Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization of Cymbopogon citratus Phenolic Fractions
2.2. Method Development for In Vitro Cholesterol Micellar Solubility Assay
2.2.1. Wavelength Selection
2.2.2. Cholesterol/Reagent Ratio to Be Used in the Assay
2.2.3. Time and Stability of the Reaction
2.2.4. Liebermann–Burchard Reagent Incompatibilities
2.2.5. Bile Acids Interference Evaluation
2.3. Effect of Cymbopogon citratus Leaf Extracts and of Its Phenolic Compounds on Cholesterol Micellar Solubility
3. Materials and Methods
3.1. Plant Material
3.2. Reagents and Materials
3.3. Preparation of Extracts and Fractions
3.4. Phytochemical Analysis
3.4.1. Thin Layer Chromatography (TLC)
System S1
System S2
3.4.2. High Pressure Liquid Chromatography Coupled to Photodiode Array Detector (HPLC-PDA)
3.5. In Vitro Evaluation of Micellar Solubility
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
Micelle Destruction (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | Non-Delipidified Extract (CcI) | Delipidified Extract (CcdI) | Phenolic Acids Fraction (CcPA) | Flavonoids Fraction (CcF) | Tannins Fraction (CcT) | Luteolin | Luteolin-7-O- glucoside | Luteolin-6-C- glucoside |
0.0001 | - | - | - | - | - | 54.53 ± 1.21 | 15.52 ± 1.21 | 11.93 ± 1.45 |
0.0005 | - | - | - | - | - | 78.99 ± 1.26 | 25.22 ± 1.11 | 16.65 ± 1.15 |
0.001 | - | - | - | 13.09 ± 1.11 | - | 94.83 ± 0.74 | 32.87 ± 1.15 | 20.99 ± 1.26 |
0.005 | - | - | - | 23.63 ± 1.21 | - | 72.51 ± 1.07 | 58.14 ± 1.07 | 40.37 ± 1.21 |
0.01 | - | - | - | 30.95 ± 1.56 | 0.99 ± 0.02 | 50.45 ± 0.72 | 83.01 ± 1.21 | 56.29 ± 1.56 |
0.025 | - | - | - | - | - | 37.16 ± 0.89 | 93.71 ± 0.93 | 82.97 ± 1.45 |
0.05 | - | - | - | 45.59 ± 0.71 | 18.80 ± 0.21 | 24.81 ± 0.63 | 70.85 ± 1.07 | 91.26 ± 1.54 |
0.1 | - | - | 3.90 ± 0.43 | 52.37 ± 1.45 | 38.33 ± 0.65 | 16.34 ± 1.11 | 55.61 ± 1.21 | 68.36 ± 1.21 |
0.5 | - | - | 6.66 ± 0.41 | 80.93 ± 2.12 | 47.94 ± 0.61 | - | - | - |
1 | - | - | 7.27 ± 0.19 | 92.74 ± 1.15 | 51.98 ± 0.89 | - | - | - |
2 | - | - | 8.15 ± 0.28 | 88.95 ± 1.07 | 58.87 ± 0.38 | - | - | - |
5 | 23.41 ± 2.27 | 20.08 ± 2.88 | 9.04 ± 0.45 | 76.34 ± 1.95 | 81.38 ± 0.67 | - | - | - |
10 | 27.69 ± 2.12 | 22.99 ± 2.94 | 10.06 ± 0.29 | 64.62 ± 2.38 | 94.56 ± 0.23 | - | - | - |
25 | 57.08 ± 1.89 | 26.66 ± 1.66 | 14.17 ± 0.37 | 59.32 ± 2.96 | 99.45 ± 0.06 | - | - | - |
50 | 59.22 ± 1.15 | 47.74 ± 2.14 | 17.25 ± 0.28 | 54.32 ± 3.15 | 97.53 ± 0.63 | - | - | - |
100 | 58.12 ± 1.69 | 51.04 ± 1.84 | 23.85 ± 0.54 | 49.32 ± 3.25 | 88.47 ± 0.72 | - | - | - |
200 | 42.87 ± 2.25 | 58.01 ± 0.96 | 17.05 ± 0.72 | 33.28 ± 2.08 | 85.80 ± 0.93 | - | - | - |
400 | 38.07 ± 1.30 | 35.18 ± 1.68 | - | - | - | - | - | - |
References
- Aje, T.O. Cardiovascular disease: A global problem extending into the developing world. World J. Cardiol. 2009, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Miller, M. Managing mixed dyslipidemia in special populations. Prev. Cardiol. 2010, 13, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Sehayek, E. Genetic regulation of cholesterol absorption and plasma plant sterol levels: Commonalities and differences. J. Lipid Res. 2003, 44, 2030–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, D.E. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J. Clin. Lipidol. 2008, 2, 10–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.M.; Tymoczko, J.L.; Gatto, G.J., Jr.; Stryer, L. Biochemistry, 8th ed.; W. H. Freeman: New York, NY, USA, 2015; ISBN 978-1464126109. [Google Scholar]
- Mayes, P.A.; Botham, K.M. Cholesterol synthesis, transport & excretion. In Harper’s Illustrated Biochemistry; The McGraw-Hill Companies: New York, NY, USA, 2018; ISBN 978-1-259-83793-7. [Google Scholar]
- Medical Biochemistry, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780702072994.
- Wilkinson, M.J.; Laffin, L.J.; Davidson, M.H. Overcoming toxicity and side-effects of lipid-lowering therapies. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 439–452. [Google Scholar] [CrossRef]
- Nekohashi, M.; Ogawa, M.; Ogihara, T.; Nakazawa, K.; Kato, H.; Misaka, T.; Abe, K.; Kobayashi, S. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter Niemann-Pick C1-Like 1 in Caco-2 cells and rats. PLoS ONE 2014, 9, e97901. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.C.; Bonato, R.R. Cymbopogon citratus (D.C.) Stapf: Botanical and ecological aspects. Visão Acadêmica 2003, 4, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef]
- Manvitha, K.; Bidya, B. Review on pharmacological activity of Cymbopogon citratus. Int. J. Herb. Med. 2014, 1, 5–7. [Google Scholar]
- Francisco, V.; Costa, G.; Figueirinha, A.; Marques, C.; Pereira, P.; Miguel Neves, B.; Celeste Lopes, M.; García-Rodríguez, C.; Teresa Cruz, M.; Teresa Batista, M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. J. Ethnopharmacol. 2013, 148, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Lopes, M.C.; García-Rodríguez, C.; Geraldes, C.F.G.C.; Cruz, M.T.; Batista, M.T. Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J. Funct. Foods 2014, 10, 436–443. [Google Scholar] [CrossRef]
- Adeneye, A.A.; Agbaje, E.O. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats. J. Ethnopharmacol. 2007, 112, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Agbafor, K.N.; Akubugwo, E.I. Hypocholesterolaemic effect of ethanolic extract of fresh leaves of Cymbopogon citratus (lemongrass). African J. Biotechnol. 2007, 6, 596–598. [Google Scholar] [CrossRef]
- Morgado, E.B.; Madariaga, Y.G.; Román, R.E.; Toledo, D.B.; Machado, F.B.; Montalván, C.M.M. Evaluation of hypolipidemic potential of Cymbopogon citratus S. in a model of acute hyperlipidemia. Medicent Electrón 2015, 19, 1–12. [Google Scholar]
- Costa, G.; Grangeia, H.; Figueirinha, A.; Figueiredo, I.V.; Batista, M.T. Influence of harvest date and material quality on polyphenolic content and antioxidant activity of Cymbopogon citratus infusion. Ind. Crops Prod. 2016, 83, 738–745. [Google Scholar] [CrossRef]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Costa, G.; González-Manzano, S.; González-Paramás, A.; Figueiredo, I.V.; Santos-Buelga, C.; Batista, M.T. Flavan hetero-dimers in the Cymbopogon citratus infusion tannin fraction and their contribution to the antioxidant activity. Food Funct. 2015, 6, 932–937. [Google Scholar] [CrossRef]
- Ikeda, I.; Yamahira, T.; Kato, M.; Ishikawa, A. Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J. Agric. Food Chem. 2010, 58, 8591–8595. [Google Scholar] [CrossRef]
- Kenny, A.P. The determination of cholesterol by the Liebermann-Burchard reaction. Biochem. J. 1952, 52, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Putney, B.F.; Calvo, R. The spectrophotometric determination of sterols in wool fat. J. Am. Pharm. Assoc. Am. Pharm. Assoc. (Baltim) 1958, 47, 205–210. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S. Análises Químicas, Propriedades Funcionais e Controle da Qualidade de Alimentos e Bebidas—Uma Abordagem Teórico-Prática; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-8535283563. [Google Scholar]
- Kim, E.; Goldberg, M. Serum Cholesterol Assay Using a Stable Liebermann-Burchard Reagent. Clin. Chem. 1969, 15, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.B.D.C.; Silva, S.L.; Galvão, M.A.M.; Ferreira, M.R.A.; Araújo, E.L.; Randau, K.P.; Soares, L.A.L. Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Brazilian J. Pharmacogn. 2013, 23, 736–742. [Google Scholar] [CrossRef]
- Luden, G. Studies on Cholesterol. J. Biol. Chem. 1917, 29, 463–476. [Google Scholar] [CrossRef]
- Verma, R.K.; Verma, R.S.; Chauhan, A.; Bisht, A. Evaluation of essential oil yield and chemical composition of eight lemongrass (Cymbopogon spp.) cultivars under Himalayan region. J. Essent. Oil Res. 2015, 27, 197–203. [Google Scholar] [CrossRef]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Behling, E.B.; Sendão, M.C.; Francescato, H.D.C.; Antunes, L.M.G.; Bianchi, M.D.L.P. Flavonóide quercetina: Aspectos gerais e ações biológicas. Aliment. E Nutr. Araraquara 2004, 15, 285–292. [Google Scholar]
- Sun, J.; Wang, Z.; Chen, L.; Sun, G. Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats. Antioxidants 2021, 10, 1309. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Guo, K.; Xu, J.; Liu, W.; Chen, J.; Xu, C.; Chen, L. Study on the interaction between catechin and cholesterol by the density functional theory. Open Chem. 2020, 18, 357–368. [Google Scholar] [CrossRef]
- Ngamukote, S.; Mäkynen, K.; Thilawech, T.; Adisakwattana, S. Cholesterol-Lowering Activity of the Major Polyphenols in Grape Seed. Molecules 2011, 16, 5054–5061. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S. The Effect of Polyphenols on Hypercholesterolemia through Inhibiting the Transport and Expression of Niemann–Pick C1-Like 1. Int. J. Mol. Sci. 2019, 20, 4939. [Google Scholar] [CrossRef] [Green Version]
- Thilavech, T.; Adisakwattana, S. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement. Altern. Med. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Bergonzi, M.C.; Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Bergonzi, M.C. Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food Nutr. Sci. 2014, 5, 1212–1327. [Google Scholar] [CrossRef]
- Beecher, G.R. Proanthocyanidins: Biological Activities Associated with Human Health. Pharm. Biol. 2004, 42, 2–20. [Google Scholar] [CrossRef]
- Cires, M.J.; Wong, X.; Carrasco-Pozo, C.; Gotteland, M. The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Front. Nutr. 2017, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.; Roque, O.R. Esteróis e triterpenos: ácidos biliares, precursores da vitamina D e fitosteróides, cardiotónicos, hormonas esteróides, matérias-primas de núcleo esteróide usadas em sínteses parciais e saponósidos. In Farmacognosia e fitoquímica; Calouste Gulbenkian Foundation: Lisabon, Portugal, 2005; pp. 432–482. ISBN 978-9723111422. [Google Scholar]
- Matos, P.; Figueirinha, A.; Ferreira, I.; Cruz, M.T.; Batista, M.T. Acanthus mollis L. leaves as source of anti-inflammatory and antioxidant phytoconstituents. Nat. Prod. Res. 2019, 33, 1824–1827. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Bailón, T.; Gutiérrez-Fernández, Y.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Characterization of Procyanidins of Vitis vinifera Variety Tinta del Pais Grape Seeds. J. Agric. Food Chem. 1992, 40, 1794–1799. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-540-58676-0. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Ressurreição, S.; Pedreiro, S.; Batista, M.T.; Figueirinha, A. Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules 2022, 27, 7338. https://doi.org/10.3390/molecules27217338
Da Ressurreição S, Pedreiro S, Batista MT, Figueirinha A. Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules. 2022; 27(21):7338. https://doi.org/10.3390/molecules27217338
Chicago/Turabian StyleDa Ressurreição, Sandrine, Sónia Pedreiro, Maria Teresa Batista, and Artur Figueirinha. 2022. "Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol" Molecules 27, no. 21: 7338. https://doi.org/10.3390/molecules27217338
APA StyleDa Ressurreição, S., Pedreiro, S., Batista, M. T., & Figueirinha, A. (2022). Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules, 27(21), 7338. https://doi.org/10.3390/molecules27217338