Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Wild Andean blueberries
2.2. Preparation of Hydroalcoholic Extracts
2.3. Spectrophotometric Determination of Reducing Capacity, Flavonoid Anthocyanin, and Free Amino acid Contents
2.4. HPLC-DAD Analysis of Ascorbic acid
2.5. Polyphenolic Profile Determination via HPLC-DAD/ESI-MSn
2.6. Spectrophotometric Determination of Total Antioxidant Capacity
2.7. Bacterial Strains, Media, and Growth Conditions
2.8. Antimicrobial Activity by Microdilution Assay
2.9. Statistical Analysis
3. Results
3.1. Phenolic Profile of Andean blueberry (V. floribundum Kunth)
ID | Retention Time (min) | Precursor Mass (Negative) | MS/MS (Negative) | Precursor Mass (Positive) | MS/MS (Positive) | Identification | References |
---|---|---|---|---|---|---|---|
1 | 1.05 | 191 | 191-> 111(100), 173 (65), 127 (30) | 193 | 193-> 147(100), 157(90), 175(20), 165 (15), 139 (5) | Quinic acid | [37] |
219 | 219-> 173(100), 191(70) | 221 | 221-> 203(100), 157(90), 175(80 | Quinic acid derivate | [37] | ||
225 | 225-> 179(100), 161(5) 179-> 135(100), 179(35), 161(30) | Caffeic acid derivate | [14,38] | ||||
2 | 9.78 | 353 (Low intensity) | 353-> 191 (100) | 355 | 355-> 163 (100), 145 (5) | Caffeoylquinic acid | [14] |
215 (Low Intensity) | 215-> 179(100), 161(5) 179-> 135(100), 179(35), 161(30) | Caffeic acid derivate | [14,38] | ||||
3 | 10.26 | - | - | 449 | 449-> 287(100) | Cyanidin-3-pyranoside | [39] |
- | - | 435 | 435-> 303(100) | Delphinidin-3-arabinoside | [39,40] | ||
4 | 10.98 | - | - | 419 | 419-> 287(100) | Cyanidin-3-arabinoside | [39,40] |
5 | 11.76 | 671 | 671-> 335 (100) 335-> 179(100), 135(20), 161(5) | - | - | 5-O-Caffeoylshikimic acid | [3,14,37] |
335 | 335-> 179(100), 135(20) | 337 | 337-> 163 (100), 145 (5) | 5-O-Caffeoylshikimic acid | [37] | ||
6 | 13.83 | 433 | 433-> 323(100), 161(50), 221 (16), 179(14) | 435 | 435-> 307(100), 163(90) | 6-O-Caffeoylarbutin | [37,41] |
7 | 13.99 | 463 | 463-> 301(100) | 465 | 465-> 303(100) 303-> 257(100), 285 (70), 229 (65), 165(55) | Quercetin glucoside | [14,40,42] |
8 | 15.03 | 433 | 433-> 301(100) | 435 | 435-> 303(100) 303-> 257(100), 285 (70), 229 (65), 165(55) | Quercetin pentoside | [3,14,38,42] |
9 | 15.25 | 447 | 447-> 301(100) | 449 | 449-> 303(100), 287(30) 303-> 257(100), 285 (70), 229 (65), 165(55) | Quercetin rhamnoside | [14,38,40] |
10 | 16.20 | 577 | 577->433(100), 475(70), 515(65), 301(60) | 579-> 303 (100), 561(35), 345 (15) | Quercetin 3-pentoside derivate | [14,43] | |
11 | 16.49 | 475 | 475->433(100), 415(55), 161 (5) | 477-> 459(100), 385(60), 423(50), 441 (50), 367(30), 163(20) | Not identified | N/A | |
12 | 16.82 | 475 | 475->433(100), 415(55), 161 (5) | Not identified | N/A | ||
13 | 17.23 | 591 | 591->447(100), 489(60), 529(20),301(5) | 593-> 303(100), 413(50), 345(25), 575(20) | Quercetin hydroxymethilglutaryl- a-rhamnoside | [38] | |
14 | 18.32 | 301 | 301->179(100), 151(70), 273(15) | 303 | 303-> 257(100), 285 (70), 229 (65), 165(55) | Quercetin | [37,42] |
3.2. Reducing capacity (RC), Total Flavonoids Content (TFC), Total Anthocyanin Content (ACY), Ascorbic Acid (AsA), and Total Free Amino acids (FAAs) of Andean blueberry (V. floribundum Kunth) with Respect to Altitude and Ripeness
3.3. Antioxidant Activity of Andean blueberry (V. floribundum Kunth) in Relation to Altitude and Ripeness Stage
3.4. Antimicrobial Activity of Andean blueberry (V. floribundum Kunth) in Relation to Altitude and Ripeness Stage
Susceptible Bacterial Strain | V. floribundum Kunth Extracts (mg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2836 (m.a.s.l) | 3641 (m.a.s.l) | ||||||||||||
Stage 1 MIC MBC | Stage 2 MIC MBC | Stage 3 MIC MBC | Stage 1 MIC MBC | Stage 2 MIC MBC | Stage 3 MIC MBC | CP MIC (µg/mL) | |||||||
Enterococcus faecium ATCC27270 | 10 | 10 | 5 | 5 | 2.5 | 2.5 | 5 | 10 | 2.5 | 2.5 | 1.3 | 2.5 | 1.5 |
Enterococcus faecalis ATCC29212 | 5 | 10 | 2.5 | 5 | 2.5 | 2.5 | 5 | 10 | 1.3 | 2.5 | 1.3 | 2.5 | 1.5 |
Staphylococcus aureus ATCC25923 | 5 | 5 | 2.5 | 5 | 2.5 | 5 | 2.5 | 5 | 1.3 | 2.5 | 1.3 | 2.5 | 0.4 |
Klebsiella pneumoniae ATCCBAA 700603 | >10 | - | >10 | - | >10 | - | >10 | - | >10 | - | >10 | - | 0.2 |
Acinetobacter baumannii ATCC19606 | >10 | - | 10 | - | 10 | - | >10 | - | 10 | - | 10 | - | 0.8 |
Pseudomonas aeruginosa ATCC27853 | >10 | - | 10 | - | 10 | - | >10 | - | >10 | - | 10 | - | 0.4 |
Enterobacter cloacae ATCC23355 | >10 | - | 10 | - | 10 | - | >10 | - | 10 | - | 10 | - | <0.09 |
Escherichia coli ATCC25922 | >10 | - | >10 | - | 10 | - | >10 | - | >10 | - | >10 | - | <0.09 |
4. Discussion
4.1. Phenolic Profile of the Andean blueberry (V. floribundum Kunth)
4.2. Reducing Capacity (RC), Total Flavonoids Content (TFC), Total Anthocyanin Content (ACY), and Ascorbic Acid Content (AsA) of the Andean blueberry (V. floribundum Kunth)
4.3. Antioxidant Activity of Andean blueberry (V. floribundum Kunth) in Relation to Altitude and Ripeness Stage
4.4. Antimicrobial Activity of Andean blueberry (V. floribundum Kunth) in Relation to Altitude and Ripeness Stage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gaviria Montoya, C.; Ochoa Ospina, C.; Sánchez Mesa, N.; Medina Cano, C.; Lobo Arias, M.; Galeano García, P.; Mosquera Martínez, A.; Tamayo Tenorio, A.; Lopera Pérez, Y.; Rojano, B. Actividad antioxidante e inhibición de la peroxidación lipídica de extractos de frutos de mortiño (Vaccinium meridionale SW). Bol Lat. Caribe Plantas Med. Aromat. 2009, 8, 519–528. [Google Scholar]
- Vega-Polo, P.; Cobo, M.M.; Argudo, A.; Gutierrez, B.; Rowntree, J.; de Lourdes Torres, M. Characterizing the genetic diversity of the Andean blueberry (Vaccinium floribundum Kunth.) across the Ecuadorian Highlands. PLoS ONE 2020, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum kunth). J. Agric. Food Chem. 2009, 57, 8274–8281. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Barrera, K.S.; Armijos-Montesinos, D.S.; García-Tenesaca, M.; Iturralde, G.; Jaramilo-Vivanco, T.; Granda-Albuja, M.G.; Giamperi, F.; Alvarez-Suarez, J.M. Wild Andean blackberry (Rubus glaucus Benth) and Andean blueberry (Vaccinium floribundum Kunth) from the Highlands of Ecuador: Nutritional composition and protective effect on human dermal fibroblasts against cytotoxic oxidative damage. J. Berry Res. 2018, 8, 223–236. [Google Scholar] [CrossRef]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Phenolic Compounds in Rosaceae Fruits from Ecuador. J. Agric. Food Chem. 2009, 57, 1204–1212. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Flores-Félix, J.D.; Alves, G.; Silva, L.R. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022, 27, 3294. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narváez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Zamuz, S.; Valdés, M.E.; Moreno, D.; Balcázar, M.C.G.; Fernández-Arias, J.M.; Reyes, J.F.; Franco, D. The antioxidant effect of colombian berry (Vaccinium meridionale sw.) extracts to prevent lipid oxidation during pork patties shelf-life. Antioxidants 2021, 10, 1290. [Google Scholar] [CrossRef]
- Bagchi, D.; Roy, S.; Patel, V.; He, G.; Khanna, S.; Ojha, N.; Phillips, C.; Ghosh, S.; Bagchi, M.; Sen, C.K. Safety and whole-body antioxidant potential of a novel anthocyanin-rich formulation of edible berries. Mol. Cell Biochem. 2006, 28, 197–209. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, A.G.; et al. Antioxidant Capacity As Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Prencipe, F.P.; Bruni, R.; Guerrini, A.; Rossi, D.; Benvenuti, S.; Pellati, F. Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties. J. Pharm. Biomed. Anal. 2014, 89, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Soto, C.Y.; López, R.M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Ruales, J.; Moreno, D.; Barrio, D.; Stinco, C.; Martínez-Cifuentes, G.; Meléndez-Martínez, A.; García-Ruiz, A. Characterization of Andean Blueberry in Bioactive Compounds, Evaluation of Biological Properties, and In Vitro Bioaccessibility. Foods 2020, 9, 1483. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2018, 57, 1169–1180. [Google Scholar] [CrossRef]
- Zheng, T.; Bielinski, D.F.; Fisher, D.R.; Zhang, J.; Shukitt-Hale, B. Protective Effects of a Polyphenol-Rich Blueberry Extract on Adult Human Neural Progenitor Cells. Molecules 2022, 27, 6152. [Google Scholar] [CrossRef]
- Buitrago Guacaneme, C.M.; Rincón Soledad, M.C.; Balaguera López, H.E.; Ligarreto Moreno, G.A. Tipificación de Diferentes Estados de Madurez del Fruto de Agraz (Vaccinium meridionale Swartz). Rev. Fac. Nac. Agron. Medellín. 2015, 68, 7521–7531. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hortic. 2019, 256, 108556. [Google Scholar] [CrossRef]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Bernal, L.J.; Melo, L.A.; Díaz Moreno, C. Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Rev. Fac. Nac. Agron. Medellín. 2014, 6, 7209–7218. [Google Scholar] [CrossRef]
- Guerrero-Chavez, G.; Scampicchio, M.; Andreotti, C. Influence of the site altitude on strawberry phenolic composition and quality. Sci. Hortic. 2015, 192, 21–28. [Google Scholar] [CrossRef]
- Gündüz, K.; Özbay, H. The effects of genotype and altitude of the growing location on physical, chemical, and phytochemical properties of strawberry. J. Agric For. 2018, 42, 145–153. [Google Scholar] [CrossRef]
- Guevara-Teran, M.; Gonzalez-Parama, A.M.; Giampieri, F.; Tejera, E. Influence of altitude on the physicochemical composition and antioxidant capacity of strawberry: A preliminary systematic review and meta-analysis. Phytochem. Rev. 2022, 34, 1–18. [Google Scholar] [CrossRef]
- Dalgo, M.A.; Cuvi, M.J.A.; Guerreo, C.M. Development relationship of color with anthocyanins and chlorophyll content in different degrees of maturity of mortiño (Vaccinium floribundum). Enfoque UTE. 2014, 5, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Suarez, J.M.; Carrillo-Perdomo, E.; Aller, A.; Giampieri, F.; Gasparrini, M.; González-Pérez, L.; Beltrán-Ayala, P.; Battino, M. Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food Chem. Toxicol. 2017, 102, 46–52. [Google Scholar] [CrossRef]
- Guevara, M.; Proaño, A.; Tejera, E.; Ballesteros, I.; Sánchez, M.E.; Granda-Albuja, M.G.; Freire, B.; Chisaguano, A.M.; Debut, A.; Vizuete, K.; et al. Protective effect of the medicinal herb infusion “Horchata” against oxidative damage in cigarette smokers: An ex vivo study. Food Chem Toxicol. 2020, 143, 111538. [Google Scholar] [CrossRef]
- Hasperué, J.H.; Rodoni, L.M.; Guardianelli, L.M.; Chaves, A.R.; Martínez, G.A. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Sci. Hortic. 2016, 213, 281–286. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Ždero Pavlović, R.; Mićić, N.; Bijelić, S.; Bogdanović, B.; Mišan, A.; Duarte, C.M.M.; Serra, A.T. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chem. 2020, 302, 125373. [Google Scholar] [CrossRef]
- Yin, J.; Wu, Z.C.; Wang, Z.L.; Zhu, Y.Y.; Liu, Z.G. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Phys. D Appl. Phys. 1998, 31, 3185–3187. [Google Scholar] [CrossRef]
- Doi, E.; Shibata, D.; Matoba, T. Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 1981, 118, 173–184. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Gonzàlez-Paramàs, A.M.; Santos-Buelga, C.; Quiles, J.L.; Bompadre, S.; Mezzetti, B.; et al. An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct. 2014, 5, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Ebner, H.; Dienstbach, F.; Sandritter, W. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1967, 73, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Krol, M.; Nowak, M.; de Graft-Johnson, J.; Padula, G.; Bialasiewicz, P.; Markowski, J.; et al. Consumption of strawberries on a daily basis increases the non-urate 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity of fasting plasma in healthy subjects. J. Clin. Biochem. Nutr. 2013, 53, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, M.P.; Limbago, B.; Patel, J.B.; Mathers, A.J.; Burnham, C.-A.; Mazzulli, T.; Campeau, S.; Munro, S.D.; Conville, P.S.; Doern, C.; et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 1–13. [Google Scholar]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M. Andean blueberry of the genus disterigma: A high-resolution mass spectrometric approach for the comprehensive characterization of phenolic compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Garzón, G.A. Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. Berries: Properties, Consumption and Nutrition. Nova Sci. Publ. 2012, 30, 157–167. [Google Scholar] [CrossRef]
- Stein-Chisholm, R.E.; Beaulieu, J.C.; Grimm, C.C.; Lloyd, S.W. Lc–ms/ms and uplc–uv evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.-Y.; Wang, W.-W.; Ye, J.-F.; Li, S.-S.; Wu, Q.; Yin, D.-D.; Li, B.; Xu, Y.-J.; Wang, L.-S. Polyphenol profile and antioxidant activity of the fruit and leaf of Vaccinium glaucoalbum from the Tibetan Himalayas. Food Chem. 2017, 219, 490–495. [Google Scholar] [CrossRef]
- Ortiz, J.; Marín-Arroyo, M.R.; Noriega-Domínguez, M.J.; Navarro, M.; Arozarena, I. Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth.), and apple wines from Ecuador. J. Food Sci. 2013, 78, 985–993. [Google Scholar] [CrossRef]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2005, 85, 2149–2158. [Google Scholar] [CrossRef]
- Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn. J. Am. Soc. Mass. Spectrom. 2002, 13, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect Dis. Clin. North Am. 2004, 18, 451–465. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; p. 362. [Google Scholar]
- Marracino, L.; Punzo, A.; Severi, P.; Tchoutang, R.N.; Vargas-De-la-cruz, C.; Fortini, F. Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function. Nutrients 2022, 14, 1560. [Google Scholar] [CrossRef]
- Cerrato, A.; Piovesana, S.; Aita, S.E.; Cavaliere, C.; Felletti, S.; Laganà, A. Detailed investigation of the composition and transformations of phenolic compounds in fresh and fermented Vaccinium floribundum berry extracts by high-resolution mass spectrometry and bioinformatics. Phytochem. Anal. 2022, 33, 507–516. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Coelho, M.C.; Morais, R.M.; Pintado, M.E. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L.) cultivars. Nat. Prod. Res. 2017, 31, 93–98. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications—A Review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef]
- Esquivel-Alvarado, D.; Munõz-Arrieta, R.; Alfaro-Viquez, E.; Madrigal-Carballo, S.; Krueger, C.G.; Reed, J.D. Composition of Anthocyanins and Proanthocyanidins in Three Tropical Vaccinium Species from Costa Rica. J. Agric. Food Chem. 2020, 68, 2872–2879. [Google Scholar] [CrossRef]
- Bonadiman, B.D.S.R.; Weis, G.C.C.; da Rosa, J.R.; Assmann, C.E.; de Oliveira Alves, A.; Longhi, P.; Bagatini, M. Effects of caffeic acid on oxidative balance and cancer. Cancer Oxidative Stress Diet Antioxid. 2021, 21, 291–300. [Google Scholar] [CrossRef]
- Samad, N.B.; Debnath, T.; Ye, M.; Hasnat, M.A.; Lim, B.O. In vitro antioxidant and anti-inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pac. J. Trop. Biomed. 2014, 4, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacitu assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Spinardi, A.; Cola, G.; Gardana, C.; Mignani, I. Variation of Anthocyanin Content and Profile Throughout Fruit Development and Ripening of Highbush Blueberry Cultivars Grown at Two Different Altitudes. Front. Pharmacol. 2019, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Llivisaca-Contreras, S.A.; León-Tamariz, F.; Manzano-Santana, P.; Ruales, J.; Naranjo-Morán, J.; Serrano-Mena, L.; Chica-Martínez, E.; Cevallos-Cevallos, J.M. Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae 2022, 8, 358. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant. Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Spinardi, A.; Mignani, I.; Folini, L.; Beghi, R. Quality and nutraceutical content of blueberries (Vaccinium corymbosum) grown at two different altitudes (450 and 650 m above sea level). Acta Hortic. 2009, 810, 817–822. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Linderborg, K.; Yang, B. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophaë rhamnoides ssp. sinensis) with special reference to influence of latitude and altitude. Food Res. 2011, 44, 2018–2226. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Campra, P.; Aznar-Garcia, M.J.; Ramos-Bueno, R.P.; Gonzalez-Fernandez, M.J.; Khaldi, H.; Garrido-Cardenas, J.A. A whole-food approach to the in vitro assessment of the antitumor activity of gazpacho. Food Res. 2019, 121, 441–452. [Google Scholar] [CrossRef]
- Nilova, L.P.; Malyutenkova, S.M.; Kruchina-Bogdanov, I.V.; Shmakova, L.N. Composition of biologically active substances of Vaccinium berries growing in the northwestern region of Russia. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022085. [Google Scholar] [CrossRef]
- Rieger, G.; Müller, M.; Guttenberger, H.; Bucar, F. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J. Agric. Food Chem. 2008, 56, 9080–9086. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, G.; Tian, L.; Wu, H.; Ren, Y.; Tamir, G.; Huang, W.; Yu, H. High Altitude Is Beneficial for Antioxidant Components and Sweetness Accumulation of Rabbiteye Blueberry. Front. Plant Sci. 2020, 11, 573531. [Google Scholar] [CrossRef]
- Escobar-Bravo, R.; Klinkhamer, P.G.L.; Leiss, K.A. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front. Plant Sci. 2017, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 2015, 95, 776–785. [Google Scholar] [CrossRef]
- Zoratti, L.; Jaakola, L.; Häggman, H.; Giongo, L. Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLoS ONE 2015, 10, e0135935. [Google Scholar] [CrossRef] [Green Version]
- Vaneková, Z.; Vanek, M.; Škvarenina, J.; Nagy, M. The influence of local habitat and microclimate on the levels of secondary metabolites in slovak bilberry (Vaccinium myrtillus L.) fruits. Plants 2020, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and “northblue” blueberry (Vaccinium corymbosum × V. angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef]
- Timmers, M.A.; Grace, M.H.; Yousef, G.G.; Lila, M.A. Inter- and intra-seasonal changes in anthocyanin accumulation and global metabolite profiling of six blueberry genotypes. J. Food Compos. Anal. 2017, 59, 105–110. [Google Scholar] [CrossRef]
- Wang, L.-J.; Su, S.; Wu, J.; Du, H.; Li, S.-S.; Huo, J.-W.; Zhang, Y.; Wang, L.-S. Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity. Food Chem. 2014, 160, 357–364. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.Á.; Diago, M.P.; Tomás-Las-Heras, R.; Monforte, L.; Soriano, G.; Martínez-Abaigar, J.; Núñez-Olivera, E. Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiol. Biochem. 2016, 109, 374–386. [Google Scholar] [CrossRef]
- Cocetta, G.; Karppinen, K.; Suokas, M.; Hohtola, A.; Häggman, H.; Spinardi, A.; Mignani, I.; Jaakola, L. Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development. J. Plant Physiol. 2012, 169, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Viskelis, P.; Rubinskiene, M.; Jasutiene, I.; Šarkinas, A.; Daubaras, R.; Česoniene, L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009, 74, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Leung, D. Relationship Between Changes in Contents of Nitric Oxide and Amino Acids Particularly Proline in Plants Under Abiotic Stress. In Reactive Oxygen Species and Oxidative Damage in Plants Under Stress; Springer: Berlin/Heidelberg, Germany, 2015; pp. 341–352. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Planchet, E.; Verdu, I.; Delahaie, J.; Cukier, C.; Girard, C.; Morère-Le Paven, M.C.; Limami, A.M. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J. Exp. Bot. 2014, 65, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.P. Amino Acid Catabolism in Plants. Mol. Plant. 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Yobi, A.; Bagaza, C.; Batushansky, A.; Shrestha, V.; Emery, M.L.; Holden, S.; Turner-Hissong, S.; Miller, N.D.; Mawhinney, T.P.; Angelovici, R. The complex response of free and bound amino acids to water stress during the seed setting stage in Arabidopsis. Plant. J. 2020, 102, 838–855. [Google Scholar] [CrossRef]
- Ábrahám, E.; Cabassa, C.; Erdei, L.; Szabados, L. Methods for Determination of Proline in Plants. Methods Mol Biol. 2010, 639, 317–331. [Google Scholar] [CrossRef]
- Tyagi, A.; Lim, M.-J.; Kim, N.-H.; Barathikannan, K.; Vijayalakshmi, S.; Elahi, F.; Ham, H.-J.; Oh, D.-H. Quantification of Amino Acids, Phenolic Compounds Profiling from Nine Rice Varieties and Their Antioxidant Potential. Antioxidants 2022, 11, 839. [Google Scholar] [CrossRef]
- Neamtu, A.A.; Szoke-kovacs, R.; Mihok, E.; Georgescu, C.; Turcus, V.; Olah, N.K.; Frum, A.; Tita, O.; Neamtu, C.; Mathe, E.; et al. Bilberry (Vaccinium myrtillus L.) extracts comparative analysis regarding their phytonutrient profiles, antioxidant capacity along with the in vivo rescue effects tested on a drosophila melanogaster high-sugar diet model. Antioxidants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- Nejat, N.; Mantri, N. Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr. Issues Mol. Biol. 2017, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Shin, Y. Antioxidant profile, antioxidant activity, and physicochemical characteristics of strawberries from different cultivars and harvest locations. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 587–595. [Google Scholar] [CrossRef]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Bobinas, C.; Petruskevicius, A.; Klavins, L.; Viskelis, J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries (Vaccinium myrtillus L.). Antioxidants 2022, 11, 588. [Google Scholar] [CrossRef]
- Ștefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef]
- Beattie, J.; Crozier, A.; Duthie, G. Potential Health Benefits of Berries. Curr. Nutr. Food Sci. 2005, 1, 71–86. [Google Scholar] [CrossRef]
- Hwang Hyesung Young-Jun, K.; Youngjae, S. Assessment of Physicochemical Quality, Antioxidant Content and Activity, and Inhibition of Cholinesterase between Unripe and Ripe Blueberry Fruit. Foods 2020, 9, 690. [Google Scholar] [CrossRef]
- Rojas-Ocampo, E.; Torrejón-Valqui, L.; Muñóz-Astecker, L.D.; Medina-Mendoza, M.; Mori-Mestanza, D.; Castro-Alayo, E.M. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon 2021, 7, e07787. [Google Scholar] [CrossRef]
- Yang, H.; Kim, Y.J.; Shin, Y. Influence of ripening stage and cultivar on physicochemical properties and antioxidant compositions of aronia grown in South Korea. Foods 2019, 8, 598. [Google Scholar] [CrossRef]
- Shin, Y.; Ryu, J.A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, Y.J.; Shin, Y. Influence of ripening stage and cultivar on physicochemical properties, sugar and organic acid profiles, and antioxidant compositions of strawberries. Food Sci. Biotechnol. 2019, 28, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Ciocan, D.; Bara, I. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 2007, 12, 151–156. [Google Scholar]
- Llivisaca, S.; Manzano, P.; Ruales, J.; Flores, J.; Mendoza, J.; Peralta, E.; Cevallos-Cevallos, J.M. Chemical, antimicrobial, and molecular characterization of mortiño (Vaccinium floribundum Kunth) fruits and leaves. Food Sci. Nutr. 2018, 6, 934–942. [Google Scholar] [CrossRef]
- Radovanović, B.C.; Andelković, A.S.M.; Radovanović, A.B.; Andelković, M.Z. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar] [CrossRef]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising antioxidant and antimicrobial food colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Leitão, D.P.S.; Polizello, A.C.M.; Ito, I.Y.; Spadaro, A.C.C. Antibacterial screening of anthocyanic and proanthocyanic fractions from cranberry juice. J. Med. Food. 2005, 8, 36–40. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2005, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Laplante, K.L.; Sarkisian, S.A.; Woodmansee, S.; Rowley, D.C.; Seeram, N.P. Effects of cranberry extracts on growth and biofilm production of escherichia coli and staphylococcus species. Phyther. Res. 2012, 26, 1371–1374. [Google Scholar] [CrossRef]
Province | Carchi | Imbabura |
---|---|---|
Canton | Montúfar | Ibarra |
Parish | La Paz | Zuleta |
Latitude | 00°36.478′ N | 00°13.523′ N |
Length | 77°49.716′ O | 78°03.074′ O |
Altitude (m.a.s.l) | 2836 | 3641 |
Temperature (°C) | RH (%) | Dew Point (°C) | Atmospheric Pressure (hpa) | Winds (km/h) | Rain Events (mm) | |
---|---|---|---|---|---|---|
Carchi | ||||||
Mean | 10.21 | 86.69 | 7.93 | 708.08 | 1.62 | 7.95 |
Min | 2.20 | 43.00 | −7.50 | 659.70 | 0.00 | 0.00 |
Max | 20.10 | 99.00 | 12.30 | 734.80 | 16.60 | 55.10 |
Zuleta | ||||||
Mean | 8.62 | 59.14 | 7.05 | 688.48 | 3.92 | 4.63 |
Min | 1.80 | 38.00 | −7.50 | 659.70 | 0.00 | 0.00 |
Max | 18.20 | 99.00 | 11.50 | 733.70 | 23.00 | 55.10 |
Parameter | Altitude | Stage of Ripeness | p-Value (Stages) | ||
---|---|---|---|---|---|
Stage 1 * | Stage 2 * | Stage 3 * | |||
RC (mg GAE/100 g FW) 1 | 3641 (m.a.s.l) | 4503.78 ± 409.60 | 3836.64 ± 281.6 | 5982.56 ± 202.80 | <0.001 |
2836 (m.a.s.l) | 2894.94 ± 574.91 | 3093.64 ± 324.90 | 3199.61 ± 428.52 | 0.72 | |
p-value (Altitude) | 0.017 | 0.04 | 0.001 | ||
TFC (mg Cateq/g FW) 1 | 3641 (m.a.s.l) | 21.31 ± 2.79 | 23.98 ± 2.45 | 37.71 ± 2.20 | <0.001 |
2836 (m.a.s.l) | 12.44 ± 0.48 | 16.94 ± 2.22 | 20.31 ± 2.75 | 0.01 | |
p-value value (Altitude) | 0.006 | 0.021 | 0.001 | ||
ACY (mg PgEq/g FW) 1 | 3641 (m.a.s.l) | 35,006.97 ± 270.90 | 1267.86 ± 75.90 | 1121.59 ± 74.50 | <0.001 |
2836 (m.a.s.l) | 24,360.20 ± 558.72 | 1711.65 ± 114.03 | 705.67 ± 114.03 | <0.001 | |
p-value value (Altitude) | <0.001 | 0.005 | 0.006 | ||
AsA (mg AsA/g FW) 1 | 3641 (m.a.s.l) | 61.79 ± 0.24 | 24.81 ± 1.47 | 18.41 ± 1.12 | <0.001 |
2836 (m.a.s.l) | 20.46 ± 1.08 | 19.89 ± 0.80 | 15.59 ± 0.75 | 0.001 | |
p-value value (Altitude) | <0.001 | 0.01 | 0.02 | ||
FAAs (mg LEeq/g FW) 1 | 3641 (m.a.s.l) | 9040.02 ± 249.01 | 601.18 ± 11.82 | 1556.08 ± 225.72 | <0.001 |
2836 (m.a.s.l) | 7087.45 ± 270.90 | 444.31 ± 70.71 | 1587.69 ± 74.81 | <0.001 | |
p-value value (Altitude) | 0.04 | 0.02 | 0.83 |
Parameter | Altitude | Ripeness Stages | p-Value (Stages) | ||
---|---|---|---|---|---|
Stage 1 * | Stage 2 * | Stage 3 * | |||
FRAP (μmol TEq/g FW) 1 | 3641 (m.a.s.l) | 186.68 ± 19.92 | 141.47 ± 5.90 | 230.15 ± 14.71 | 0.001 |
2836 (m.a.s.l) | 111.86 ± 6.48 | 102.76 ± 8.07 | 110.96± 5.67 | 0.27 | |
p-value (Altitude) | 0.003 | 0.003 | 0.001 | ||
DPPH (μmol TEq/g FW) 1 | 3641 (m.a.s.l) | 263.28 ± 1.14 | 208.01 ± 3.41 | 284.94 ± 1.43 | <0.001 |
2836 (m.a.s.l) | 170.67 ± 17.70 | 168.56 ± 18.12 | 166.07 ± 24.61 | 0.96 | |
p-value (Altitude) | 0.001 | 0.02 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Terán, M.; Padilla-Arias, K.; Beltrán-Novoa, A.; González-Paramás, A.M.; Giampieri, F.; Battino, M.; Vásquez-Castillo, W.; Fernandez-Soto, P.; Tejera, E.; Alvarez-Suarez, J.M. Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth). Molecules 2022, 27, 7525. https://doi.org/10.3390/molecules27217525
Guevara-Terán M, Padilla-Arias K, Beltrán-Novoa A, González-Paramás AM, Giampieri F, Battino M, Vásquez-Castillo W, Fernandez-Soto P, Tejera E, Alvarez-Suarez JM. Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth). Molecules. 2022; 27(21):7525. https://doi.org/10.3390/molecules27217525
Chicago/Turabian StyleGuevara-Terán, Mabel, Katherine Padilla-Arias, Andrea Beltrán-Novoa, Ana M. González-Paramás, Francesca Giampieri, Maurizio Battino, Wilson Vásquez-Castillo, Paulina Fernandez-Soto, Eduardo Tejera, and José M. Alvarez-Suarez. 2022. "Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth)" Molecules 27, no. 21: 7525. https://doi.org/10.3390/molecules27217525
APA StyleGuevara-Terán, M., Padilla-Arias, K., Beltrán-Novoa, A., González-Paramás, A. M., Giampieri, F., Battino, M., Vásquez-Castillo, W., Fernandez-Soto, P., Tejera, E., & Alvarez-Suarez, J. M. (2022). Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth). Molecules, 27(21), 7525. https://doi.org/10.3390/molecules27217525