Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Methods
- (1)
- The symbol β refers to the total equilibrium constant of the reaction with the general formula mH + nL + pAu + qOH = Aup(OH)qLnHm;
- (2)
- The symbol Kbm refers to the stepwise protonation constant of the process with the general formula AuLHm-1 + H = AuLHm;
- (3)
- The symbol Kfm refers to the equilibrium constant of the reaction of gold(III) binding to the protonated ligands with the general formula Au + HmL = AuLHm.
4. Conclusions
- Why are the UV–Vis spectra of gold(III) complexes with hydrazones similar to those of free hydrazones? The high-level quantum chemical calculations might be of great use to answer this question.
- Because gold(III) is not completely bound to the complex with hydrazone, the study of the interactions between gold(III) (in the form of a tetrachloroaurate or mixed chloride and hydroxyl complex) and proteins or DNA is in order.
- Would the gold(III) complexes with hydrazones dissociate completely in the presence of proteins or nucleic acid?
- Would gold(III) complexes with hydrazones derived from pyridoxal 5′-phosphate have any effect against pathogenic microorganisms?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Marzo, T.; Cirri, D.; Pollini, S.; Prato, M.; Fallani, S.; Cassetta, M.I.; Novelli, A.; Rossolini, G.M.; Messori, L. Auranofin and its Analogues Show Potent Antimicrobial Activity against Multidrug-Resistant Pathogens: Structure–Activity Relationships. ChemMedChem 2018, 13, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Chen, C.; Wang, Q.; Gao, Z.; Xu, M. Cytotoxicity and DNA Binding Ability of Two Novel Gold(III) Complexes. J. Appl. Spectrosc. 2019, 86, 618–622. [Google Scholar] [CrossRef]
- Sankarganesh, M.; Raja, J.D.; Revathi, N.; Solomon, R.V.; Kumar, R.S. Gold(III) complex from pyrimidine and morpholine analogue Schiff base ligand: Synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. J. Mol. Liq. 2019, 294, 111655. [Google Scholar] [CrossRef]
- Abyar, F.; Tabrizi, L. New cyclometalated gold (III) complex targeting thioredoxin reductase: Exploring as cytotoxic agents and mechanistic insights. Biometals 2020, 33, 107–122. [Google Scholar] [CrossRef]
- Radisavljević, S.; Kesić, A.D.; Ćoćić, D.; Puchta, R.; Senft, L.; Milutinović, M.; Milivojević, N.; Petrović, B. Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(III) complexes. New J. Chem. 2020, 44, 11172–11187. [Google Scholar] [CrossRef]
- Glisic, B.D.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014, 43, 5950–5969. [Google Scholar] [CrossRef]
- Pooja, P.; Ramesh, K.; Sourabh; Amit, K.; Pratibha, C.; Rajeev, S. Reviewing Gold(III) complexes as effective biological operators. Main Group Chem. 2018, 17, 35–52. [Google Scholar] [CrossRef]
- Kanthecha, D.N.; Bhatt, B.S.; Patel, M.N.; Vaidya, F.M.; Pathak, C. DNA interaction, anticancer, cytotoxicity and genotoxicity studies with potential pyrazine-bipyrazole dinuclear µ-oxo bridged Au(III) complexes. Mol. Divers. 2022, 26, 2085–2101. [Google Scholar] [CrossRef]
- Al-Khodir, F.A.I.; Refat, M.S. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes. J. Mol. Struct. 2016, 1119, 157–166. [Google Scholar] [CrossRef]
- Radulović, N.C.; Stojanović, N.M.; Glišić, B.D.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Mitić, K.V.; Nikolić, M.G.; Djuran, M.I. Water-soluble gold(III) complexes with N-donor ligands as potential immunomodulatory and antibiofilm agents. Polyhedron 2018, 141, 164–180. [Google Scholar] [CrossRef]
- Hussain, I.; Ullah, A.; Khan, A.U.; Khan, W.U.; Ullah, R.; Naser, A.A.S.A.A.; Mahmood, H.M. Synthesis, Characterization and Biological Activities of Hydrazone Schiff Base and its Novel Metals Complexes. Sains Malays. 2019, 48, 1439–1446. [Google Scholar] [CrossRef]
- Melha, K.S.A.A.; Al-Hazmi, G.A.A.; Refat, M.S. Synthesis of Nano-Metric Gold Complexes with New Schiff Bases Derived from 4-Aminoantipyrene, Their Structures and Anticancer Activity. Russ. J. Gen. Chem. 2017, 87, 3043–3051. [Google Scholar] [CrossRef]
- Alibrahim, K.A.; Al-Saif, F.A.; Bakhsh, H.A.; Refat, M.S. Synthesis, Physicochemical, and Biological Studies of New Pyridoxine HCl Mononuclear Drug Complexes of V(III), Ru(III), Pt(II), Se(IV), and Au(III) Metal Ions. Russ. J. Gen. Chem. 2018, 88, 2400–2409. [Google Scholar] [CrossRef]
- Van der Westhuizen, D.; Slabber, C.A.; Fernandes, M.A.; Joubert, D.F.; Kleinhans, G.; van der Westhuizen, C.J.; Stander, A.; Munro, O.Q.; Bezuidenhout, D.I. A Cytotoxic Bis(1,2,3-triazol-5-ylidene)carbazolide Gold(III) Complex Targets DNA by Partial Intercalation. Chem. Eur. J. 2021, 27, 8295–8307. [Google Scholar] [CrossRef]
- Messori, L.; Orioli, P.; Tempi, C.; Marcon, G. Interactions of Selected Gold(III) Complexes with Calf Thymus DNA. Biochem. Biophys. Res. Commun. 2001, 281, 352–360. [Google Scholar] [CrossRef]
- Yang, T.; Tu, C.; Zhang, J.; Lin, L.; Zhang, X.; Liu, Q.; Ding, J.; Xu, Q.; Guo, Z. Novel Au(III) complexes of aminoquinoline derivatives: Crystal structure, DNA binding and cytotoxicity against melanoma and lung tumour cells. Dalton Trans. 2003, 3419–3424. [Google Scholar] [CrossRef]
- Malik, M.; Bieńko, D.C.; Komarnicka, U.K.; Kyzioł, A.; Dryś, M.; Świtlicka, A.; Dyguda-Kazimierowicz, E.; Jedwabny, W. Synthesis, structural characterization, docking simulation and in vitro antiproliferative activity of the new gold(III) complex with 2-pyridineethanol. J. Inorg. Biochem. 2021, 215, 111311. [Google Scholar] [CrossRef]
- Possato, B.; Dalmolin, L.F.; Pereira, L.M.; Alves, J.Q.; Silva, R.T.C.; Gelamo, R.V.; Yatsuda, A.P.; Lopez, R.F.V.; de Albuquerque, S.; Leite, N.B.; et al. Gold(III) complexes with thiosemicarbazonate ligands as potential anticancer agents: Cytotoxicity and interactions with biomolecular targets. Eur. J. Pharm. Sci. 2021, 162, 105834. [Google Scholar] [CrossRef]
- Radisavljević, S.; Scheurer, A.; Bockfeld, D.; Ćoćić, D.; Puchta, R.; Senft, L.; Pešić, M.; Damljanović, I.; Petrović, B. New mononuclear gold(III) complexes: Synthesis, characterization, kinetic, mechanistic, DNA/BSA/HSA binding, DFT and molecular docking studies. Polyhedron 2021, 209, 115446. [Google Scholar] [CrossRef]
- Masaaki, T.; Ahsan, H.; Keiichi, W. DNA Cleavage by Good’s Buffers in the Presence of Au(III). Bull. Chem. Soc. Jpn. 2005, 78, 1263–1269. [Google Scholar] [CrossRef]
- Jordan, A.; Åslund, F.; Pontis, E.; Reichard, P.; Holmgren, A. Characterization of Escherichia coli NrdH: A GLUTAREDOXIN-LIKE PROTEIN WITH A THIOREDOXIN-LIKE ACTIVITY PROFILE. J. Biol. Chem. 1997, 272, 18044–18050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phulera, S.; Mande, S.C. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 Å Suggests a Possible Mode of Its Activity. Biochemistry 2013, 52, 4056–4065. [Google Scholar] [CrossRef] [PubMed]
- Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K.S.; Ashfaq, M.; Tahir, M.N. Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium(V) complex with aminobenzohydrazone Schiff base ligand: An experimental and theoretical approach. Inorg. Chim. Acta 2021, 526, 120535. [Google Scholar] [CrossRef]
- Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K.S.; Ashfaq, M.; Tahir, M.N. Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): Synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J. Mol. Struct. 2022, 1250, 131691. [Google Scholar] [CrossRef]
- Alsharif, M.A.; Naeem, N.; Mughal, E.U.; Sadiq, A.; Jassas, R.S.; Kausar, S.; Altaf, A.A.; Zafar, M.N.; Mumtaz, A.; Obaid, R.J.; et al. Experimental and theoretical insights into the photophysical and electrochemical properties of flavone-based hydrazones. J. Mol. Struct. 2021, 1244, 130965. [Google Scholar] [CrossRef]
- Alsantali, R.A.; Mughal, E.U.; Naeem, N.; Alsharif, M.A.; Sadiq, A.; Ali, A.; Jassas, R.S.; Javed, Q.; Javid, A.; Sumrra, S.H.; et al. Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J. Mol. Struct. 2022, 1251, 131933. [Google Scholar] [CrossRef]
- Gamov, G.A.; Zavalishin, M.N.; Petrova, M.V.; Khokhlova, A.Y.; Gashnikova, A.V.; Kiselev, A.N.; Sharnin, V.A. Interaction of pyridoxal-derived hydrazones with anions and Co2+, Co3+, Ni2+, Zn2+ cations. Phys. Chem. Liq. 2021, 59, 666–678. [Google Scholar] [CrossRef]
- Gamov, G.A.; Khodov, I.A.; Belov, K.V.; Zavalishin, M.N.; Kiselev, A.N.; Usacheva, T.R.; Sharnin, V.A. Spatial structure, thermodynamics and kinetics of formation of hydrazones derived from pyridoxal 5′-phosphate and 2-furoic, thiophene-2-carboxylic hydrazides in solution. J. Mol. Liq. 2019, 283, 825–833. [Google Scholar] [CrossRef]
- Gamov, G.A.; Zavalishin, M.N.; Aleksandriiskii, V.V.; Sharnin, V.A. Pyrazine-2-carbohydrazone of Pyridoxal 5′-Phosphate: Synthesis, Stability, Formation Kinetics, and Interaction with DNA. Russ. J. Gen. Chem. 2019, 89, 230–235. [Google Scholar] [CrossRef]
- Gamov, G.A.; Aleksandriiskii, V.V.; Zavalishin, M.N.; Khokhlova, A.Y.; Sharnin, V.A. The Schiff bases of pyridoxal-5-phosphate and hydrazides of certain pyrazoles: Stability, kinetics of formation, and synthesis. Russ. J. Gen. Chem. 2017, 87, 1161–1166. [Google Scholar] [CrossRef]
- Gamov, G.A.; Kiselev, A.N.; Aleksandriiskii, V.V.; Sharnin, V.A. Influence of regioisomerism on stability, formation kinetics and ascorbate oxidation preventive properties of Schiff bases derived from pyridinecarboxylic acids hydrazides and pyridoxal 5′-phosphate. J. Mol. Liq. 2017, 242, 1148–1155. [Google Scholar] [CrossRef]
- Brittenham, G.M. Pyridoxal Isonicotinoyl Hydrazone. Effective Iron Chelation after Oral Administration. Ann. N. Y. Acad. Sci. 1990, 612, 315–326. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Druzhilovskiy, D.S.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Dmitriev, A.V.; Pogodin, P.V.; Poroikov, V.V. Computer-aided Prediction of Biological Activity Spectra for Chemical Compounds: Opportunities and Limitations. Biomed. Chem. Res. Methods 2018, 1, e00004. [Google Scholar] [CrossRef] [Green Version]
- Radisavljević, S.; Petrović, B. Gold(III) Complexes: An Overview on Their Kinetics, Interactions With DNA/BSA, Cytotoxic Activity, and Computational Calculations. Front. Chem. 2020, 8, 379. [Google Scholar] [CrossRef]
- Reddy, T.S.; Privér, S.H.; Mirzadeh, N.; Luwor, R.B.; Reddy, V.G.; Ramesan, S.; Bhargava, S.K. Antitumor and Antiangiogenic Properties of Gold(III) Complexes Containing Cycloaurated Triphenylphosphine Sulfide Ligands. Inorg. Chem. 2020, 59, 5662–5673. [Google Scholar] [CrossRef]
- Gamov, G.A.; Zavalishin, M.N.; Sharnin, V.A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV–Vis data. Spectrochim. Acta Part A Mol. Biomol. Spec. 2019, 206, 160–164. [Google Scholar] [CrossRef]
- Gamov, G.A. Processing of the spectrofluorimetric data using the graphical methods and the maximum likelihood approach. Spectrochim. Acta Part A Mol. Biomol. Spec. 2021, 249, 119334. [Google Scholar] [CrossRef]
- Mironov, I.V. Communication about properties of hydroxyl and aquahydroxyl complexes of gold(III) in aqueous solution. Zh. Neorg. Khim. 2005, 50, 1204–1209. (In Russian) [Google Scholar]
- Mironov, I.V.; Tsvelodub, L.D. Equilibria of Cl− substitution by ammonia, ethylenediamine and diethylenetriamine in the AuCl4− complex in aqueous solution. Zh. Neorg. Khim. 2000, 45, 425–430. (In Russian) [Google Scholar]
- Mironov, I.V.; Tsvelodub, L.D. Chlorohydroxyl complexes of gold(III) in aqueous alkali solutions. Zh. Neorg. Khim. 2000, 45, 706–711. (In Russian) [Google Scholar]
- Wis Vitolo, L.M.; Hefter, G.T.; Clare, B.W.; Webb, J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part II. Formation constants with iron(III) and iron(II). Inorg. Chim. Acta 1990, 170, 171–176. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.; Bull, S.D.; He, X.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K. A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem. 2019, 116, 74–91. [Google Scholar] [CrossRef]
- Meshkov, A.N.; Gamov, G.A. KEV: A free software for calculating the equilibrium composition and determining the equilibrium constants using UV–Vis and potentiometric data. Talanta 2019, 198, 200–205. [Google Scholar] [CrossRef]
- Gamov, G.A.; Meshkov, A.N.; Zavalishin, M.N.; Khokhlova, A.Y.; Gashnikova, A.V.; Aleksandriiskii, V.V.; Sharnin, V.A. Protonation of hydrazones derived from pyridoxal 5′-phosphate: Thermodynamic and structural elucidation. J. Mol. Liq. 2020, 305, 112822. [Google Scholar] [CrossRef]
- Bandura, A.V.; Lvov, S.N. The Ionization Constant of Water over Wide Ranges of Temperature and Density. J. Phys. Chem. Ref. Data 2006, 35, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Zavalishin, M.N.; Gamov, G.A.; Pimenov, O.A.; Pogonin, A.E.; Aleksandriiskii, V.V.; Usoltsev, S.D.; Marfin, Y.S. Pyridoxal 5′-phosphate 2-methyl-3-furoylhydrazone as a selective sensor for Zn2+ ions in water and drug samples. J. Photochem. Photobiol. A Chem. 2022, 432, 114112. [Google Scholar] [CrossRef]
- Available online: http://www.way2drug.com/antibac/ (accessed on 11 October 2022).
Hydrazone | PLP-INH | PLP-F2H | PLP-F3H | PLP-T2H | PLP-T3H |
---|---|---|---|---|---|
log β (AuL) 1 | 11.2 ± 0.5 | 12.4 ± 0.9 | 12.0 ± 0.5 | 13.1 ± 0.8 | 12.5 ± 1.0 |
log β (AuHL) 1 | 17.8 ± 0.8 | 18.5 ± 0.6 | 18.6 ± 0.6 | 20.3 ± 0.6 | 18.4 ± 0.3 |
log β (AuH2L) 1 | 23.7 ± 0.9 | 24.1 ± 0.7 | 24.7 ± 0.7 | 26.0 ± 0.5 | 24.2 ± 0.2 |
log Kb1 2 | 6.6 ± 0.9 | 6.1 ± 1.1 | 6.6 ± 0.8 | 7.2 ± 1.0 | 5.9 ± 1.0 |
log Kb2 2 | 5.9 ± 1.2 | 5.6 ± 0.9 | 6.1 ± 0.9 | 5.7 ± 0.8 | 5.8 ± 0.4 |
log Kf1 3 | 6.4 ± 0.9 | 7.1 ± 0.6 | 7.2 ± 0.6 | 8.8 ± 0.6 | 6.9 ± 1.0 |
logKf2 3 | 4.1 ± 0.9 | 4.4 ± 0.7 | 5.0 ± 0.8 | 6.2 ± 0.7 | 4.9 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuranova, N.N.; Yarullin, D.N.; Zavalishin, M.N.; Gamov, G.A. Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution. Molecules 2022, 27, 7346. https://doi.org/10.3390/molecules27217346
Kuranova NN, Yarullin DN, Zavalishin MN, Gamov GA. Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution. Molecules. 2022; 27(21):7346. https://doi.org/10.3390/molecules27217346
Chicago/Turabian StyleKuranova, Natalia N., Daniil N. Yarullin, Maksim N. Zavalishin, and George A. Gamov. 2022. "Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution" Molecules 27, no. 21: 7346. https://doi.org/10.3390/molecules27217346
APA StyleKuranova, N. N., Yarullin, D. N., Zavalishin, M. N., & Gamov, G. A. (2022). Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution. Molecules, 27(21), 7346. https://doi.org/10.3390/molecules27217346