Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. IR Spectroscopy
2.2.2. Thermal Analyses
2.2.3. Structural X-ray Powder Diffraction Analysis
2.2.4. Variable-Temperature X-ray Powder Diffractometry
3. Results
3.1. Comparative Crystal Chemistry
3.2. High-Temperature Diffraction Studies
3.3. Thermal Analyses
3.4. IR Fingerprinting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Active Pharmaceutical Ingredient |
ATR | Attenuated Total Reflection |
DSC | Differential Scanning Calorimetry |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
FTIR | Fourier-transformed Infrared spectroscopy |
TGA | Thermogravimetric Analysis |
VTXRD | Variable-Temperature X-ray Diffraction |
XRPD | X-ray Powder Diffraction |
References
- Cruz-Cabeza, A.J.; Feeder, N.; Davey, R.J. Open questions in organic crystal polymorphism. Commun. Chem. 2020, 3, 142. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism of dyes and pigments, Ch. 8. In Polymorphism of Molecular Crystals; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- van der Poll, T.S.; Zhugayevych, A.; Chertkov, E.; Bakus, R.C.; Coughlin, J.E.; Teat, S.J.; Bazan, G.C.; Tretiak, S. Polymorphism of Crystalline Molecular Donors for Solution-Processed Organic Photovoltaics. J. Phys. Chem. Lett. 2014, 5, 2700–2704. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, P.H. Polymorphism of Active Pharmaceutical Ingredients. Chem. Eng. Technol. 2006, 29, 233–237. [Google Scholar] [CrossRef]
- Censi, R.; Di Martino, P. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules 2015, 20, 18760–18776. [Google Scholar] [CrossRef] [Green Version]
- Brittain, H.G. Polymorphism in Pharmaceutical Solids; Informa Healthcare USA, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Lee, A.Y.; Erdemir, D.; Myerson, A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259–280. [Google Scholar] [CrossRef]
- Blandizzi, C.; Viscomi, G.C.; Scarpignato, C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in health volunteers. Drug Des. Dev. Ther. 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: An Extraordinary Example of Conformational Polymorphism. Pharm. Res. 2001, 18, 859–866. [Google Scholar] [CrossRef]
- Chemburkar, S.R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W. Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development. Org. Process Res. Dev. 2000, 4, 413–417. [Google Scholar] [CrossRef]
- Raza, K.; Kumar, P.; Ratan, S.; Malik, R.; Arora, S. Polymorphism: The Phenomenon Affecting the Performance of Drugs. SOJ Pharm. Pharm. Sci. 2014, 1, 10–19. [Google Scholar] [CrossRef]
- Otto, D.P.; de Villier, M.M. Solid State Concerns During Drug Discovery and Development: Thermodynamic and Kinetic Aspects of Crystal Polymorphism and the Special Cases of Concomitant Polymorphs, Co-Crystals and Glasses. Curr. Drug Disc. Technol. 2017, 14, 72–105. [Google Scholar] [CrossRef]
- Shankland, K.; Spillman, M.J.; Kabova, E.A.; Edgeley, D.S.; Shankland, N. The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Cryst. 2013, C69, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Abbinante, V.M.; Zampieri, M.; Barreca, G.; Masciocchi, N. Preparation and Solid-State Characterization of Eltrombopag Crystal Phases. Molecules 2021, 26, 65. [Google Scholar] [CrossRef] [PubMed]
- Girard, K.P.; Jensen, A.J.; Jones, K.N. Crystalline Solid Forms of 6-Carboxy-2-(3,5-dichlorophenyl)-benzoxazole. Patent WO 2016/038500 Al, 17 March 2016. [Google Scholar]
- Musanic, S.M.; Travancic, V.; Pavlicic, D. Solid State Forms of Tafamidis and Salts Thereof. Patent WO 2020/232325 Al, 19 November 2020. [Google Scholar]
- Le Pevelen, D.D. FT-IR and Raman Spectroscopies, Polymorphism Applications. In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J., Tranter, G.E., Koppenaal, D., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 750–761. [Google Scholar] [CrossRef]
- Harris, K.D. Powder diffraction crystallography of molecular solids. Top. Curr. Chem. 2012, 315, 133–177. [Google Scholar] [CrossRef]
- Harding, M.M. Recording diffraction data for structure determination for very small crystals. J. Synchr. Radiat. 1996, 3, 250–259. [Google Scholar] [CrossRef]
- Clegg, W. The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Phil. Trans. 2019, A377, 20180239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, A.; Nia, S.S.; Rodriguez, J.A. Electron Diffraction of 3D Molecular Crystals. Chem. Rev. 2022, 122, 13883–13914. [Google Scholar] [CrossRef]
- Fawcett, T.; Gates-Rector, S.; Gindhart, A.; Rost, M.; Kabekkodu, S.; Blanton, J.; Blanton, T. A practical guide to pharmaceutical analyses using X-ray powder diffraction. Powder Diffr. 2019, 34, 164–183. [Google Scholar] [CrossRef]
- Iyengar, S.; Phadnis, N.; Suryanarayanan, R. Quantitative analyses of complex pharmaceutical mixtures by the Rietveld method. Powder Diffr. 2001, 16, 20–24. [Google Scholar] [CrossRef]
- Kotrlý, M. Using X-ray diffraction in forensic science. Zeit. Krist.–Cryst. Mater. 2007, 222, 193–198. [Google Scholar] [CrossRef]
- Ivanesevic, I.; McClurg, M.B.; Schields, P.J. Uses of X-ray Powder Diffraction In the Pharmaceutical Industry. In Pharmaceutical Sciences Encyclopedia (Drug Discovery, Development, and Manufacturing); Gad, S.C., Ed.; Wiley: New York, NY, USA, 2010; pp. 1–42. [Google Scholar] [CrossRef]
- TOPAS-R, V3.0; Bruker AXS: Karlsruhe, Germany, 2005.
- Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Cryst. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Ohashi, Y. A program to calculate the strain tensor from two sets of unit-cell parameters. In Comparative Crystal Chemistry; Hazen, R.M., Finger, L.W., Eds.; Wiley: Chichester, UK, 1982; pp. 92–102. [Google Scholar]
- Available online: https://www.cryst.ehu.es/cryst/strain.html (accessed on 30 September 2022).
- Kaminsky, W. Wintensor, Ein WIN95/98/NT Programm zum Darstellen tensorieller Eigenschaften. Z. Kristallogr. Suppl. 2000, 17, 51. [Google Scholar]
- Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2012, 20, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Kitaigorodskii, A.I. Organic Chemical Crystallography; Consultants Bureau: New York, NY, USA, 1961. [Google Scholar]
- Burger, A.; Ramberger, A.I. On the polymorphism of pharmaceuticals and other molecular crystals. I. Mikroch. Acta 1979, II, 259–271. [Google Scholar] [CrossRef]
- Perlovich, G.; Surov, A. Polymorphism of monotropic forms: Relationships between thermochemical and structural characteristics. Acta Cryst. 2020, B76, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelyubina, Y.V.; Glukhov, I.V.; Antipin, M.Y.; Lyssenko, K.A. “Higher density does not mean higher stability” mystery of paracetamol finally unraveled. Chem. Commun. 2010, 46, 3469–3471. [Google Scholar] [CrossRef]
- Salari, A.; Young, R.E. Application of attenuated total reflectance FTIR spectroscopy to the analysis of mixtures of pharmaceutical polymorphs. Int. J. Pharm. 1998, 163, 157–166. [Google Scholar] [CrossRef]
- Larkin, P.J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J.T.; Smith, B.C. Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Appl. Spectrosc. 2014, 68, 758–776. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Gatta, G.D.; Arletti, R.; Artioli, G.; Ballirano, P.; Cruciani, G.; Guagliardi, A.; Malferrari, D.; Masciocchi, N.; Scardi, P. Quantitative phase analysis using the Rietveld method: Towards a procedure for checking the reliability and quality of the results. Period. Miner. 2019, 8, 147–151. [Google Scholar] [CrossRef]
Parameter | Form 1 | Form 4 |
---|---|---|
Formula | C14H7Cl2NO3 | C14H7Cl2NO3 |
fw, g mol−1 | 308.12 | 308.12 |
Crystal system | monoclinic | monoclinic |
Space group | P21/a (No. 14) | P21/n (No. 14) |
a, Å | 22.976 (1) | 22.364 (3) |
b, Å | 14.993 (1) | 15.174 (2) |
c, Å | 3.794 (1) | 3.819 (1) |
β, ° | 90.938 (3) | 95.265 (5) |
V, Å3 | 1306.9 (1) | 1290.7 (3) |
Z | 4 | 4 |
V/Z, Å3 | 326.7 | 322.27 |
ρcalc, g cm−3 | 1.566 | 1.586 |
μ (CuKα), cm−1 | 45.5 | 46.1 |
F (000) | 624 | 624 |
λavg, Å | 1.5418 | 1.5418 |
T, K | 295 | 295 |
2θ range, ° | 6–105 | 6–105 |
Rp, Rwp | 0.079, 0.103 | 0.062, 0.083 |
χ2 | 4.13 | 5.16 |
RBragg | 0.064 | 0.039 |
Form 1 | Form 4 | A Sketch of the SV, χ and ψ Parameters | |
---|---|---|---|
τ1 torsional angle, ° | 9.4 (0.2) | 1.5 (0.3) | |
τ2 torsional angle, ° | 0.0 (0.5) | 6.0 (0.5) | |
O–H···O, Å | 2.62 | 2.64 | |
Stacking Vector (SV), Å | 3.794 | 3.819 | |
χ angle, ° | 78.8 | 70.9 | |
ψ angle, ° | 80.9 | 71.8 | |
Interplanar Distance, Å | 3.51 | 3.41 |
Form 1 | Form 4 | |
---|---|---|
κa, 106 K−1 | 50 | 20 |
κb, 106 K−1 | −14 | 22 |
κc, 106 K−1 | 74 | 93 |
κβ, 106 K−1 | −48 | −29 |
κV, 106 K−1 | 108 | 141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masciocchi, N.; Abbinante, V.M.; Zambra, M.; Barreca, G.; Zampieri, M. Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid. Molecules 2022, 27, 7411. https://doi.org/10.3390/molecules27217411
Masciocchi N, Abbinante VM, Zambra M, Barreca G, Zampieri M. Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid. Molecules. 2022; 27(21):7411. https://doi.org/10.3390/molecules27217411
Chicago/Turabian StyleMasciocchi, Norberto, Vincenzo Mirco Abbinante, Marco Zambra, Giuseppe Barreca, and Massimo Zampieri. 2022. "Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid" Molecules 27, no. 21: 7411. https://doi.org/10.3390/molecules27217411
APA StyleMasciocchi, N., Abbinante, V. M., Zambra, M., Barreca, G., & Zampieri, M. (2022). Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid. Molecules, 27(21), 7411. https://doi.org/10.3390/molecules27217411