Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Chemical Composition of Myrtle Essential Oil
2.2. Antibacterial Efficiency of Myrtle Essential Oil Nanoemulsion
2.3. Characterization of Emulsions and Nanoemulsions Coating
2.4. Application of Nanoemulsion Edible Coatings on Cheese Samples
2.4.1. Antibacterial Activity against L. monocytogenes in Cheese Samples
2.4.2. Change of Physicochemical Properties of Cheese Samples
2.4.3. Sensory Evaluation
3. Materials and Methods
3.1. Materials
3.2. Bacterial Strains and Cultural Conditions
3.3. Analysis of the Composition of Essential Oil
3.4. Preparation and Characterization of Nanoemulsion
3.4.1. Nanoemulsion Preparation
3.4.2. Particle Size and Zeta Potential
3.4.3. Measurement of Minimum Inhibitory and Minimum Bactericidal Concentrations of Myrtle Essential Oil Emulsions and Nanoemulsions
3.4.4. Membrane Integrity
3.4.5. Field Emission Scanning Electron Microscopy (FESEM)
3.5. Preparation and Characterization of the Nanoemulsion Coating Solution
3.5.1. Preparation of Nanoemulsion-Coating Solution
3.5.2. Particle Size and Zeta Potential
3.5.3. Whiteness Index (WI)
3.6. Application of Coatings Solutions on Cheese Samples
3.6.1. Antibacterial Activity against Inoculated L. monocytogenes
3.6.2. Physicochemical Properties of Cheese
Water Activity, pH, and Color
Hardness Determination
3.6.3. Sensory Evaluation
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerard, A.; El-Haajjaji, A.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese—A review. Int. J. Dairy Technol. 2018, 1, 825–843. [Google Scholar] [CrossRef]
- Wemmwnhove, E.; Wells-Bennik, M.H.J.; Zwietering, M.H. A model to predict the fate of Listeria monocytogenes in different cheese types—A major role for undissociated lactic acid in addition to pH, water activity, and temperature. Int. J. Food Microbiol. 2021, 357, 109350. [Google Scholar] [CrossRef] [PubMed]
- Seydim, A.C.; Sarikus-Tutal, G.; Sogut, E. Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag. Shelf Life 2020, 26, 100567. [Google Scholar] [CrossRef]
- Yangılar, F. Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese. Korean J. Food Sci. Anim. Resour. 2015, 35, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Falleh, H.; Jemaa, M.B.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Abbas, S.; Hayat, K.; Karangwa, E.; Bashari, M.; Zhang, X. An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Eng. Rev. 2013, 5, 139–157. [Google Scholar] [CrossRef]
- Kong, I.; Degraeve, P.; Pui, L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods 2022, 11, 555. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food- grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Dhifi, W.; Jazi, S.; El Beyrouthy, M.; Sadaka, C.; Mnif, W. Assessing the potential and safety of Myrtus communis flower essential oils as efficient natural preservatives against Listeria monocytogenes growth in minced beef under refrigeration. Food Sci. Nutr. 2020, 8, 2076–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, C.; Silva, A.C.; García-Díez, J.; Cenci-Goga, B.; Grispoldi, L.; Silva, A.F.; Almeida, J.M. Antimicrobial Activity of Myrtus communis L. and Rosmarinus officinalis L. Essential Oils against Listeria monocytogenes in Cheese. Foods 2021, 10, 1106. [Google Scholar] [CrossRef] [PubMed]
- Fadil, M.; Benbrahim, K.F.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Hennia, A.; Nemmiche, S.; Dandlen, S.; Miguel, M.G. Myrtus communis essential oils: Insecticidal, antioxidant and antimicrobial activities: A review. J. Essent. Oil Res. 2019, 31, 487–545. [Google Scholar] [CrossRef]
- Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014, 169, 240–254. [Google Scholar] [CrossRef]
- Bajalan, I.; Pirbalouti, A.C. Variation in antibacterial activity and chemical compositions of essential oil from different populations of myrtle. Ind. Crops Prod. 2014, 61, 303–307. [Google Scholar] [CrossRef]
- Usai, M.; Mulas, M.; Marchetti, M. Chemical composition of essential oils of leaves and flowers from five cultivars of myrtle (Myrtus communis L.). J. Essent. Oil Res. 2015, 27, 465–476. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1250. [Google Scholar] [CrossRef]
- Berka-Zougali, B.; Ferhat, M.A.; Hassani, A.; Chemat, F.; Allaf, K.S. Comparative study of essential oils extracted from Algerian Myrtus communis L. leaves using microwaves and hydrodistillation. Int. J. Mol. Sci. 2012, 13, 4673–4695. [Google Scholar] [CrossRef]
- Akin, M.; Aktumsek, A.; Nostro, A. Antibacterial activity and composition of the essential oils of Eucalyptus camaldulensis Dehn. and Myrtus communis L. growing in Northern Cyprus. Afr. J. Biotechnol. 2010, 9, 531–535. [Google Scholar]
- Caputo, L.; Capozzolo, F.; Amato, G.; De Feo, V.; Fratianni, V.; Vivenzio, G.; Nazzaro, F. Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complement. Med. Ther. 2022, 22, 142. [Google Scholar] [CrossRef] [PubMed]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Kazemeini, H.; Azizi, A.; Adib, H. Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. Int. J. Food Microbiol. 2021, 344, 109104. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, R.; Aliahmadi, A.; McClements, D.J.; Rafeti, H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT-Food Sci. Technol. 2016, 71, 69–76. [Google Scholar] [CrossRef]
- He, Q.; Zhang, L.; Yang, Z.; Ding, T.; Ye, X.; Liu, D.; Guo, M. Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. Innov. Food Sci. Emerg. Technol. 2022, 75, 102902. [Google Scholar] [CrossRef]
- Ghaderi, L.; Moghimi, R.; Aliahmadi, A.; McClements, D.J.; Rafati, H. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil. J. Appl. Microbiol. 2017, 123, 832–840. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.I.; Taktak, N.E.M. Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. J. Essent. Oil Res. 2022. [Google Scholar] [CrossRef]
- Donsi, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.O.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Sikkema, J.; Bont, J.A.M.; Poolman, B. Interactions of Cyclic Hydrocarbons with Biological Membranes. J. Biol. Chem. 1994, 269, 8022–8023. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion- based edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rahmasari, Y.; Polat Yemiş, G. Characterization of ginger starch-based edible films incorporated with coconut shell liquid smoke by ultrasound treatment and application for ground beef. Meat Sci. 2022, 188, 108799. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Chu, Y.; Cheng, W.; Feng, X.; Gao, C.; Wu, D.; Meng, L.; Zhang, Y.; Tang, X. Fabrication, structure and properties of pullulan-based active films incorporated with ultrasound-assisted cinnamon essential oil nanoemulsions. Food Packag. Shelf Life 2020, 25, 100547. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297–2316. [Google Scholar] [CrossRef] [Green Version]
- Ghazy, O.A.; Fouad, M.T.; Saleh, H.H.; Kholif, A.E.; Morsy, T.A. Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food Chem. 2021, 341, 128259. [Google Scholar] [CrossRef]
- Lucey, J.A.; Johnson, M.E.; Horne, D.S. Invited review: Perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 2003, 86, 2725–2743. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT-Food Sci. Technol. 2022, 153, 112486. [Google Scholar] [CrossRef]
- Berti, S.; Olle Resa, C.P.; Basanta, F.; Gerschenson, L.N.; Jagus, R.J. Edible coatings on Gouda cheese as a barrier against external contamination during ripening. Food Biosci. 2019, 31, 1000447. [Google Scholar] [CrossRef]
- Delgado, F.J.; Gonzalez-Crespo, J.; Cava, R.; Ramirez, R. Changes in microbiology, proteolysis, texture and sensory characteristics of raw goat milk cheeses treated by high-pressure at different stages of maturation. LWT-Food Sci. Technol. 2012, 48, 268–275. [Google Scholar] [CrossRef]
- Zhong, Y.; Cavender, G.; Zhao, Y. Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT-Food Sci. Technol. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Özogul, Y.; El Abed, N.; Özogul, F. Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria. Food Chem. 2022, 368, 130831. [Google Scholar] [CrossRef]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, M.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. SonoChem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef]
- Shi, C.; Sun, Y.; Zheng, Z.; Zhang, X.; Song, K.; Jia, Z.; Chen, Y.; Yang, M.; Liu, X.; Dong, R.; et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem. 2016, 197, 100–106. [Google Scholar] [CrossRef]
No | Compound | % |
---|---|---|
1 | Thujene | 0.25 |
2 | α-pinene | 30.19 |
3 | β-pinene | 0.45 |
4 | β-myrcene | 0.1 |
5 | α-phellandrene | 0.04 |
6 | 3-carene | 0.23 |
7 | o-cymene | 1.14 |
8 | d-limonene | 7.51 |
9 | 1,8-cineol | 38.64 |
10 | β-ocimene | 0.1 |
11 | γ-Terpinene | 0.09 |
12 | α-Terpinolene | 0.19 |
13 | α-ocimene | 6.57 |
14 | Terpinen-4-ol | 0.2 |
15 | α-terpineol | 3.91 |
16 | Myrtenol | 1.03 |
17 | β-cis-Ocimene | 2.68 |
18 | Verbenene | 0.09 |
19 | Thymol | 0.1 |
20 | 2,4-Thujadiene | 0.5 |
21 | Isosylvestrene | 2.2 |
22 | Cyclofenchene | 0.12 |
23 | (+)-3-Carene | 0.69 |
24 | Methyl-eugenol | 0.29 |
25 | Caryophyllene | 0.55 |
Total | 97.86 |
Strain | Emulsion of Myrtle Essential Oil | |
---|---|---|
MIC (mg/mL) | MBC (mg/mL) | |
ATCC 7644 | 6.00 ± 0.00 b | 8.00 ± 0.00 bc |
ATCC 1911 | 6.00 ± 0.00 b | 8.33 ± 0.33 b |
ATCC 13932 | 8.67 ± 0.58 a | 14.67 ± 0.58 a |
Nanoemulsion of Myrtle Essential Oil | ||
MIC (mg/mL) | MBC (mg/mL) | |
ATCC 7644 | 4.00 ± 0.00 d | 5.00 ± 0.00 d |
ATCC 1911 | 4.00 ± 0.00 d | 5.33 ± 0.58 d |
ATCC 13932 | 4.67 ± 0.58 c | 7.33 ± 0.58 c |
Sample | Particle Size (nm) | ζ-Potential (mV) | WI |
---|---|---|---|
E1 | 1490 ± 327 a | −15.027 ± 2.76 c | 79.22 ± 0.24 a |
E2 | 1376 ± 221 a | −11.24 ± 1.02 d | 78.30 ± 0.10 a |
E3 | 1184 ± 410 a | −15.87 ± 1.36 c | 66.23 ± 0.72 d |
NE1 | 157 ± 22 b | −38.47 ± 2.48 a | 75.65 ± 0.44 b |
NE2 | 172 ± 30 b | −32.27 ± 2.94 b | 70.76 ± 0.49 c |
NE3 | 122.7 ± 1.20 b | −37.37 ± 2.48 a | 63,44 ± 0.31 e |
Storage Days | |||||
---|---|---|---|---|---|
Cheese Samples | 0 | 6 | 12 | 18 | 24 |
pH | |||||
C | 5.66 ± 0.01 Ac | 5.74 ± 0.01 Ba | 5.72 ± 0.02 Aab | 5.74 ± 0.01 Ca | 5.71 ± 0.01 Ab |
NA | 5.69 ± 0.01 Ab | 5.73 ± 0.02 Ba | 5.73 ± 0.01 Aa | 5.74 ± 0.01 Ca | 5.72 ± 0.02 Aa |
NE1 | 5.68 ± 0.02 Ad | 5.78 ± 0.02 Aa | 5.75 ± 0.02 Abc | 5.75 ± 0.01 ABab | 5.72 ± 0.01 Ac |
NE2 | 5.66 ± 0.02 Ad | 5.79 ± 0.02 Aa | 5.74 ± 0.02 Ab | 5.74 ± 0.01 BCb | 5.72 ± 0.01 Ac |
NE3 | 5.67 ± 0.03 Ad | 5.80 ± 0.01 Aa | 5.75 ± 0.01 Ab | 5.76 ± 0.01 Ab | 5.72 ± 0.01 Ac |
aw | |||||
C | 0.96 ± 0.00 Ba | 0.96 ± 0.01 Aa | 0.96 ± 0.00 Aa | 0.96 ± 0.01 Aa | 0.96 ± 0.01 Aa |
NA | 0.95 ± 0.01 BCb | 0.96 ± 0.01 Aa | 0.96 ± 0.00 Aab | 0.96 ± 0.00 ABab | 0.95 ± 0.01 Ab |
NE1 | 0.96 ± 0.01 BCa | 0.96 ± 0.01 Aa | 0.96 ± 0.00 Aa | 0.97 ± 0.01 Aa | 0.96 ± 0.01 Aa |
NE2 | 0.95 ± 0.01 Ba | 0.96 ± 0.00 Aa | 0.96 ± 0.00 Aa | 0.95 ± 0.01 BCa | 0.95 ± 0.01 Aa |
NE3 | 0.97 ± 0.01 Aa | 0.96 ± 0.00 Ab | 0.96 ± 0.00 Ab | 0.95 ± 0.00 Cc | 0.96 ± 0.01 Ab |
WI | |||||
C | 74.34 ± 0.53 Aa | 74.13 ± 0.31 Aa | 74.43 ± 0.24 Aa | 74.14 ± 0.35 Aa | 74.18 ± 0.62 Aa |
NA | 68.41 ± 0.57 CDc | 68.54 ± 0.73 Dc | 71.04 ± 0.65 Bb | 70.75 ± 0.64 Cb | 71.64 ± 0.46 Ba |
NE1 | 69.88 ± 0.72 Bc | 69.90 ± 0.67 BCc | 69.35 ± 0.60 Cc | 70.66 ± 0.69 Cb | 71.58 ± 0.83 Ba |
NE2 | 68.11 ± 0.82 Dd | 69.60 ± 0.57 Cc | 69.10 ± 0.77 Cc | 70.96 ± 0.49 BCb | 71.82 ± 0.52 Ba |
NE3 | 68.88 ± 0.77 Cc | 70.30 ± 0.73 Bb | 71.02 ± 0.53 Ba | 71.39 ± 0.59 Ba | 71.54 ± 0.56 Ba |
Hardness (N) | |||||
C | 2.18 ± 0.02 Ac | 2.88 ± 0.27 ABab | 2.98 ± 0.17 BCab | 3.08 ± 0.20 ABa | 2.72 ± 0.15 Ab |
NA | 2.11 ± 0.03 Ad | 2.80 ± 0.04 Bbc | 2.61 ± 0.14 Cc | 2.99 ± 0.16 ABab | 3.07 ± 0.15 Aa |
NE1 | 2.08 ± 0.04 Ad | 2.57 ± 0.13 Bc | 3.69 ± 0.32 Aa | 3.06 ± 0.34 ABb | 2.81 ± 0.32 Abc |
NE2 | 1.86 ± 0.12 Bb | 2.69 ± 0.09 Ba | 2.70 ± 0.21 Ca | 2.69 ± 0.44 Ba | 2.95 ± 0.11 Aa |
NE3 | 1.74 ± 0.03 Cc | 3.17 ± 0.21 Aa | 3.13 ± 0.16 Ba | 3.40 ± 0.22 Aa | 2.82 ± 0.10 Ab |
Samples | Appearance | Odor | Color | Flavor | General Acceptability |
---|---|---|---|---|---|
C | 7.17 ± 1.20 b | 7.39 ± 1.04 a | 6.89 ± 1.32 b | 7.67 ± 0.97 a | 7.33 ± 1.03 a |
NA | 7.72 ± 1.13 ab | 7.22 ±0.88 a | 7.89 ± 0.90 a | 7.22 ± 1.06 a | 7.50 ± 0.86 a |
NE1 | 7.67 ± 0.49 ab | 6.94 ± 1.16 ab | 7.44 ± 1.04 ab | 6.06 ± 1.83 b | 6.28 ± 1.64 b |
NE2 | 7.89 ± 0.47 a | 7.00 ± 1.37 ab | 7.89 ± 0.47 a | 5.72 ± 1.90 bc | 6.00 ± 1.91 bc |
NE3 | 7.78 ± 1.00 ab | 6.28 ± 1.60 b | 7.72 ± 1.27 a | 5.00 ± 1.50 c | 5.11 ± 1.68 c |
No | Treatment | Description |
---|---|---|
1 | C | Control, uncoated cheese |
2 | NA | Alginate nanoemulsion coating |
3 | NE1 | Alginate nanoemulsion coating containing 0.5% myrtle essential oil |
4 | NE2 | Alginate nanoemulsion coating containing 1.0% myrtle essential oil |
5 | NE3 | Alginate nanoemulsion coating containing 2.0% myrtle essential oil |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polat Yemiş, G.; Sezer, E.; Sıçramaz, H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules 2022, 27, 7298. https://doi.org/10.3390/molecules27217298
Polat Yemiş G, Sezer E, Sıçramaz H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules. 2022; 27(21):7298. https://doi.org/10.3390/molecules27217298
Chicago/Turabian StylePolat Yemiş, Gökçe, Elif Sezer, and Hatice Sıçramaz. 2022. "Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese" Molecules 27, no. 21: 7298. https://doi.org/10.3390/molecules27217298
APA StylePolat Yemiş, G., Sezer, E., & Sıçramaz, H. (2022). Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules, 27(21), 7298. https://doi.org/10.3390/molecules27217298