Nutritional and Polyphenolic Composition of Agrimonia procera Wallr. from Experimental Cultivation with Different Levels of Nitrogen Fertilization
Abstract
:1. Introduction
2. Results
2.1. Dry Matter and Basic Nutrients in Selected Morphological Parts of A. procera Wallr.
2.2. Polyphenols in Selected Morphological Parts of A. procera Wallr.
Peak No. | Compound | RT [min] | UV [nm] | MS Data [m/z] | MS/MS Data | Occurrence | Identification | |
---|---|---|---|---|---|---|---|---|
A. procera Wallr. | ||||||||
L S Ub | R | |||||||
1 | β-pedunculagin | 11.8 | 244 sh | [783.07]−1 | 613, 481, 301 | + | + | Standard |
2 | α-pedunculagin | 17.9 | 248 sh | [783.07]−1 | 613, 481, 301 | + | + | Standard |
3 | Procyanidin dimer | 20.2 | 282 | [577.14]−1 | 451, 425, 407, 289 | + | + | [18] |
4 | Procyanidin trimer | 20.7 | 282 | [865.20]−1 | 695, 577, 451, 425, 289 | + | + | [18] |
5 | Epicatechin | 21.6 | 289 | [289.07]−1 | 271, 245, 205, 179 | + | + | [18] |
6 | Catechin | 22.5 | 281 | [289.07]−1 | 271, 245, 205, 179 | + | + | [18] |
7 | Procyanidin tetramer | 23.4 | 283 | [1153.26]−1 | 865, 695, 575, 449, 287 | + | + | |
8 | Quercetin arabinoglycoside a | 35.5 | 257, 355 | [595.14]−1 | 463, 445, 301 * | + | - | [22,23] |
9 | Agrimoniin | 36.3 | 260 sh | [934.08]−2 | 1567, 1235, 1085, 935, 897, 783, 633, 301 | + | + | Standard, [18,19,22] |
10 | Quercetin 3-O-rhamnoglucoside | 38.3 | 257, 354 | [609.12]−1 | 463, 343, 301 | + | - | Standard, [18,19,22] |
11 | Ellagic acid | 38.8 | 254, 350 | [301.10]−1 | - | + | + | Standard, [18,22] |
12 | Quercetin 3-O-galactoside | 39.4 | 257, 353 | [463.08]−1 | 343, 301 | + | - | Standard, [19,21,22,24] |
13 | Kaempferol 3-O-glucoside | 40.0 | 267, 350 | [447.09]−1 | 327, 285, 269, 255, 151 | + | - | Standard, [19,20,21,22] |
14 | Luteolin 7-O-glucuronide | 40.6 | 266, 349 | [461.07]−1 | 357, 327, 285, 175, 151, 113 | + | - | Standard, [18,20,21,22,24] |
15 | Apigenin 7-O-glucuronide | 43.1 | 268, 339 | [445.07]−1 | 269, 175, 113 | + | - | Standard, [18,20,21] |
16 | KpCG * | 46.2 | 269, 315 | [593.12]−1 | 447, 307, 285 | + | - | Standard, [18,23,24] |
17 | KpCG * isomer | 46.7 | 269, 315 | [593.12]−1 | 447, 307, 285 | + | - | [18,23,24] |
Morphological Part of Plant | Seed Bed with a Nitrogen Content of 140 mg/dm3 | |||
---|---|---|---|---|
Additional Nitrogen Dose And Type Of Fertilizer | ||||
0 | 25 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Urea | |
Ellagitannins * | ||||
Leaves | 4.90 ± 0.41 a,b | 4.95 ± 0.45 a,b | 3.94 ± 0.26 a,b | 3.78 ± 0.41 a |
Stems | 4.80 ± 0.17 a,b | 5.80 ± 0.40 b | 5.25 ± 0.5 a,b | 5.31 ± 0.9 a,b |
Roots | 8.02 ± 1.00 c | 8.44 ± 0.60 c | 7.87 ± 0.94 c | 8.29 ± 0.63 c |
Underground buds | 15.52 ± 2.17 f | 11.01 ± 2.93 d | 10.15 ± 1.55 d | 13.76 ± 5.04 e |
Flavan-3-ols ** | ||||
Leaves | 3.67 ± 0.44 c,d,e | 3.31 ± 0.24 c,d | 3.86 ± 0.40 d,e | 3.98 ± 0.31 e |
Stems | 2.33 ± 0.2 a,b | 1.98 ± 0.25 a,b | 2.51 ± 0.36 b | 3.19 ± 0.37 c |
Roots | 4.62 ± 0.35 f | 3.76 ± 0.27 c,d,e | 3.91 ± 0.28 e | 3.24 ± 0.36 c |
Underground buds | 2.52 ± 0.24 b | 1.88 ± 0.11 a | 2.09 ± 0.27 a,b | 2.27 ± 0.03 a,b |
Flavonols *** | ||||
Leaves | 0.98 ± 0.08 c | 0.77 ± 0.06 b | 0.76 ± 0.03 b | 0.74 ± 0.03 b |
Stems | 0.12 ± 0.01 a | 0.11 ± 0.01 b | 0.09 ± 0.01 a | 0.08 ± 0.01 a |
Roots | nd | nd | nd | nd |
Underground buds | 0.97 ± 0.26 c | 0.78 ± 0.12 b | 0.84 ± 0.22 b | 0.82 ± 0.21 b |
Flavons **** | ||||
Leaves | 0.94 ± 0.03 f | 0.80 ± 0.02 e | 0.73 ± 0.05 d | 0.72 ± 0.03 d |
Stems | 0.01 ± 0.0 a | 0.02 ± 0.0 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a |
Roots | nd | nd | nd | nd |
Underground buds | 0.46 ± 0.13 c | 0.39 ± 0.07 b | 0.38 ± 0.11 b | 0.42 ± 0.14 b,c |
Sum of polyphenols | ||||
Leaves | 10.50 ± 0.2 d,e | 9.83 ± 0.57 c,d | 9.29 ± 0.33 b,c,d | 9.22 ± 0.39 b,c,d |
Stems | 7.34 ± 0.31 a | 7.91 ± 0.39 d,e | 7.87 ± 0.66 a,b | 8.60 ± 0.77 a,b,c |
Roots | 12.59 ± 1.17 f | 12.31 ± 0.55 f | 11.79 ± 0.96 e,f | 11.55 ± 0.82 e,f |
Underground buds | 19.86 ± 0.8 h | 14.90 ± 2.8 g | 12.99 ± 1.9 f | 18.94 ± 4.4 h |
2.3. Yield of Selected Nutrients and Polyphenols in A. procera Wallr.
Morphological Part of Plant | Seed Bed with a Nitrogen Content of 140 mg/dm3 | |||
---|---|---|---|---|
Additional Nitrogen Dose and Type of Fertilizer | ||||
0 | 25 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Urea | |
Average amount of fresh mass (g) | ||||
Whole plant | 33.91 ± 6.36 | 38.24 ± 8.80 | 40.13 ± 7.17 | 34.30 ± 4.91 |
Average amount of dry matter (g) | ||||
Whole plant | 12.28 ± 2.91 | 14.90 ± 3.26 | 14.07 ± 2.88 | 11.79 ± 0.98 |
Protein (mg) | ||||
Leaves | 498 ± 7 i | 943 ± 31 l | 916 ± 7 k | 714 ± 10 j |
Stems | 76 ± 3 a | 188 ± 1 e | 257 ± 4 g | 216 ± 7 f |
Roots | 83 ± 2 a | 114 ± 2 b,c | 123 ± 2 c,d | 95 ± 2 a,b |
Underground buds | 140 ± 2 d | 257 ± 7 g | 286 ± 4 h | 261 ± 1 g |
Dietary fiber (mg) | ||||
Leaves | 2510 ± 24 e | 3113 ± 199 f | 3133 ± 10 f | 3093 ± 22 f |
Stems | 1543 ± 6 a | 1966 ± 17 c | 2306 ± 49 d | 1745 ± 10 b |
Fat (mg) | ||||
Leaves | 117 ± 4 b | 163 ± 7 e | 147 ± 8 d | 137 ± 1 c |
Stems | 10 ± 1 a | 12 ± 1 a | 13 ± 1 a | 10 ± 1 a |
Ellagitannins * (mg) | ||||
Leaves | 211 ± 30 b | 298 ± 66 c | 208 ± 16 b | 194 ± 17 b |
Stems | 101 ± 22 a | 160 ± 54 a,b | 157 ± 51 a,b | 109 ± 7 a |
Roots | 361 ± 104 c | 368 ± 109 c | 300 ± 107 c | 221 ± 57 b |
Underground buds | 209 ± 60 b | 213 ± 91 b | 188 ± 26 b | 197 ± 93 b |
Agrimoniin (mg) | ||||
Leaves | 207 ± 29 b,c | 292 ± 65 c,d,e | 204 ± 15 b,c | 191 ± 17 b,c |
Stems | 99 ± 21 a | 156 ± 52 a,b | 153 ± 51 a,b | 107 ± 7 a |
Roots | 357 ± 104 e | 365 ± 109 e | 297 ± 106 d,e | 218 ± 57 b,c,d,e |
Underground buds | 208 ± 60 b,c | 213 ± 91 b,c,d | 188 ± 26 a,b,c | 212 ± 52 b,c,d |
3. Materials and Methods
3.1. Plant Material
3.2. Seeding Medium
3.3. Nitrogen Fertilizers
3.4. Conduct of the Experiment
3.5. Determination of the Nutritional Composition of Fragrant Agrimony
3.6. Determination of Ellagitannins, Flavonols, and Flavons
3.6.1. Extraction of Ellagitannins, Flavolols, Flavons from Agrimonia Procera Leaves, Stems, Roots, and Underground Buds
3.6.2. Identification of Polyphenols
3.6.3. Quantitation of Polyphenols
3.7. Determination of Flavan-3-ols (A Sum of Proanthocyanidins and Catechins)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plant and agri-industrial by-products: Antioxidant activity, occurrence and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Walthall, C.L. Meeting global food needs: Realizing the potential via Genetics × Environment × Management interactions. Agron. J. 2015, 107, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. The potential health benefits of phytochemicals in berries for protecting against cancer and coronary heart disease. In Berry Fruit Value-Added Products for Health Promotion, 1st ed.; Zhao, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 187–205. [Google Scholar] [CrossRef]
- Bazylko, A.; Piwowarski, J.P.; Filipek, A.; Bonarewicz, J.; Tomczyk, M. In vitro antioxidant and anti-inflammatory activities of extracts from Potentilla recta and its main ellagitannin, agrimoniin. J. Ethnopharmacol. 2013, 149, 222–227. [Google Scholar] [CrossRef]
- Gião, M.S.; Gomes, S.; Madureira, A.R.; Faria, A.; Pestana, D.; Calhau, C.; Pintado, M.E.; Azevedo, E.; Malcata, F.X. Effect of in vitro digestion upon the antioxidant capacity of aq. extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chem. 2012, 131, 761–767. [Google Scholar] [CrossRef]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Juśkiewicz, J.; Jankowski, J.; Kosmala, M.; Zduńczyk, Z.; Słominski, B.A.; Zduńczyk, P. The effect of dietary dried fruit pomaces on growth performance and gastrointestinal biochemistry of turkey poults. J. Anim. Physiol. Anim. Nutr. 2016, 100, 967–976. [Google Scholar] [CrossRef]
- Ueda, H.; Yamazaki, C.; Yamazaki, M. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull. 2003, 26, 60–563. [Google Scholar] [CrossRef] [Green Version]
- Bracci, A.; Amat, A.G.; Maione, F.; Cicala, C.; Mascolo, N.; De Feo, V. Diuretic activity of Lophophytum leandri. Nat. Prod. Commun. 2012, 7, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Yao, Y.; Zhao, G.; Zhu, G. Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model. Exp. Ther. Med. 2018, 15, 506–512. [Google Scholar] [CrossRef]
- Pang, Q.; Zhao, Y.; Chen, X.; Zhao, K.; Zhai, Q.; Tu, F. Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo. Oxid. Med. Cell. Longev. 2018, 2018, 7017204. [Google Scholar] [CrossRef]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef]
- Okuda, T.; Yoshida, T.; Kuwahara, M.; Memon, N.U.; Shingu, T. Tannins from Rosaceous medicinal plants. I. Structures of potentillin, agrimonic acid A and B, agrimoniin, a dimeric ellagitannin. Chem. Pharm. Bull. 1984, 32, 2165–2173. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.; Aronson, W.J.; Zhang, Y.; Henning, S.; Moro, A.; Lee, R.P.; Sartippour, M.; Harris, D.M.; Rettig, M.; Suchard, M.A.; et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J. Agric. Food Chem. 2007, 55, 7732–7737. [Google Scholar] [CrossRef]
- Rumińska, A.; Ożarowski, A. Leksykon Roślin Leczniczych (Lexicon of Medicinal Plants), 1st ed.; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1990. [Google Scholar]
- Nurzyńska-Wierdak, R.; Rożek, E.; Borowski, B. Response of different basil cultivars to nitrogen and potassium and fertilization: Total and mineral nitrogen content in herb. Acta Sci. Pol. Hortorum Cultus 2021, 10, 217–232. [Google Scholar]
- Kotecki, A.; Malarz, W.; Kozak, M.; Aniołowski, K. Wpływ nawożenia azotem na skład chemiczny nasion pięciu odmian rzepaku jarego. Rośliny Oleiste 2001, 22, 81–89. [Google Scholar]
- Karlińska, E.; Romanowska, B.; Kosmala, M. The aerial parts of Agrimonia procera Wallr. and Agrimonia eupatoria L. as a source of polyphenols, and especially agrimoniin and flavonoids. Molecules 2021, 26, 7706. [Google Scholar] [CrossRef]
- Haggag, E.G.; Abdelhady, M.I.S.; Kamal, A.M. Phenolic content of Ruprechtia salicifolia leaf and its immunomodulatory, anti-inflammatory, anticancer and antibacterial activity. J. Pharm. Res. 2013, 6, 696–703. [Google Scholar] [CrossRef]
- Granica, S.; Kluge, H.; Horn, G.; Matkowski, A.; Kiss, A.K. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procera Wallr. as valid sources of Agrimoniae herba—The pharmacopoeial plant material. J. Pharm. Biomed. Anal. 2015, 114, 272–279. [Google Scholar] [CrossRef]
- Granica, S.; Krupa, K.; Kłębowska, A.; Kiss, A.K. Development and validation of HPLC-DAD-CAD-MS(3) method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur). J. Pharm. Biomed. Anal. 2013, 86, 112–122. [Google Scholar] [CrossRef]
- Lee, K.Y.; Hwang, L.; Jeong, E.J.; Kim, S.H.; Kim, Y.C.; Sung, S.H. Effect of neuroprotective flavonoids of Agrimonia eupatoria on glutamate-induced oxidative injury to HT22 hippocampal cells. Biosci. Biotechnol. Biochem. 2010, 74, 1704–1706. [Google Scholar] [CrossRef] [Green Version]
- Correia, H.; González-Paramás, A.; Amaral, M.T.; Santos-Buelga, C.; Batista, M.T. Polyphenolic profile characterization of Agrimonia eupatoria L. by HPLC with different detection devices. Biomed. Chromat. 2006, 20, 88–94. [Google Scholar] [CrossRef]
- Karlińska, E.; Pecio, Ł.; Macierzyński, J.; Stochmal, A.; Kosmala, M. Structural elucidation of the ellagitannin with a molecular weight of 2038 isolated from strawberry fruit (Fragaria ananassa Duch.) and named fragariin A. Food Chem. 2019, 296, 109–115. [Google Scholar] [CrossRef]
- Gräber, T.; Kluge, H.; Granica, S.; Horn, G.; Brandsch, C.; Stangl, G.I. Studies on the health impact of Agrimonia procera in piglets. BMC Vet. Res. 2014, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Hollmann, E.; Sokołowska, O.; Rembiałkowska, E. Zawartość związków bioaktywnych w roślinach zielarskich z uprawy ekologicznej i konwencjonalnej. J. Res. Appl. Agric. Eng. 2011, 56, 198–203. [Google Scholar]
- Mudau, F.N.; Soundy, P.; Toit, E.S.; Olivier, J. Variation in polyphenolic content of Athrixia phylicoides (L.) (bush tea) leaves with season and nitrogen application. S. Afr. J. Bot. 2006, 72, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, W.; Strobl, W. Untersuchungen am Artenpaar Agrimonia eupatoria L.–A. procera Wallr, im Bundesland Salzburg (Österreich). Lizner Biol. Beitr. 1987, 19, 91–119. [Google Scholar]
- Rutkowski, L. Klucz do Oznaczania Roślin Naczyniowych Polski Niżowej; Wydawnictwo Naukowe PWN, SA.: Warsaw, Poland, 2018. [Google Scholar]
- Horwitz, W.; Latimer, G.W. (Eds.) AOAC Method 940.26: Ash of fruits and fruit products. In Official Method of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Horwitz, W.; Latimer, G.W. (Eds.) AOAC Method 920.152: Protein in fruit products, Kjeldahl method. In Official Method of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Horwitz, W.; Latimer, G.W. (Eds.) AOAC Method 930.09: Ether extract of plants. In Official Method of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Horwitz, W.; Latimer, G.W. (Eds.) AOAC Method 985.29: Total dietary fiber in foods enzymatic-gravimetric method. In Official Method of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Milala, J.; Piekarska-Radzik, L.; Sójka, M.; Klewicki, R.; Matysiak, B.; Klewicka, E. Rosa spp. extracts as a factor that limits the growth of Staphylococcus spp. bacteria, a food contaminant. Molecules 2021, 26, 4590–4603. [Google Scholar] [CrossRef]
Morphological Part of Plant | Seed Bed with a Nitrogen Content of 140 mg/dm3 | |||
---|---|---|---|---|
Additional Nitrogen Dose and Type of Fertilizer | ||||
0 | 25 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Ammonium Nitrate | 100 mg/dm3 Urea | |
Dry matter (g/100 g) | ||||
Leaves | 30.45 ± 2.37 a,b | 34.45 ± 1.14 a,b,c | 31.81 ± 0.76 a,b,c | 31.03 ± 1.71 a,b,c |
Stems | 35.73 ± 1.99 a,b,c,d | 36.21 ± 1.48 c,d | 37.01 ± 0.41 c,d | 34.50 ± 0.76 a,b,c |
Roots | 48.33 ± 7.71 e | 52.97 ± 3.04 e | 40.97 ± 0.53 d | 41.04 ± 5.40 d |
Underground buds | 29.91 ± 2.30 a | 36.95 ± 5.26 b,c,d | 32.36 ± 2.66 a,b,c | 30.28 ± 3.27 a,b |
Protein (g/100 g DM) | ||||
Leaves | 11.51 ± 0.12 h | 15.79 ± 0.36 j | 16.77 ± 0.09 k | 13.77 ± 0.14 i |
Stems | 3.64 ± 0.09 c | 6.94 ± 0.00 d | 8.62 ± 0.08 e | 9.24 ± 0.21 f |
Roots | 1.84 ± 0.00 a | 2.63 ± 0.03 b | 3.26 ± 0.04 c | 3.54 ± 0.05 c |
Underground buds | 10.52 ± 0.01 g | 13.65 ± 0.27 i | 15.46 ± 0.14 j | 16.65 ± 0.05 k |
Total ash (g/100 g DM) | ||||
Leaves | 9.14 ± 0.02 g | 9.55 ± 0.04 h | 10.44 ± 0.08 i | 9.05 ± 0.40 g |
Stems | 3.29 ± 0.22 a,b | 3.92 ± 0.15 c,d | 4.12 ± 0.03 d | 3.54 ± 0.05 a,b,c |
Roots | 3.69 ± 0.09 b,c,d | 3.19 ± 0.08 a | 3.71 ± 0.05 b,c,d | 3.75 ± 0.26 c,d |
Underground buds | 10.51 ± 0.02 i | 7.81 ± 0.34 e,f | 7.43 ± 0.07 e | 8.18 ± 0.07 f |
Dietary fiber (g/100 g DM) | ||||
Leaves | 57.96 ± 0.39 b | 52.14 ± 2.36 a | 57.39 ± 0.13 b | 59.60 ± 0.29 b |
Stems | 73.87 ± 0.28 c | 72.55 ± 0.43 c | 77.39 ± 1.16 d | 74.57 ± 0.01 c,d |
Fat (g/100 g DM) | ||||
Leaves | 2.71 ± 0.10 | 2.74 ± 0.12 | 2.70 ± 0.14 | 2.63 ± 0.06 |
Stems | 0.47 ± 0.03 | 0.45 ± 0.01 | 0.43 ± 0.03 | 0.41 ± 0.03 |
Metabolized carbohydrates (g/100 g DM) | ||||
Leaves | 18.69 ± 0.80 d,e | 19.78 ± 2.99 e | 12.70 ± 0.07 b | 14.95 ± 0.04 b,c |
Stems | 18.75 ± 0.05 d,e | 16.15 ± 0.77 c,d | 9.43 ± 1.58 a | 12.24 ± 0.29 a,b |
Energy value (kcal/100 g DM) | ||||
Leaves | 261.1 ± 0.5 c | 271.2 ± 6.3 d | 256.9 ± 0.7 c | 257.7 ± 1.4 c |
Stems | 241.5 ± 0.5 b | 241.5 ± 1.8 b | 230.9 ± 3.2 a | 238.8 ± 0.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlińska, E.; Kaczorowska, O.; Romanowska, B.; Kosmala, M. Nutritional and Polyphenolic Composition of Agrimonia procera Wallr. from Experimental Cultivation with Different Levels of Nitrogen Fertilization. Molecules 2022, 27, 7597. https://doi.org/10.3390/molecules27217597
Karlińska E, Kaczorowska O, Romanowska B, Kosmala M. Nutritional and Polyphenolic Composition of Agrimonia procera Wallr. from Experimental Cultivation with Different Levels of Nitrogen Fertilization. Molecules. 2022; 27(21):7597. https://doi.org/10.3390/molecules27217597
Chicago/Turabian StyleKarlińska, Elżbieta, Olga Kaczorowska, Beata Romanowska, and Monika Kosmala. 2022. "Nutritional and Polyphenolic Composition of Agrimonia procera Wallr. from Experimental Cultivation with Different Levels of Nitrogen Fertilization" Molecules 27, no. 21: 7597. https://doi.org/10.3390/molecules27217597
APA StyleKarlińska, E., Kaczorowska, O., Romanowska, B., & Kosmala, M. (2022). Nutritional and Polyphenolic Composition of Agrimonia procera Wallr. from Experimental Cultivation with Different Levels of Nitrogen Fertilization. Molecules, 27(21), 7597. https://doi.org/10.3390/molecules27217597