Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective
Abstract
:1. Introduction
2. Methods for Preparing MIPs of Target Flavonoids
2.1. Bulk Polymerization
2.2. Precipitation Polymerization
2.3. Surface Imprinting
2.4. Emulsion Polymerization
3. Applications
3.1. Solid Phase Extraction (SPE)
3.1.1. MIP Particles Based on SPE
Traditional MIP particles Based on SPE
MIP Particles Based on Dispersive Solid-Phase Extraction (dSPE)
3.1.2. Molecularly Imprinted Membranes Based on SPE
3.2. Sensing
3.2.1. Electrochemical Sensors
3.2.2. Optical Sensors
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Prochazkova, D.; Bousova, I.; Wilhelmova, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Locatelli, M.; Granica, S.; Cacciagrano, F.; Tomczyk, M. A review on the dietary flavonoid. Compr. Rev. Food. Sci. Food Saf. 2018, 17, 1395–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
- De Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
- Tian, J.-L.; Si, X.; Wang, Y.-H.; Gong, E.-S.; Xie, X.; Zhang, Y.; Li, B.; Shu, C. Bioactive flavonoids from Rubus corchorifolius inhibit alpha-glucosidase and alpha-amylase to improve postprandial hyperglycemia. Food Chem. 2021, 341, 128149. [Google Scholar] [CrossRef]
- Kuo, S.-M. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett. 1996, 110, 41–48. [Google Scholar] [CrossRef]
- Fernandez, J.; Silvan, B.; Entrialgo-Cadierno, R.; Villar, C.J.; Capasso, R.; Uranga, J.A.; Lombo, F.; Abalo, R. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed. Pharmacother. 2021, 143, 112241. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. 1972, 11, 341–346. [Google Scholar]
- Gokulakrishnan, S.A.; Arthanareeswaran, G.; Gnanasekaran, G.; László, Z.; Veréb, G.; Kertész, S.; Taweepreda, W. Advanced extraction and separation approaches for the recovery of dietary flavonoids from plant biomass: A review. Biomass Convers. Biorefinery 2022, 1–23. [Google Scholar] [CrossRef]
- Yarman, A.; Kurbanoglu, S.; Zebger, I.; Scheller, F.W. Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sens. Actuators B Chem. 2021, 330, 129369. [Google Scholar] [CrossRef]
- Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front. Chem. 2020, 8, 616326. [Google Scholar] [CrossRef] [PubMed]
- Zidarič, T.; Finšgar, M.; Maver, U.; Maver, T. Artificial biomimetic electrochemical assemblies. Biosensors 2022, 12, 44. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K.J. Peptide imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc. 2008, 130, 15242–15243. [Google Scholar] [CrossRef]
- Pauling, L.C. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 1940, 62, 2643–2657. [Google Scholar] [CrossRef]
- Dickey, F.H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.C.; Campbell, D.H.; Pressman, D. The nature of the forces between antigen and antibody and of the precipitation reaction. Physiol. Rev. 1943, 23, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef] [PubMed]
- Sariga; George, A.; Rajeev, R.; Thadathil, D.A.; Varghese, A. A comprehensive review on the electrochemical sensing of flavonoids. Crit. Rev. Anal. Chem. 2022, 1–41. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, Y.; Wang, Y.; Yang, F.; Pei, J. Recent developments in electrochemical sensing platforms for the detection of plant flavonoids. Int. J. Electrochem. Sci. 2022, 17, 220523. [Google Scholar] [CrossRef]
- Yin, S.-J.; Zhao, J.; Yang, F.-Q. Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis. J. Pharm. Biomed. Anal. 2021, 192, 113675. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Zhang, H. Molecularly imprinted nanoparticles for biomedical applications. Adv. Mater. 2020, 32, 1806328. [Google Scholar] [CrossRef]
- Martin-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Xie, J.; Xiong, J.; Ding, L.-S.; Chen, L.; Zhou, H.; Liu, L.; Zhang, Z.-F.; Hu, X.-M.; Luo, P.; Qing, L.-S. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J. Chromatogr. A 2018, 1576, 10–18. [Google Scholar] [CrossRef]
- Ersoy, S.K.; Tutem, E.; Baskan, K.S.; Apak, R. Valorization of red onion peels for quercetin recovery using quercetin-imprinted polymer. J. Chromatogr. Sci. 2020, 58, 163–170. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, J.; Liu, Y.; Wang, M.; Deng, S.; Xia, Z. A SPE method with two MIPs in two steps for improving the selectivity of MIPs. Anal. Chem. 2019, 91, 8436–8442. [Google Scholar] [CrossRef]
- Zhang, J.W.; He, J.Y.; Wang, C.Z.; Yang, F.Q.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Simultaneous extraction of several targets by using non-toxic dual template molecularly imprinted polymers in vivo and in vitro. Talanta 2020, 219, 121283. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Zhang, H. Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. Polymer 2014, 55, 699–714. [Google Scholar] [CrossRef]
- Zhang, H. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. Eur. Polym. J. 2013, 49, 579–600. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Berg, M.M.; Zhao, C.; Ye, L. One-Pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules 2009, 42, 8739–8746. [Google Scholar] [CrossRef]
- Mohammadinejad, A.; Rad, S.Z.K.; Karimi, G.; Motamedshariaty, V.S.; Mohajeri, S.A. Preparation, evaluation, and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice. J. Sep. Sci. 2021, 44, 1490–1500. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D. Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. J. Chromatogr. B 2018, 1097, 1–9. [Google Scholar] [CrossRef]
- Abdullah; Alveroglu, E.; Balouch, A.; Khan, S.; Mahar, A.M.; Jagirani, M.S.; Pato, A.H. Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem. J. 2021, 162, 105849. [Google Scholar] [CrossRef]
- Chrzanowska, A.M.; Díaz-Álvarez, M.; Wieczorek, P.P.; Poliwoda, A.; Martín-Estebn, A. The application of the supported liquid membrane and molecularly imprinted polymers as solid acceptor phase for selective extraction of biochanin A from urine. J. Chromatogr. A 2019, 1599, 9–16. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Cheng, G.; Wei, S.; Wang, Y.; Huang, Q.; Wu, W.; Liu, X.; Chen, G. Study of the preparation and properties of chrysin binary functional monomer molecularly imprinted polymers. Polymers 2022, 14, 2771. [Google Scholar] [CrossRef]
- Ding, X.; Heiden, P.A. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques. Macromol. Mater. Eng. 2014, 299, 268–282. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, L.; Yu, H.; Tang, H.; Liu, S.; Li, W. Selective photocatalysis on molecular imprinted TiO2 thin films prepared via an improved liquid phase deposition method. New J. Chem. 2009, 33, 1673–1679. [Google Scholar] [CrossRef]
- Kamarudin, S.F.; Ahmad, M.N.; Dzahir, I.H.M.; Ishak, N.; Ab Halim, N.F. Development of quercetin imprinted membranes-based PVDF substrate. Polym. Bull. 2019, 76, 4313–4334. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem. 2019, 287, 100–126. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, Z.; Zhang, H.; Ye, L.; He, J.; Ou, J.; Wu, Q. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem. 2019, 309, 125680. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Pan, M.; Fang, G.; Wang, S. Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens. Actuators B Chem. 2019, 286, 321–327. [Google Scholar] [CrossRef]
- Li, D.; Zhai, S.; Song, R.; Liu, Z.; Wang, W. Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach. Spectroc. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117542. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Zhang, L.; Hu, X. Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. J. Biomater. Sci. Polym. Ed. 2019, 31, 53–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X.; Zhang, Z.; Tang, N.; Ding, Y.; Wang, Y.; Li, D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. Spectroc. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 121023. [Google Scholar] [CrossRef]
- Song, H.; Zhang, H.; He, Y.; Gao, R.; Wang, Y.; Wang, W.; Pfefferle, L.D.; Tang, X.; Tang, Y. Novel bayberry-and-honeycomb-like magnetic surface molecularly imprinted polymers for the selective enrichment of rutin from Sophora japonica. Food Chem. 2021, 356, 129722. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Xie, Z.; Kong, C.; Na, Z. Extraction and detection of morin from Sanghuangporus lonicericola by magnetic molecularly imprinted polymers coupled with HPLC analysis. J. Food Sci. 2022, 87, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Nie, J.; Liu, H.; Kuang, L.; Xu, G. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. J. Chromatogr. A 2020, 1630, 461531. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, H.; He, Y.; She, Y.; Wang, M.; Abd El-Aty, A.M.; Afifi, N.A.; Han, J.; Zhou, X.; Wang, J.; et al. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species. J. Chromatogr. A 2019, 1598, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ren, Y.; Li, G. Detection of naringin by fluorescent polarization molecularly imprinted polymer. Polym. Bull. 2022, 1–14. [Google Scholar] [CrossRef]
- Pan, T.; Lin, Y.; Wu, Q.; Huang, K.; He, J. Preparation of boronate-functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template. J. Sep. Sci. 2020, 44, 2465–2473. [Google Scholar] [CrossRef]
- Wang, D.-D.; Gao, D.; Xu, W.-J.; Li, F.; Yin, M.-N.; Fu, Q.-F.; Xia, Z.-N. Magnetic molecularly imprinted polymer for the selective extraction of hesperetin from the dried pericarp of Citrus reticulata Blanco. Talanta 2018, 184, 307–315. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Duan, X.; Zhu, Y.; Xue, T.; Rao, L.; Wen, Y.; Tian, Q.; Cai, Y.; Xu, Q.; et al. A novel nanozyme comprised of electro-synthesized molecularly imprinted conducting PEDOT nanocomposite with graphene-like MoS2 for electrochemical sensing of luteolin. Microchem. J. 2021, 168, 106418. [Google Scholar] [CrossRef]
- Wei, M.T.; Geng, X.; Liu, Y.; Long, H.; Du, J. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin. J. Electroanal. Chem. 2019, 842, 184–192. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhang, J.; Tan, L.; Xia, Z.; Wang, C.Z.; Zhou, L.D.; Zhang, Q.; Yuan, C.S. Preparation and evaluation of temperature and magnetic dual-responsive molecularly imprinted polymers for the specific enrichment of formononetin. J. Sep. Sci. 2018, 41, 3060–3068. [Google Scholar] [CrossRef]
- Gao, D.; Wang, D.D.; Fu, Q.F.; Wang, L.J.; Zhang, K.L.; Yang, F.Q.; Xia, Z.N. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin. Talanta 2017, 178, 299–307. [Google Scholar] [CrossRef]
- Ji, K.; Luo, X.; He, L.; Liao, S.; Hu, L.; Han, J.; Chen, C.; Liu, Y.; Tan, N. Preparation of hollow magnetic molecularly imprinted polymer and its application in silybin recognition and controlled release. J. Pharm. Biomed. Anal. 2020, 180, 113036. [Google Scholar] [CrossRef] [PubMed]
- Hungenberg, K.D.; Jahns, E. Trends in emulsion polymerization processes from an industrial perspective. Adv. Polym. Sci. 2018, 280, 195–214. [Google Scholar]
- Perez, N.; Whitcombe, M.J.; Vulfson, E.N. Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization. J. Appl. Polym. Sci. 2000, 77, 1851–1859. [Google Scholar] [CrossRef]
- Lovell, P.A.; Schork, F.J. Fundamentals of emulsion polymerization. Biomacromolecules 2020, 21, 4396–4441. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, L.; Ma, L. Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Microchim. Acta 2018, 185, 492. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.M.; Xiao, A.P.; Chen, G.N.; Guo, Q.; Chang, C.; Zeng, A.G.; Fu, Q. Preparation and application of molecularly imprinted polymers for the selective extraction of naringin and genistein from herbal medicines. Anal. Methods 2019, 11, 4890–4898. [Google Scholar] [CrossRef]
- Ma, X.; Wang, F.; Hang, T.; Dramou, P. Degradation study of rutin as template from magnetic composite molecularly imprinted polymer supernatant samples by liquid chromatography-mass spectrometry. J. Chromatogr. A 2022, 1673, 463199. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, W.; Meng, H.; Guo, K.; Chen, J.-F. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technol. 2009, 190, 393–400. [Google Scholar] [CrossRef]
- Shen, X.; Bonde, J.S.; Kamra, T.; Bülow, L.; Leo, J.C.; Linke, D.; Ye, L. Bacterial imprinting at Pickering emulsion interfaces. Angew. Chem. Int. Ed. 2014, 53, 10687–10690. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Shen, X.; Chaudhary, S.; Ye, L. Molecularly imprinted polymer beads prepared by pickering emulsion polymerization for steroid recognition. J. Appl. Polym. Sci. 2014, 131, 39606. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, T.; Ye, L. Molecular imprinting of protein in Pickering emulsion. Chem. Commun. 2012, 48, 8198–8200. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ye, L. Molecular imprinting in Pickering emulsions: A new insight into molecu-lar recognition in water. Chem. Commun. 2011, 47, 10359–10361. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Ju, Z.; Niu, L.; Gong, Z.; Xu, Z. Molecularly imprinted polymers fabricated by Pickering emulsion polymerization for the selective adsorption and separation of quercetin from Spina Gleditsiae. New J. Chem. 2019, 43, 14747–14755. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Feng, J.; Sun, M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J. Chromatogr. A 2022, 1675, 463157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Row, K.H. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim. Acta 2019, 186, 753. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, B.; Guo, B.; Wu, W.; Jin, Y.; Geng, F.; Tian, M. Gallic acid-affinity molecularly imprinted polymer adsorbent for capture of cis-diol containing Luteolin prior to determination by high performance liquid chromatography. J. Chromatogr. A 2021, 1637, 461829. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, X.; Zhang, L.; Cao, M. Preparation and evaluation of photo-responsive hollow SnO2molecularly imprinted polymers for the selective recognition of kaempferol. Anal. Methods 2021, 13, 925–932. [Google Scholar] [CrossRef]
- Bezdekova, J.; Vlcnovska, M.; Zemankova, K.; Bacova, R.; Kolackova, M.; Lednicky, T.; Pribyl, J.; Richtera, L.; Vanickova, L.; Adam, V.; et al. Molecularly imprinted polymers and capillary electrophoresis for sensing phytoestrogens in milk. J. Dairy Sci. 2020, 103, 4941–4950. [Google Scholar] [CrossRef]
- Zengin, A.; Badak, M.U.; Aktas, N. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J. Sep. Sci. 2018, 41, 3459–3466. [Google Scholar] [CrossRef]
- Safarikova, M.; Kibrikova, I.; Ptackova, L.; Hubka, T.; Komarek, K.; Safarik, I. Magnetic solid phase extraction of non-ionic surfactants from water. J. Magn. Magn. Mater. 2005, 293, 377–381. [Google Scholar] [CrossRef]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-Garcia, J.; Garcia-Martin, S.; Pena-Crecente, R.M.; Otarola-Jimenez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gao, R.; Wang, Y.; He, Y.; Hussain, S.; Heinlein, J.; Tian, J.; Pfefferle, L.D.; Tang, X.; Tang, Y. Layer-by-layer assembled magnetic molecularly imprinted nanoparticles for the highly specific recovery of luteolin from honeysuckle leaves. Green Chem. 2021, 23, 3623–3632. [Google Scholar] [CrossRef]
- Zhang, J.W.; Tan, L.; Yuan, J.B.; Qiao, R.F.; Wang, C.Z.; Yang, F.Q.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Extraction of activated epimedium glycosides in vivo and in vitro by using bifunctional-monomer chitosan magnetic molecularly imprinted polymers and identification by UPLC-Q-TOF-MS. Talanta 2020, 219, 121350. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Luo, X.; Huang, Y.; Wang, M.; Xia, Z. Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation. Microchem. J. 2020, 157, 105109. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.; Row, K.H. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. Analyst 2019, 144, 1777–1788. [Google Scholar] [CrossRef]
- Li, N.; Jiang, H.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Lin, J. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal. Chem. 2018, 102, 60–74. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends Anal. Chem. 2017, 89, 99–118. [Google Scholar] [CrossRef]
- Nasir, A.M.; Ishak, N. Optimizing Double Imprinted Polymeric Membrane (DIPM) for the simultaneous selective extraction of quercetin and caffeic acid. Sep. Sci. Technol. 2021, 57, 1052–1066. [Google Scholar] [CrossRef]
- Turkcan, C.; Somturk, B.; Ozdemir, N.; Ozel, M.; Catalkaya, R.; Uygun, D.A.; Uygun, M.; Akgol, S. Quercetin adsorption with imprinted polymeric materials. J. Biomater. Sci. Polym. Ed. 2019, 30, 947–960. [Google Scholar] [CrossRef]
- Wang, D.D.; Gao, D.; Huang, Y.K.; Xu, W.J.; Xia, Z.N. Preparation of restricted access molecularly imprinted polymers based fiber for selective solid-phase microextraction of hesperetin and its metabolites in vivo. Talanta 2019, 202, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, G.; Ou, H.; Shi, R.; Pan, J. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin. J. Colloid Interface Sci. 2021, 601, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Piletsky, S.A.; Piletskaya, E.V.; Elgersma, A.V.; Yano, K.; Karube, I.; Parhometz, Y.P.; El’skaya, A.V. Atrazine sensing by molecularly imprinted membranes. Biosens. Bioelectron. 1995, 10, 959–964. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, L.; Zhang, S.; Shen, X.; Huang, C. Specific “light-up” sensor made easy: An aggregation induced emission monomer for molecular imprinting. Biosens. Bioelectron. 2022, 205, 114113. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, Y.; Lei, S.; Liu, Z.; Li, G.; Ye, B. Sensitive determination of baicalein based on functionalized graphene loaded RuO2 nanoparticles modified glassy carbon electrode. Talanta 2018, 188, 714–721. [Google Scholar] [CrossRef]
- Meng, R.; Tang, J.; Wu, X.; Zhang, S.; Wang, X.; Li, Q.; Jin, R. Molecularly imprinted electrochemical sensor based on 3D wormlike PEDOT-PPy polymer for the sensitive determination of rutin in flos sophorae immaturus. J. Electrochem. Soc. 2021, 168, 077521. [Google Scholar] [CrossRef]
- Niu, E.N.; Li, G.G.; Li, H.F.; Cui, F.; Zhang, J.; Huang, Y.; Chen, K.; Zhang, J.F.; Li, W.F.; Liu, W.L. A novel genistein electrochemical sensor based on molecularly imprinted Polycarbazole/Carboxylated multiwalled carbon nanotubes nanocomposite. Chin. J. Anal. Chem. 2019, 47, e19095–e19103. [Google Scholar] [CrossRef]
- You, Z.; Fu, Y.; Xiao, A.; Liu, L.; Huang, S. Magnetic molecularly imprinting polymers and reduced graphene oxide modified electrochemical sensor for the selective and sensitive determination of luteolin in natural extract. Arab. J. Chem. 2021, 14, 102900. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, R.; Lin, H.; Wei, Q.; Hu, F.; Yang, X. Novel plant flavonoid electrochemical sensor based on in-situ and controllable double-layered membranes modified electrode. PLoS ONE 2020, 15, e0237583. [Google Scholar] [CrossRef]
- Altintas, Z.; Warrior, A.; Piletsky, Ltd.; Tothill, I.E. NanoMIP based optical sensor for pharmaceuticals monitoring. Sens. Actuators B Chem. 2015, 213, 305–313. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly imprinted polymers based optical fiber sensors: A review. TrAC Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Ghatak, B.; Banerjee, S.; Ali, S.B.; Das, N.; Tudu, B.; Pramanik, P.; Mukherji, S.; Bandyopadhyay, R. Development of a low-cost portable aroma sensing system for identifying artificially ripened mango. Sens. Actuators A Phys. 2021, 331, 112964. [Google Scholar] [CrossRef]
- Latyshev, V.M.; Berestok, T.O.; Opanasyuk, A.S.; Kornyushchenko, A.S.; Perekrestov, V.I. Nanostructured ZnO films for potential use in LPG gas sensors. Solid State Sci. 2017, 67, 109–113. [Google Scholar] [CrossRef]
Targets Flavonoids | Type of Polymerization | Imprinting System | Polymerization Initiation Methods | Porogen | IF * | Binding Capacity (mg/g) | Ref. * |
---|---|---|---|---|---|---|---|
Flavonoid aglycons | Bulk polymerization | AA *; EDMA * | Thermal initiation | - | - | 0.212 | [28] |
Quercetin | 4-VP; EDMA | Thermal initiation | AC * | - | - | [29] | |
Quercetin | 4-VP; EDMA | Thermal initiation | THF * | - | 0.397 | [30] | |
Quercetin | DES *; EDMA | Thermal initiation | ACN * | - | 23.6 | [31] | |
Schisandrin b | DES; EDMA | Thermal initiation | ACN | - | 41.6 | [31] | |
Hesperidin | Precipitation polymerization | AA; EDMA | Thermal initiation | - | 2.7 | - | [36] |
Myricetin | 4-VP, GMA *; EDMA | Thermal initiation | MeOH *-ACN | 4.9 | 11.8 | [37] | |
Quercetin | MAA; EDMA | Thermal initiation | MeOH | - | 85.5 | [38] | |
Biochanin A | DEM *; EDMA | Thermal initiation | ACN-PhMe * | 14 | - | [39] | |
Chrysin | MAA, AA; EDMA | Thermal initiation | - | 1.5 | 210 | [40] | |
Quercetin | Surface imprinting | AA, EDMA | Thermal initiation | - | - | 33.0 | [43] |
Quercetin | MC *-modified Fe3O4; EDMA | Thermal initiation | ACN-DMSO * | - | 10.5 | [44] | |
Quercetin | 4-VP; EDMA | Thermal initiation | AC | 1.8 | - | [45] | |
Quercetin | 4-VP; EDMA | Thermal initiation | - | - | - | [46] | |
Quercetin Baicalein Luteolin | TEOS *; EDMA | None | - | 9.4; 6.6; 11 | - | [47] | |
Quercetin | AA; EDMA | Thermal initiation | - | 6.7 | 0.593 × 10−4 | [48] | |
Myricetin | APBA *; EDMA | None | - | 7.9 | - | [49] | |
Rutin | DA *, Fe3O4@HPBA *; EDMA | None | - | 7.1 | 8.10 | [50] | |
Morin | AA; EDMA | Thermal initiation | ACN | 3.1 | 3.20 | [51] | |
Kaempferol | AA; EDMA | Thermal initiation | ACN | 3.0 | 3.84 | [52] | |
Farrerol | 4-VP; EDMA | Thermal initiation | - | - | 5.80 | [53] | |
Naringin | MAA, AA; EDMA | None | - | - | - | [54] | |
Naringin | DA; EDMA | None | - | 2.9 | - | [55] | |
Hesperidin | N-IPAM *; EDMA | Thermal initiation | ACN-MeOH | - | 16.6 | [56] | |
Luteolin | EDOT *; EDMA | None | - | - | - | [57] | |
Luteolin | β-CD *; EDMA | None | - | - | - | [58] | |
Formononetin | N-IPAM, MAA; EDMA | Thermal initiation | - | - | 16.4 | [59] | |
Phloridzin | Fe3O4@SiO2@NH2; EDMA | Thermal initiation | ACN | 3.6 | 14.6 | [60] | |
Silybin | MAA; EDMA | None | ACN | 2.1 | 15.4 | [61] | |
Quercetin | Emulsion polymerization | TEOS; EDMA | None | - | - | - | [65] |
Naringin, genistein | 4-VP; EDMA | Thermal initiation | CHCl3 * | - | - | [66] | |
Rutin | DMAPMA *; EDMA | Thermal initiation | DMSO | - | - | [67] | |
Quercetin | 4-VP; DVB * | Thermal initiation | - | 4.4 | 0.521 | [73] |
Targets | Samples | Separation Method | Recovery (%) | Detection | LOD (μg/mL) | Ref. |
---|---|---|---|---|---|---|
Total flavonoids | Astragali Radix | Traditional SPE | 97.6 | HPLC *-UV * | - | [28] |
Myricetin | Safflower flowers of A. manihot | 79.8–83.9; 81.5–84.3 | HPLC-DAD * | - | [37] | |
Quercetin | Gingko Leaves | 55.1 | HPLC-UV | - | [45] | |
Naringin | Citri Grandis | 84.4 | HPLC-UV | - | [55] | |
Naringin Genistein | Herbal medicines | - | HPLC | - | [66] | |
Quercetin Isorhamnetin Kaempferol | Ginkgo Bloba Leaves | 97.6 | HPLC-UV | - | [75] | |
Quercetin Schisandrin b | Blood samples of the mice | dSPE | - | HPLC | - | [31] |
Quercetin Schisandrin b | Dried Schisandra, Dried Penthorum | - | HPLC | - | [31] | |
Luteolin | Four herbs | 93.9–114 | HPLC | 0.020 | [76] | |
Kaempferol | Sea Buckthorn Leaves | >90.0 | HPLC | - | [77] | |
Genistein | Milk | - | MECC *-UV | - | [78] | |
Quercetin | Red wine | 99.7–100 | HPLC-UV | 0.058 | [79] | |
Quercetin | Red onion | Magnetic dSPE | 96.0–98.6 | UV | 0.06 | [38] |
Quercetin | Apple | 89.2–93.6 | HPLC | 0.20 | [44] | |
Rutin | Sophora Japonica | 87.2–94.6 | HPLC | 60.0 × 10−3 | [50] | |
Kaempferol | Apple | 90.5–95.4 | HPLC-UV | 6.8 × 103 | [52] | |
Hesperitin | Dried Pericarp of Citrus Reticulata Blanco | 90.5–96.9 | HPLC-DAD | 0.60 × 102 | [56] | |
Phloridzin | M. Doumeri Leaves and rats’ Plasma | 81.5–90.3 | HPLC | 0.06; 0.01 | [60] | |
Luteolin | Honeysuckle Leaves | - | HPLC | - | [83] | |
Activated epimedium glycosides | Bone and testicle of rats | - | UPLC-MS * | - | [84]] | |
Baicalein | Scutellaria Baicalensis Georgi | 91.6–99.3 | HPLC-DAD | 0.0387 | [85] | |
Quercetin Isorhamnetin Kaempferol | Ginkgo Biloba Leaves | 96.8;93.6; 94.8 | HPLC-UV | - | [86] | |
Quercetin | - | MIMs * based SPE | - | - | - | [89] |
Quercetin | - | - | - | - | [90] | |
Hesperetin | Livers of live rats in vivo | 81.4–92.9 | HPLC | 0.02 | [91] |
Targets | Samples | Types of Sensors | Linear Range (mol/L) | Recovery (%) | LOD (mol/L) | Ref. |
---|---|---|---|---|---|---|
Luteolin | Gnaphalium Affine | Electrochemical sensor | 0.3–30 × 10−6 | - | 0.04 × 10−6 | [57] |
Luteolin | Duyiwei capsule | 5.0 × 10−8–3.0 × 10−5 | - | 2.4 × 10−8 | [58] | |
Baicalein | Baicalein aluminum capsule | 0.2–40 × 10−8 | - | 0.6 × 10−9 | [96] | |
Rutin | Sophora Japonica | 0.05 × 10−9–1 × 10−6; 0.5–5 × 10−5 | - | 2.4 × 10−10 | [97] | |
Genistein | Human urine tablets | 0.02–7 × 10−6 | 97.9–103 | 0.6 × 10−8 | [98] | |
Luteolin | Lotus leaves | 2.5 × 10−12–0.1 × 10−6 | 98.5–101 | 1.0 × 10−12 | [99] | |
Dihydromyricetin | Ampelopsis grossedenta | 2.0 × 10−8–1.0 × 10−4 | - | 1.2 × 10−8 | [100] | |
Quercetin | Ginkgo biloba extract capsule | Optical sensor | 0–50 × 10−6 | - | 2.9 × 10−9 | [46] |
Cis-diol-containing flavonoids | Onion skin urine | - | 83.5–104; 86.7–105 | 0.2 × 10−7 | [47] | |
Myricetin | Green tea, apple juice | 0.3–40 × 10−6 | - | 0.8 × 10−7 | [49] | |
Quercetin | Grape Juice tea juice black tea red wine | 0.0312–3.1 × 10−6 | 90.7–94.1 | 2.5 × 10−9 | [65] | |
DHF | Mango | Quartz crystal microbalance sensor | - | - | - | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Shen, X. Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules 2022, 27, 7355. https://doi.org/10.3390/molecules27217355
Yang Y, Shen X. Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules. 2022; 27(21):7355. https://doi.org/10.3390/molecules27217355
Chicago/Turabian StyleYang, Yurou, and Xiantao Shen. 2022. "Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective" Molecules 27, no. 21: 7355. https://doi.org/10.3390/molecules27217355
APA StyleYang, Y., & Shen, X. (2022). Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules, 27(21), 7355. https://doi.org/10.3390/molecules27217355