Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Materials and Methods
3.2. Synthesis of Starting Compounds
3.3. Electrochemical Cell
3.4. General Experimental Procedure for Scheme 2 and Scheme 3
3.4.1. 1-Benzyl-2,4-diphenyl-1H-imidazole (3a)
3.4.2. 1-Benzyl-2-phenyl-4-(p-tolyl)-1H-imidazole (3b)
3.4.3. 1-Benzyl-4-(4-(tert-butyl)phenyl)-2-phenyl-1H-imidazole (3c)
3.4.4. 1-Benzyl-2-phenyl-4-(m-tolyl)-1H-imidazole (3d)
3.4.5. 1-Benzyl-4-(4-methoxyphenyl)-2-phenyl-1H-imidazole (3e)
3.4.6. 1-Benzyl-4-(4-fluorophenyl)-2-phenyl-1H-imidazole (3f)
3.4.7. 1-Benzyl-4-(4-bromophenyl)-2-phenyl-1H-imidazole (3g)
3.4.8. 1-Benzyl-4-(3-bromophenyl)-2-phenyl-1H-imidazole (3h)
3.4.9. 1-Benzyl-4-(2-chlorophenyl)-2-phenyl-1H-imidazole (3i)
3.4.10. 4-(4-(Azidomethyl)phenyl)-1-benzyl-2-phenyl-1H-imidazole (3j)
3.4.11. 1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyl-1H-imidazole (3l)
3.4.12. 1-(4-Chlorobenzyl)-2-(4-chlorophenyl)-4-phenyl-1H-imidazole (3m)
3.4.13. 1-(2-Chlorobenzyl)-2-(2-chlorophenyl)-4-phenyl-1H-imidazole (3n)
3.4.14. 1-(4-Fluorobenzyl)-2-(4-fluorophenyl)-4-phenyl-1H-imidazole (3o)
3.4.15. 1-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)-4-phenyl-1H-imidazole (3p)
3.4.16. 2-(Furan-2-yl)-1-(furan-2-ylmethyl)-4-phenyl-1H-imidazole (3q)
3.4.17. 3-(4-Phenyl-1-(Pyridin-3-Ylmethyl)-1H-Imidazol-2-yl)Pyridine (3r)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021, 26, 4213. [Google Scholar] [CrossRef]
- Fan, Y.-L.; Jin, X.-H.; Huang, Z.-P.; Yu, H.-F.; Zeng, Z.-G.; Gao, T.; Feng, L.-S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem. 2018, 150, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Siwach, A.; Verma, P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem. 2021, 15, 12. [Google Scholar] [CrossRef]
- Beltran-Hortelano, I.; Alcolea, V.; Font, M.; Pérez-Silanes, S. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur. J. Med. Chem. 2020, 206, 112692. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat. Prod. Rep. 2009, 26, 382–445. [Google Scholar] [CrossRef] [PubMed]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Chen, W.-C.; Zhu, Z.-L.; Lee, C.-S. Organic Light-Emitting Diodes Based on Imidazole Semiconductors. Adv. Opt. Mater. 2018, 6, 1800258. [Google Scholar] [CrossRef]
- Rossi, R.; Angelici, G.; Casotti, G.; Manzini, C.; Lessi, M. Catalytic Synthesis of 1,2,4,5-Tetrasubstituted 1H-Imidazole Derivatives: State of the Art. Adv. Synth. Catal. 2019, 361, 2737–2803. [Google Scholar] [CrossRef]
- Daraji, D.G.; Prajapati, N.P.; Patel, H.D. Synthesis and Applications of 2-Substituted Imidazole and Its Derivatives: A Review. J. Heterocycl. Chem. 2019, 56, 2299–2317. [Google Scholar] [CrossRef]
- Shabalin, D.A.; Camp, J.E. Recent advances in the synthesis of imidazoles. Org. Biomol. Chem. 2020, 18, 3950–3964. [Google Scholar] [CrossRef]
- Alanthadka, A.; Elango, S.D.; Thangavel, P.; Subbiah, N.; Vellaisamy, S.; Chockalingam, U.M. Construction of substituted imidazoles from aryl methyl ketones and benzylamines via N-heterocyclic carbene-catalysis. Catal. Commun. 2019, 125, 26–31. [Google Scholar] [CrossRef]
- Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. CuI/BF3·Et2O Cocatalyzed Aerobic Dehydrogenative Reactions of Ketones with Benzylamines: Facile Synthesis of Substituted Imidazoles. Org. Lett. 2012, 14, 6068–6071. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ji, X.; Wu, W.; Jiang, H. Practical Synthesis of Polysubstituted Imidazoles via Iodine- Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. Adv. Synth. Catal. 2013, 355, 170–180. [Google Scholar] [CrossRef]
- Geng, F.; Wu, S.; Gan, X.; Hou, W.; Dong, J.; Zhou, Y. TEMPO mediated oxidative annulation of aryl methyl ketones with amines/ammonium acetate for imidazole synthesis. Org. Biomol. Chem. 2022, 20, 5416–5422. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, J.; Hu, L.; Li, A.; Li, L.; Liu, K.; Yang, T.; Zhou, C. Electrochemical HI-mediated Intermolecular C–N Bond Formation to Synthesize Imidazoles from Aryl Ketones and Benzylamines. J. Org. Chem. 2020, 85, 5952–5958. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. An electrochemical oxidative multicomponent cascade annulation of ketones and amines used to produce imidazoles. Green Chem. 2020, 22, 3416–3420. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, X.; Ma, H.; Shi, C.; Huang, G. A facile and efficient method for the synthesis of 1,2,4-trisubstituted imidazoles with enamides and benzylamines. RSC Adv. 2016, 6, 57232–57235. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Shi, G.; Chen, Z. Electrochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles from enamines and benzylamines. Org. Biomol. Chem. 2021, 19, 6682–6686. [Google Scholar] [CrossRef]
- Fu, J.; Zanoni, G.; Anderson, E.A.; Bi, X. α-Substituted vinyl azides: An emerging functionalized alkene. Chem. Soc. Rev. 2017, 46, 7208–7228. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Titov, G.D.; Khoroshilova, O.V.; Kinzhalov, M.A.; Rostovskii, N.V. Light-induced one-pot synthesis of pyrimidine derivatives from vinyl azides. Org. Biomol. Chem. 2020, 18, 4971–4982. [Google Scholar] [CrossRef]
- Yin, W.; Wang, X. Recent advances in iminyl radical-mediated catalytic cyclizations and ring-opening reactions. New J. Chem. 2019, 43, 3254–3264. [Google Scholar] [CrossRef]
- Mulina, O.M.; Zhironkina, N.V.; Paveliev, S.A.; Demchuk, D.V.; Terent’ev, A.O. Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides. Org. Lett. 2020, 22, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Paveliev, S.A.; Churakov, A.I.; Alimkhanova, L.S.; Segida, O.O.; Nikishin, G.I.; Terent’ev, A.O. Electrochemical Synthesis of O-Phthalimide Oximes from α-Azido Styrenes via Radical Sequence: Generation, Addition and Recombination of Imide-N-Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv. Synth. Catal. 2020, 362, 3864–3871. [Google Scholar] [CrossRef]
- Nayl, A.A.; Aly, A.A.; Arafa, W.A.A.; Ahmed, I.M.; Abd-Elhamid, A.I.; El-Fakharany, E.M.; Abdelgawad, M.A.; Tawfeek, H.N.; Bräse, S. Azides in the Synthesis of Various Heterocycles. Molecules 2022, 27, 3716. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Niu, Y.; Pang, X.; Yang, X.; Yan, R. I2-catalyzed synthesis of substituted imidazoles from vinyl azides and benzylamines. Chem. Commun. 2015, 51, 6598–6600. [Google Scholar] [CrossRef]
- Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265–2299. [Google Scholar] [CrossRef]
- Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem. 2010, 12, 2099–2119. [Google Scholar] [CrossRef]
- Horn, E.J.; Rosen, B.R.; Baran, P.S. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method. ACS Cent. Sci. 2016, 2, 302–308. [Google Scholar] [CrossRef]
- Sperry, J.B.; Wright, D.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 2006, 35, 605–621. [Google Scholar] [CrossRef]
- Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying Organic Synthesis. Angew. Chem. Int. Ed. 2018, 57, 5594–5619. [Google Scholar] [CrossRef]
- Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, S.R.; Janza, B. Renaissance of Electrosynthetic Methods for the Construction of Complex Molecules. Angew. Chem. Int. Ed. 2014, 53, 7122–7123. [Google Scholar] [CrossRef] [PubMed]
- Vil’, V.A.; Merkulova, V.M.; Ilovaisky, A.I.; Paveliev, S.A.; Nikishin, G.I.; Terent’ev, A.O. Electrochemical Synthesis of Fluorinated Ketones from Enol Acetates and Sodium Perfluoroalkyl Sulfinates. Org. Lett. 2021, 23, 5107–5112. [Google Scholar] [CrossRef] [PubMed]
- Francke, R. Recent advances in the electrochemical construction of heterocycles. Beilstein J. Org. Chem. 2014, 10, 2858–2873. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485–4540. [Google Scholar] [CrossRef]
- Sbei, N.; Listratova, A.V.; Titov, A.A.; Voskressensky, L.G. Recent Advances in Electrochemistry for the Synthesis of N-Heterocycles. Synthesis 2019, 51, 2455–2473. [Google Scholar] [CrossRef]
- Liang, S.; Zeng, C.-C. Organic electrochemistry: Anodic construction of heterocyclic structures. Curr. Opin. Electrochem. 2020, 24, 31–43. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, Y.; Chen, N.; Zhang, H.; Zhu, K.; Ding, M.; Liu, M.; Li, Y.; Zhang, F. Enantiospecific electrochemical rearrangement for the synthesis of hindered triazolopyridinone derivatives. Nat. Commun. 2020, 11, 3628. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Z.; Chen, N.; Chen, Z.; Zhang, F. Intramolecular electrochemical dehydrogenative N–N bond formation for the synthesis of 1,2,4-triazolo[1,5-a]pyridines. Green Chem. 2019, 21, 4035–4039. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, F. Recent Advances in Constructing Nitrogen-Containing Heterocycles via Electrochemical Dehydrogenation. Chin. J. Chem. 2019, 37, 513–528. [Google Scholar] [CrossRef]
- Feng, M.-L.; Li, S.-Q.; He, H.-Z.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. Electrochemically initiated intermolecular C–N formation/cyclization of ketones with 2-aminopyridines: An efficient method for the synthesis of imidazo[1,2-a]pyridines. Green Chem. 2019, 21, 1619–1624. [Google Scholar] [CrossRef]
- Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Electrocatalytic Intermolecular C(sp3)–H/N–H Coupling of Methyl N-Heteroaromatics with Amines and Amino Acids: Access to Imidazo-Fused N-Heterocycles. Org. Lett. 2018, 20, 6359–6363. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Electrocatalytic Tandem Synthesis of 1,3-Disubstituted Imidazo[1,5-a]quinolines via Sequential Dual Oxidative C(sp3)–H Amination in Aqueous Medium. J. Org. Chem. 2019, 84, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Vil’, V.A.; Grishin, S.S.; Baberkina, E.P.; Alekseenko, A.L.; Glinushkin, A.P.; Kovalenko, A.E.; Terent’ev, A.O. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza-Diels-Alder Cycloaddition. Adv. Synth. Catal. 2022, 364, 1098–1108. [Google Scholar] [CrossRef]
- El-Hallag, I.S. Electrochemical oxidation of iodide at a glassy carbon electrode in methylene chloride at various temperatures. J. Chilean Chem. Soc. 2010, 55, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Nie, Q.; Fang, X.; He, Z.; Zhang, G.; Li, Y.; Li, Y. Vinyl azide as a synthon for DNA-compatible divergent transformations into N-heterocycles. Org. Biomol. Chem. 2022, 20, 5045–5049. [Google Scholar] [CrossRef]
- Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X.-M.; Lei, A. Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones. Org. Lett. 2017, 19, 3131–3134. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Lei, A. Recent advances in iodine mediated electrochemical oxidative cross-coupling. Org. Biomol. Chem. 2018, 16, 2375–2387. [Google Scholar] [CrossRef]
- Dey, R.; Banerjee, P. Lewis Acid Catalyzed Diastereoselective Cycloaddition Reactions of Donor–Acceptor Cyclopropanes and Vinyl Azides: Synthesis of Functionalized Azidocyclopentane and Tetrahydropyridine Derivatives. Org. Lett. 2017, 19, 304–307. [Google Scholar] [CrossRef]
- Andresini, M.; Degannaro, L.; Luisi, R. A sustainable strategy for the straightforward preparation of 2H-azirines and highly functionalized NH-aziridines from vinyl azides using a single solvent flow-batch approach. Beilstein J. Org. Chem. 2021, 17, 203–209. [Google Scholar] [CrossRef]
Entry | Cathode/Anode | Electrolyte (eq) | Additive (eq.) | Solvent | Current Density, mA/cm2 | Electricity Passed per 1a, F/mol | Yield 3a, % |
---|---|---|---|---|---|---|---|
1 | Pt/GC | TBAI (1.0) | - | DMF | 10.0 | 4.0 | 24 |
2 | Pt/GC | KI (1.0) | - | DMF | 10.0 | 4.0 | 37 |
3 | Pt/GC | LiClO4 (1.0) | - | DMF | 10.0 | 4.0 | 22 |
4 2 | Pt/GC | KI (1.0) | - | DMF | 10.0 | 4.0 | 33 |
5 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 10.0 | 4.0 | 48 |
6 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 4.0 | 39 |
7 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 55 |
8 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | - | - | 7 |
9 | Pt/GC | KI (1.0) | H2SO4 (2.0) | DMF | 20.0 | 6.0 | - |
10 | Pt/GC | KI (1.0) | CH3SO3H (2.0) | DMF | 20.0 | 6.0 | - |
11 | Pt/GC | KI (1.0) | Amberlyst-15 (2.0) | DMF | 20.0 | 6.0 | 46 |
12 | GC/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 15 |
13 | SS/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 34 |
14 | Ni/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 48 |
15 | Pt/C | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 36 |
16 | Pt/Pt | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 22 |
17 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMSO | 20.0 | 6.0 | 34 |
18 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) n-Bu4NClO4 (1.0) | PhCl | 20.0 | 6.0 | 18 |
19 3 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 61 |
20 4 | Pt/GC | KI (1.0) | p-TsOH·H2O (2.0) | DMF | 20.0 | 6.0 | 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vil’, V.A.; Grishin, S.S.; Terent’ev, A.O. Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. Molecules 2022, 27, 7721. https://doi.org/10.3390/molecules27227721
Vil’ VA, Grishin SS, Terent’ev AO. Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. Molecules. 2022; 27(22):7721. https://doi.org/10.3390/molecules27227721
Chicago/Turabian StyleVil’, Vera A., Sergei S. Grishin, and Alexander O. Terent’ev. 2022. "Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines" Molecules 27, no. 22: 7721. https://doi.org/10.3390/molecules27227721
APA StyleVil’, V. A., Grishin, S. S., & Terent’ev, A. O. (2022). Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. Molecules, 27(22), 7721. https://doi.org/10.3390/molecules27227721