Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rolan, P.; Hutchinson, M.; Johnson, K. Ibudilast: A Review of Its Pharmacology, Efficacy and Safety in Respiratory and Neurological Disease. Expert Opin. Pharmacother. 2009, 10, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, A.; Hutchinson, M.R.; Watkins, L.R.; Johnson, K.W. Ibudilast (AV-411): A New Class Therapeutic Candidate for Neuropathic Pain and Opioid Withdrawal Syndromes. Expert Opin. Investig. Drugs 2007, 16, 935–950. [Google Scholar] [CrossRef]
- Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; et al. Phase 2 Trial of Ibudilast in Progressive Multiple Sclerosis. N. Engl. J. Med. 2018, 379, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.D.; Gyang, T.; Smith, A.D. Ibudilast for the Treatment of Multiple Sclerosis. Expert Opin. Investig. Drugs 2016, 25, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Nakao, S.; Nogami, M.; Iwatani, M.; Imaeda, T.; Ito, M.; Tanaka, T.; Tawada, M.; Endo, S.; Cary, D.R.; Ohori, M.; et al. Identification of a Selective DDX3X Inhibitor with Newly Developed Quantitative High-Throughput RNA Helicase Assays. Biochem. Biophys. Res. Commun. 2020, 523, 795–801. [Google Scholar] [CrossRef]
- Calbet, M.; Ramis, I.; Calama, E.; Carreño, C.; Paris, S.; Maldonado, M.; Orellana, A.; Calaf, E.; Pauta, M.; De Alba, J.; et al. Novel Inhaled Pan-JAK Inhibitor, LAS194046, Reduces Allergen-Induced Airway Inflammation, Late Asthmatic Response, and PSTAT Activation in Brown Norway Rats. J. Pharmacol. Exp. Ther. 2019, 370, 137–147. [Google Scholar] [CrossRef]
- O’Malley, D.P.; Ahuja, V.; Fink, B.; Cao, C.; Wang, C.; Swanson, J.; Wee, S.; Gavai, A.V.; Tokarski, J.; Critton, D.; et al. Discovery of Pyridazinone and Pyrazolo[1,5-a]Pyridine Inhibitors of C-Terminal Src Kinase. ACS Med. Chem. Lett. 2019, 10, 1486–1491. [Google Scholar] [CrossRef]
- Sainas, S.; Pippione, A.C.; Lupino, E.; Giorgis, M.; Circosta, P.; Gaidano, V.; Goyal, P.; Bonanni, D.; Rolando, B.; Cignetti, A.; et al. Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5-a]Pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. J. Med. Chem. 2018, 61, 6034–6055. [Google Scholar] [CrossRef]
- Kendall, J.D.; Giddens, A.C.; Tsang, K.Y.; Marshall, E.S.; Lill, C.L.; Lee, W.-J.; Kolekar, S.; Chao, M.; Malik, A.; Yu, S.; et al. Novel Pyrazolo[1,5-a]Pyridines with Improved Aqueous Solubility as P110α-Selective PI3 Kinase Inhibitors. Bioorganic Med. Chem. Lett. 2017, 27, 187–190. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chu, J.-H.; Li, C.-W.; Hwang, L.-C.; Wu, M.-J. Palladium-Catalyzed Regioselective Arylation of Pyrazolo[1,5-a]Pyridines via C–H Activation and Synthetic Applications on P38 Kinase Inhibitors. Organometallics 2016, 35, 288–300. [Google Scholar] [CrossRef]
- Lechtenberg, B.C.; Mace, P.D.; Sessions, E.H.; Williamson, R.; Stalder, R.; Wallez, Y.; Roth, G.P.; Riedl, S.J.; Pasquale, E.B. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. ACS Med. Chem. Lett. 2017, 8, 726–731. [Google Scholar] [CrossRef]
- Nirogi, R.; Mohammed, A.R.; Shinde, A.K.; Gagginapally, S.R.; Kancharla, D.M.; Middekadi, V.R.; Bogaraju, N.; Ravella, S.R.; Singh, P.; Birangal, S.R.; et al. Synthesis, Structure–Activity Relationships, and Preclinical Evaluation of Heteroaromatic Amides and 1,3,4-Oxadiazole Derivatives as 5-HT4 Receptor Partial Agonists. J. Med. Chem. 2018, 61, 4993–5008. [Google Scholar] [CrossRef] [PubMed]
- Umei, K.; Nishigaya, Y.; Kondo, A.; Tatani, K.; Tanaka, N.; Kohno, Y.; Seto, S. Novel Pyrazolo[1,5-a]Pyridines as Orally Active EP 1 Receptor Antagonists: Synthesis, Structure-Activity Relationship Studies, and Biological Evaluation. Bioorganic Med. Chem. 2017, 25, 2635–2642. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Williams, Z.; Hards, K.; Tang, J.; Cheung, C.-Y.; Aung, H.L.; Wang, B.; Liu, Z.; Hu, X.; Lenaerts, A.; et al. Pyrazolo[1,5-a]Pyridine Inhibitor of the Respiratory Cytochrome Bcc Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infect. Dis. 2019, 5, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Large, J.M.; Birchall, K.; Bouloc, N.S.; Merritt, A.T.; Smiljanic-Hurley, E.; Tsagris, D.J.; Wheldon, M.C.; Ansell, K.H.; Coombs, P.J.; Kettleborough, C.A.; et al. Potent Inhibitors of Malarial P. Falciparum Protein Kinase G: Improving the Cell Activity of a Series of Imidazopyridines. Bioorganic Med. Chem. Lett. 2019, 29, 509–514. [Google Scholar] [CrossRef]
- Kendall, J.D. Synthesis and Reactions of Pyrazolo[1,5-a]Pyridines and Related Heterocycles. Curr. Org. Chem. 2011, 15, 2481–2518. [Google Scholar] [CrossRef]
- Mohan, D.C.; Ravi, C.; Rao, S.N.; Adimurthy, S. Copper-Mediated Synthesis of Pyrazolo[1,5-a]Pyridines through Oxidative Linkage of C–C/N–N Bonds. Org. Biomol. Chem. 2015, 13, 3556–3560. [Google Scholar] [CrossRef]
- Ravi, C.; Samanta, S.; Mohan, D.; Reddy, N.; Adimurthy, S. Synthesis of Functionalized Pyrazolo[1,5-a]Pyridines: [3+2] Cycloaddition of N-Aminopyridines and α,β-Unsaturated Carbonyl Compounds/Alkenes at Room Temperature. Synthesis 2017, 49, 2513–2522. [Google Scholar] [CrossRef]
- Ravi, C.; Chandra Mohan, D.; Naresh Kumar Reddy, N.; Adimurthy, S. Substrate Selective Synthesis of Pyrazolo[1,5-a]Pyridines through [3+2] Cycloaddition of N-Aminopyridines and β-Nitro Styrenes. RSC Adv. 2015, 5, 42961–42964. [Google Scholar] [CrossRef]
- Motornov, V.A.; Tabolin, A.A.; Nelyubina, Y.V.; Nenajdenko, V.G.; Ioffe, S.L. Copper-Mediated Oxidative [3+2]-Annulation of Nitroalkenes and Pyridinium Imines: Efficient Synthesis of 3-Fluoro- and 3-Nitro-Pyrazolo[1,5-a]Pyridines. Org. Biomol. Chem. 2020, 18, 1436–1448. [Google Scholar] [CrossRef]
- Rodriguez, J.B.; Gallo-Rodriguez, C. The Role of the Phosphorus Atom in Drug Design. ChemMedChem 2018, 14, 190–216. [Google Scholar] [CrossRef] [PubMed]
- Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on Modern Advances of Chemical Methods for the Introduction of a Phosphonic Acid Group. Chem. Rev. 2011, 111, 7981–8006. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Jia, J.; Xie, Y.-F.; Feng, L.; Xu, H.-Q.; Meng, S.; Zhao, G.-L.; Xu, W.-R.; Ge, Y.-Q. Synthesis of Nitrogen Bridgehead Heterocycles with Phosphonates via a Novel Tandem Process. Heterocycles 2013, 87, 815. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, H.; Zhao, X. Selenium-π-Acid Catalyzed Oxidative Functionalization of Alkynes: Facile Access to Ynones and Multisubstituted Oxazoles. ACS Catal. 2018, 8, 6745–6750. [Google Scholar] [CrossRef]
- Huang, Q.; He, D.; Han, J.; Chen, J.; He, W.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. [3+2] Cycloaddition of N-Aminopyridines and Perfluoroalkynylphosphonates: Facile Synthesis of Perfluoroalkylated Pyrazolo[1,5-a]Pyridines Containing a Phosphonate Moiety. Synthesis 2018, 50, 3731–3737. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Seyferth, D.; Paetsch, J. Diels-Alder Reaction in Organometallic Chemistry. V. Tetramethyl Acetylenediphosphonate and Dimethyl Chloroacetylenephosphonate and Their Reactions with Cyclopentadiene, 1,3-Cyclohexadiene, and Diazomethane. J. Org. Chem. 1969, 34, 1483–1484. [Google Scholar] [CrossRef]
- Tverdomed, S.N.; Röschenthaler, G.-V.; Kalinovich, N.; Lork, E.; Dogadina, A.V.; Ionin, B.I. New α-Substituted Alkylbenzene- and Dialkylbenzene-1,2-Diphosphonates: Side-Chain Metalation of Tetraethyl 4-Methyl- and 4,5-Dimethylbenzene-1,2-Diphosphonates. Tetrahedron 2008, 64, 5306–5313. [Google Scholar] [CrossRef]
- Mahajna, M.; Quistad, G.B.; Casida, J.E. Retro-Diels−Alder Reaction: Possible Involvement in the Metabolic Activation of 7-Oxabicyclo[2.2.1]Hepta-2(3),5(6)-Diene-2,3-Dicarboxylates and a Phosphonate Analog. Chem. Res. Toxicol. 1996, 9, 241–246. [Google Scholar] [CrossRef]
- Selmani, S.; Schipper, D.J. Orientation Control of Molecularly Functionalized Surfaces Applied to the Simultaneous Alignment and Sorting of Carbon Nanotubes. Angew. Chem. 2018, 130, 2423–2427. [Google Scholar] [CrossRef]
- Kyba, E.P.; Rines, S.P.; Owens, P.W.; Chou, S.-S.P. A Novel Synthesis of 1,2-Diphosphorylbenzenes. Tetrahedron Lett. 1981, 22, 1875–1878. [Google Scholar] [CrossRef]
- Ziegler, T.; Layh, M.; Effenberger, F. Darstellung Hochsubstituierter Aromaten Über Diels-Alder-Reaktionen Mit 2H-Pyran-2-onen. Chem. Ber. 1987, 120, 1347–1355. [Google Scholar] [CrossRef]
- Artyushin, O.I.; Matveeva, E.V.; Bushmarinov, I.S.; Odinets, I.L. Water as a Promoting Media for 1,3-Dipolar Cycloaddition of Phosphorylated Azides to Internal Alkynes. Arkivoc 2012, 2012, 252–263. [Google Scholar] [CrossRef]
- Vereshchagina, Y.A.; Alimova, A.Z.; Sharova, E.V.; Artyushin, O.I.; Chachkov, D.V.; Ishmaeva, E.A. Polarity and Structure of Diphosphorus-Substituted Isoxazole and 1,2,3-Triazole. Russ. J. Org. Chem. 2013, 49, 1369–1372. [Google Scholar] [CrossRef]
- Mukai, S.; Flematti, G.R.; Byrne, L.T.; Besant, P.G.; Attwood, P.V.; Piggott, M.J. Stable Triazolylphosphonate Analogues of Phosphohistidine. Amino Acids 2012, 43, 857–874. [Google Scholar] [CrossRef]
- Lukáč, M.; Hocková, D.; Keough, D.T.; Guddat, L.W.; Janeba, Z. Novel Nucleotide Analogues Bearing (1H-1,2,3-Triazol-4-Yl)Phosphonic Acid Moiety as Inhibitors of Plasmodium and Human 6-Oxopurine Phosphoribosyltransferases. Tetrahedron 2017, 73, 692–702. [Google Scholar] [CrossRef]
- Matoba, K.; Yonemoto, H.; Fukui, M.; Yamazaki, T. Structural modification of bioactive compounds. II. Syntheses of aminophosphonoic acids. Chem. Pharm. Bull. 1984, 32, 3918–3925. [Google Scholar] [CrossRef][Green Version]
- Heimgartner, H.; Mlostoń, G.; Pipiak, P. [3+2] Cycloadditions of N-Protected ‘(S)-Diazoproline’ with Selected Acetylenes. Heterocycles 2017, 95, 223. [Google Scholar] [CrossRef]
- Kowalski, M.K.; Mlostoń, G.; Obijalska, E.; Heimgartner, H. Application of Diethyl Ethynephosphonate for the Synthesis of 3-Phosphonylated β-Lactams via Kinugasa Reaction. Arkivoc 2016, 2017, 59–67. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Y.; Li, P.; Bi, W.; Chen, X.; Zhao, Y. Synthesis of Novel Phosphorylated Chrysin Derivatives by 1,3-Dipolar Cycloaddition Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1–8. [Google Scholar] [CrossRef]
- Song, W.; Zheng, N.; Li, M.; Ullah, K.; Zheng, Y. Rhodium(I)-Catalyzed Azide-Alkyne Cycloaddition (RhAAC) of Internal Alkynylphosphonates with High Regioselectivities under Mild Conditions. Adv. Synth. Catal. 2018, 360, 2429–2434. [Google Scholar] [CrossRef]
- Perez, V.; Fadel, A.; Rabasso, N. Synthesis of N-Sulfonyl Ynamido-Phosphonates: Valuable Partners for Cycloadditions. Synthesis 2017, 49, 4035–4044. [Google Scholar] [CrossRef]
- Feng, Q.; Huang, H.; Sun, J. Ru-Catalyzed [3+2] Cycloaddition of Nitrile Oxides and Electron-Rich Alkynes with Reversed Regioselectivity. Org. Lett. 2021, 23, 2431–2436. [Google Scholar] [CrossRef]
- Xiang, J.; Yi, N.; Wang, R.; Lu, L.; Zou, H.; Pan, Y.; He, W. Synthesis of β-Ketophosphonates via AgNO3-Catalyzed Hydration of Alkynylphosphonates: A Rate-Enhancement Effect of Methanol. Tetrahedron 2015, 71, 694–699. [Google Scholar] [CrossRef]
- Bian, Q.; Wu, C.; Yuan, J.; Shi, Z.; Ding, T.; Huang, Y.; Xu, H.; Xu, Y. Iron Nitrate-Mediated Selective Synthesis of 3-Acyl-1,2,4-Oxadiazoles from Alkynes and Nitriles: The Dual Roles of Iron Nitrate. J. Org. Chem. 2020, 85, 4058–4066. [Google Scholar] [CrossRef]
- Lai, Z.; Li, Z.; Liu, Y.; Yang, P.; Fang, X.; Zhang, W.; Liu, B.; Chang, H.; Xu, H.; Xu, Y. Iron-Mediated Synthesis of Isoxazoles from Alkynes: Using Iron(III) Nitrate as a Nitration and Cyclization Reagent. J. Org. Chem. 2018, 83, 145–153. [Google Scholar] [CrossRef]
- The Crystallographic Data Was Deposited at the Cambridge Crystallographic Data Center, CCDC 200118. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 28 October 2022).
- Tsuchiya, T.; Kurita, J.; Snieckus, V. General Photochemical Synthesis of 1H-1,2-Benzodiazepines from N-Iminoquinolinium Ylide Dimers. J. Org. Chem. 1977, 42, 1856–1862. [Google Scholar] [CrossRef]
- Huisgen, R.; Grashey, R.; Krischke, R. 1,3-Dipolare Cycloadditionen, 84. Additionen mit Chinolinium-, Isochinolinium- und Phenanthridinium-N-imid2). Justus Liebigs Ann. Chem. 1977, 1977, 506–527. [Google Scholar] [CrossRef]
- The Crystallographic Data Was Deposited at the Cambridge Crystallographic Data Center, CCDC 2122366. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 28 October 2022).
- Supranovich, V.I.; Vorob’ev, A.Y.; Borodkin, G.I.; Gatilov, Y.V.; Shubin, V.G. Study on Selectivity in the Reaction of 2-Substituted Pyridinium- N-Imines with Dimethyl Acetylenedicarboxylate. Tetrahedron Lett. 2016, 57, 1093–1096. [Google Scholar] [CrossRef]
- Tamura, Y.; Minamikawa, J.; Ikeda, M. O-Mesitylenesulfonylhydroxylamine and Related Compounds-Powerful Aminating Reagents. Synthesis 1977, 1–17. [Google Scholar] [CrossRef]
- Vorob’ev, A.Y.; Supranovich, V.I.; Borodkin, G.I.; Shubin, V.G. New approach toward the synthesis of deuterated pyrazolo[1,5-a]pyridines and 1,2,4-triazolo[1,5-a]pyridines. Beilstein J. Org. Chem. 2017, 13, 800–805. [Google Scholar] [CrossRef]
- Qu, Z.; Chen, X.; Yuan, J.; Qu, L.; Li, X.; Wang, F.; Ding, X.; Zhao, Y. CuSO4·5H2O-catalyzed alkynylphosphonates formation—An efficient coupling reaction of terminal alkynes with H-phosphonates. Can. J. Chem. 2012, 90, 747–752. [Google Scholar] [CrossRef]
- Egorova, A.V.; Viktorov, N.B.; Starova, G.L.; Svintsitskaya, N.I.; Garabadziu, A.V.; Dogadina, A.V. BF3·Et2O catalyzed intramolecular cyclization of diethyl 2-(dialkoxyphosphorylethynyl)-2-arylaminomalonates to 3-phosphonylated indoles. Tetrahedron Lett. 2017, 58, 2997–3001. [Google Scholar] [CrossRef]
- Kruglov, S.V.; Ignat’ev, V.M.; Ionin, B.I.; Petrov, A.A. Synthesis of Symmetrical and Mixed Diphosphonic Esters. J. General Chem. USSR 1973, 43, 1470–1480. [Google Scholar]
- Oakdale, J.S.; Sit, R.K.; Fokin, V.V. Ruthenium-Catalyzed Cycloadditions of 1-Haloalkynes with Nitrile Oxides and Organic Azides: Synthesis of 4-Haloisoxazoles and 5-Halotriazoles. Chem.-Eur. J. 2014, 20, 11101–11110. [Google Scholar] [CrossRef]
- Marian, A.; Maas, G. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: Crystal structures and some cycloaddition reactions. Z. Nat. B 2020, 75, 529–536. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS 1996, Program for Empirical Adsorption Correction. Available online: https://www.scienceopen.com (accessed on 28 October 2022).
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A Found. Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef]
Entry | Solvent/Additive 1 | Conversion of 2a, % 2 |
---|---|---|
1 | CH3CN/– | 63 |
2 | CH3CN/– 3 | 100 (64 4) |
3 | CH3CN/AgNO3 (10 mol%) | 63 |
4 | CH3CN/LiCl (10 mol%) | 80 |
5 | CH3CN/LiCl (20 mol%) | 56 |
6 | CH3CN/Ni(OAc)2 (10 mol%) | 64 |
7 | CH3CN/Co(NO3)2 (10 mol%) | 60 |
8 | CH3CN/chloranil or DDQ (1 eq) | 0 |
9 | CH3CN/CuSO4 (10 mol%) | 0 |
10 | CH3CN/CuI (10 mol%) | 0 |
11 | CH3CN/Fe(NO3)3·9H2O (10 mol%) | 88 |
12 | DMF/Fe(NO3)3·9H2O (10 mol%) | 82 |
13 | DMSO/Fe(NO3)3·9H2O (10 mol%) | 100 (84 4) |
14 | DMSO/Fe(NO3)3·9H2O (20 mol%) | 100 (84 4) |
15 | DMSO/Fe(NO3)3·9H2O (5 mol%) | 89 |
16 | DMSO/Fe(NO3)3·9H2O (10 mol%), 60 °C | 67 |
17 | DMSO/FeCl3 | 47 |
18 | DMSO/FeSO4·5H2O (10 mol%) | 66 |
19 | DMSO/Fe(NO3)3·9H2O (10 mol%) under Ar | 15 |
20 | DMSO/Fe(NO3)3·9H2O (1 eq) under Ar | 100 (70 4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philippov, I.; Gatilov, Y.; Sonina, A.; Vorob’ev, A. Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates. Molecules 2022, 27, 7913. https://doi.org/10.3390/molecules27227913
Philippov I, Gatilov Y, Sonina A, Vorob’ev A. Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates. Molecules. 2022; 27(22):7913. https://doi.org/10.3390/molecules27227913
Chicago/Turabian StylePhilippov, Igor, Yuriy Gatilov, Alina Sonina, and Aleksey Vorob’ev. 2022. "Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates" Molecules 27, no. 22: 7913. https://doi.org/10.3390/molecules27227913
APA StylePhilippov, I., Gatilov, Y., Sonina, A., & Vorob’ev, A. (2022). Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates. Molecules, 27(22), 7913. https://doi.org/10.3390/molecules27227913