 1.44, t (7.2) | ||||
3 | 4.70, m | 1.70, m | ||||
4 | 6.64, t (1.8) | 6.64, t (1.8) | 7.36, s | 2.38, m 2.36, m | ||
5 | 6.73, d (1.8) | 6.73, d (1.8) | 6.30, s | 2.32, m 2.92, ddd (16.2, 4.8, 2.4) | 7.32, d (8.2) | |
6 | 3.33, ddd (13.2, 11.4, 4.8) | 5.36 (1H, br s) | 7.55, d (8.2) | |||
7 | 1.54 (1H, m) 2.16 (1H, m) | |||||
8 | 1.48 (m) | |||||
9 | 6.23, dd (15.6, 1.8) | 6.23, dd (15.6, 1.8) | 6.10, dd (15.6, 1.8) | 5.51, ddd (15.6, 3.0, 1.2) | 0.96 (m) | |
10 | 6.47, ddd (15.6, 6.6, 1.8) | 6.47, ddd (15.6, 6.6, 1.8) | 6.77, dd (15.6, 6.6) | 5.78, dq (15.6, 6.6) | ||
11 | 2.00, dd (6.6, 1.8) | 2.00, dd (6.6, 1.8) | 1.96, dd (6.6, 1.8) | 1.72, dd (6.6, 1.2) | 1.50, m 1.44, m | 7.16, s |
12 | 1.68, s | 1.68, s | 1.69, d (7.2) | 1.47, s | 2.02, m 1.98, m | |
13 | 5.62, q (7.2) | 3.73, d (13.2) | ||||
14 | 1.02, m | 7.53, s | ||||
15 | 2.92, dq (16.2, 7.2) | 2.92, dq (16.2, 7.2) | 2.62, dt (18.0, 7.2) 3.03, dt (18.0, 7.2) | 1.54, m 1.12, m | 3.38, sep (6.8) | |
16 | 1.65, p. (7.2) | 1.65, p. (7.2) | 1.64, p. (7.2) | 1.84, m 1.16, m | 1.18, d (6.8) | |
17 | 1.30, m | 1.30, m | 1.31, m | 1.10, m | 1.18, d (6.8) | |
18 | 1.30, m | 1.30, m | 1.31, m | 0.68, s | 1.33, s | |
19 | 0.86, t (7.2) | 1.30, m | 0.90, t (7.2) | 1.04, s | 1.33, s | |
20 | 1.30, m | 1.34, m | 3.96, s | |||
21 | 0.86, t (7.2) | 0.92, d (6.0) | ||||
22 | 1.05, m | |||||
23 | 1.58, m | |||||
24 | 0.92, m | |||||
25 | 1.48, m | |||||
26 | 0.81, d (6.8) | |||||
27 | 0.84, d (6.8) | |||||
28 | 1.26, m | |||||
29 | 0.82, d (8.0) | |||||
1′ | ||||||
2′ | 6.80, d (2.0) | |||||
3′ | ||||||
4′ | ||||||
5′ | ||||||
6′ | 6.64, d (2.0) | |||||
7′ | 7.49, d (16.0) | |||||
8′ | 6.22, d (16.0) |
No | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
δC | δC | δC | δC | δC | δC | |
1 | 140.5 | 140.5 | 154.9 | 22.4 | 37.4 | 26.6 |
2 | 28.7 | 19.9 | ||||
2a | 49.8 | 49.8 | ||||
2b | 15.6 | 15.6 | ||||
3 | 147.3 | 147.3 | 155.8 | 74.2 | 38.9 | |
4 | 117.3 | 117.3 | 118.2 | 38.9 | 34.2 | |
4a | 148.0 | 148.5 | 142.5 | 156.1 | ||
5 | 97.7 | 97.7 | 102.7 | 38.5 | 139.8 | 142.2 |
6 | 173.4 | 173.4 | 155.8 | 43.7 | 122.2 | 122.6 |
7 | 86.0 | 86.0 | 121.7 | 83.4 | 30.3 | 125.0 |
8 | 194.5 | 194.4 | 205.0 | 191.8 | 32.9 | 126.6 |
8a | 117.3 | 117.3 | 125.0 | 148.9 | ||
9 | 121.4 | 121.4 | 129.0 | 128.3 | 50.1 | 131.6 |
10 | 138.9 | 138.9 | 134.8 | 130.1 | 36.7 | 128.8 |
11 | 19.1 | 19.1 | 18.5 | 17.8 | 21.4 | 102.9 |
12 | 30.1 | 30.1 | 20.4 | 17.2 | 40.2 | 137.4 |
13 | 105.3 | 105.9 | 77.4 | 54.4 | 42.5 | 156.2 |
13a | 170.0 | 170.0 | 168.5 | 168.7 | ||
14 | 197.6 | 197.6 | 201.3 | 55.9 | 125.2 | |
15 | 40.9 | 40.9 | 43.1 | 23.8 | 26.9 | |
16 | 24.1 | 24.4 | 22.8 | 28.5 | 23.1 | |
17 | 31.6 | 29.3 | 22.5 | 56.0 | 23.1 | |
18 | 22.6 | 29.4 | 22.4 | 11.3 | 32.8 | |
19 | 14.0 | 31.8 | 13.9 | 39.2 | 32.8 | |
20 | 22.7 | 36.4 | 56.8 | |||
21 | 14.1 | 19.2 | ||||
22 | 34.2 | |||||
23 | 26.4 | |||||
24 | 46.0 | |||||
25 | 29.5 | |||||
26 | 19.8 | |||||
27 | 20.2 | |||||
28 | 23.4 | |||||
29 | 11.8 | |||||
1′ | 126.5 | |||||
2′ | 108.7 | |||||
3′ | 143.9 | |||||
4′ | 147.4 | |||||
5′ | 134.0 | |||||
6′ | 102.5 | |||||
7′ | 144.7 | |||||
8′ | 116.2 | |||||
9′ | 166.0 |
Compounds | IC50 (μM) a | |
---|---|---|
NO | Cell Viability (% Control) | |
Acrocarpunicain A (1) | 9.36.± 0.25 | 100 ± 15.5 |
Acrocarpunicain B (2) | 10.11 ± 0.47 | 95.5 ± 4.2 |
Acrocarpunicain C (3) | 5.15 ± 0.18 | 92.7 ± 4.1 |
Acrocarpunicain D (4) | 41.69 ± 3.02 | 62.2 ± 3.2 |
Acrocarpunicain E (5) | 67.38 ± 4.09 | 86.3 ± 5.4 |
Acrocarpunicain F (6) | 27.17 ± 1.87 | 91.3 ± 7.1 |
Quercetin b | 35.95 ± 2.34 | 95.9 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.-D.; Cheng, M.-J. Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity. Molecules 2022, 27, 7982. https://doi.org/10.3390/molecules27227982
Wu M-D, Cheng M-J. Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity. Molecules. 2022; 27(22):7982. https://doi.org/10.3390/molecules27227982
Chicago/Turabian StyleWu, Ming-Der, and Ming-Jen Cheng. 2022. "Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity" Molecules 27, no. 22: 7982. https://doi.org/10.3390/molecules27227982
APA StyleWu, M. -D., & Cheng, M. -J. (2022). Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity. Molecules, 27(22), 7982. https://doi.org/10.3390/molecules27227982