Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals and Materials
2.2. Synthesis of PPy
2.3. Synthesis of HSB
2.4. Preparation of PPy/HSB
2.5. Characterization
3. Results and Discussions
3.1. Structure Characterization
3.2. Morphology Analysis
3.3. Electromagnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, D.; Wang, Y.; Li, X.; Qiang, R.; Xu, P.; Chu, W.; Han, X.; Du, Y. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490. [Google Scholar] [PubMed]
- Zeng, X.; Cheng, X.; Yu, R.; Stucky, G.D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623. [Google Scholar] [CrossRef]
- Wu, Z.; Pei, K.; Xing, L.; Yu, X.; You, W.; Che, R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448. [Google Scholar] [CrossRef]
- Cheng, Y.; Seow, J.; Zhao, H.; Xu, Z.J.; Ji, G. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125. [Google Scholar] [CrossRef]
- Liu, P.; Gao, S.; Chen, C.; Zhou, F.; Meng, Z.; Huang, Y.; Wang, Y. Vacancies-engineered and heteroatoms-regulated n-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 2020, 169, 276–287. [Google Scholar]
- Wang, G.; Ong, S.J.H.; Zhao, Y.; Xu, Z.J.; Ji, G. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Huang, L.; Song, L.; Liu, J.; Zhang, T.; Yang, X.; Liu, J.; Ma, X.; Di, J.; et al. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. B 2021, 224, 109173. [Google Scholar]
- Truong, V.T.; Riddell, S.Z.; Muscat, R.F. Polypyrrole based microwave absorbers. J. Mater. Sci. 1998, 33, 4971–4976. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, H.; Li, J.; Huang, F.; Zaman, A.; Chen, X.; Gao, D.; Guo, Y.; Hui, D.; Zhou, Z. Improved impedance matching by multi-componential metal-hybridized RGO toward high performance of microwave absorption. Nanotechnol. Rev. 2021, 10, 1–9. [Google Scholar]
- Yang, X.; Fan, B.; Tang, X.; Wang, J.; Tong, G.; Chen, D.; Guan, J. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 2022, 430, 132747. [Google Scholar] [CrossRef]
- Liu, P.; Huang, Y.; Wang, L.; Zhang, W. Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide–Co3O4 nanocomposites. J. Alloys Compd. 2013, 573, 151–156. [Google Scholar] [CrossRef]
- Su, Q.; Wang, B.; Mu, C.; Zhai, K.; Nie, A.; Xiang, J.; Wen, F. Polypyrrole coated 3d flower MoS2 composites with tunable impedance for excellent microwave absorption performance. J. Alloys Compd. 2021, 888, 161487. [Google Scholar] [CrossRef]
- Liao, Z.; Ma, M.; Tong, Z.; Wang, R.; Bi, Y.; Chen, Y.; Chung, K.L.; Ma, Y. Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties. J. Colloid Interf. Sci. 2021, 602, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, X.; Huang, J.; Chen, S.; Zhang, Y.; Dong, C.; Chen, G.; Wang, L.; Guan, H. Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. J. Alloys Compd. 2022, 890, 161887. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Wang, L.; Ren, J.; Xu, Y. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Compos. A 2017, 97, 141–150. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Wu, B.; Han, B.; Dong, S.; Han, X.; Xu, P. Fabrication of PPy nanosphere/RGO composites via a facile self-assembly strategy for durable microwave absorption. Polymers 2018, 10, 998. [Google Scholar] [CrossRef]
- Wu, F.; Sun, M.; Jiang, W.; Zhang, K.; Xie, A.; Wang, Y.; Wang, M. A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. J. Mater. Chem. C 2016, 4, 82–88. [Google Scholar] [CrossRef]
- Tian, C.; Du, Y.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J.; Ma, J.; Zhao, H.; Han, X. Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Inter. 2015, 7, 20090–20099. [Google Scholar] [CrossRef]
- Yang, R.; Reddy, P.M.; Chang, C.; Chen, P.; Chen, J.; Chang, C. Synthesis and characterization of Fe3O4 /polypyrrole/carbon nanotube composites with tunable microwave absorption properties: Role of carbon nanotube and polypyrrole content. Chem. Eng. J. 2016, 285, 497–507. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, M.; Jiang, W.; Wang, Y.; Wang, D.; Wu, F.; Xie, A.; Dong, W. A core–shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Adv. 2016, 6, 43056–43059. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Ji, H.; Zou, X.; Zhang, J.; Yan, Y. Constructing excellent electromagnetic wave absorber with dielectric-dielectric media based on 3d reduced graphene and Ag(i)-Schiff base coordination compounds. J. Alloys Compd. 2019, 781, 560–570. [Google Scholar] [CrossRef]
- Gong, D.; Wang, B.; Jia, X.; Zhang, X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalton T. 2014, 43, 4169. [Google Scholar] [CrossRef] [PubMed]
- El-Gammal, O.A.; Mohamed, F.S.; Rezk, G.N.; El-Bindary, A.A. Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(ii), Ni(ii) and Cu(ii) complexes with new Schiff base ligand. J. Mol. Liq. 2021, 326, 115223. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Kumawat, L.K. Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuators B Chem. 2014, 195, 98–108. [Google Scholar] [CrossRef]
- Hadjoudis, E.; Mavridis, I.M. Photochromism and thermochromism of Schiff bases in the solid state: Structural aspects. Chem. Soc. Rev. 2004, 33, 579–588. [Google Scholar] [CrossRef]
- Atta, A.M.; Shaker, N.O.; Maysour, N.E. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog. Org. Coat. 2006, 56, 100–110. [Google Scholar] [CrossRef]
- Lin, T.; Yu, H.; Wang, Y.; Wang, L.; Vatsadze, S.Z.; Liu, X.; Huang, Z.; Ren, S.; Uddin, M.A.; Amin, B.U.; et al. Polypyrrole nanotube/ferrocene-modified graphene oxide composites: From fabrication to EMI shielding application. J. Mater. Sci. 2021, 56, 18093–18115. [Google Scholar] [CrossRef]
- Locke, J.M.; Griffith, R.; Bailey, T.D.; Crumbie, R.L. Competition between cyclisation and bisimine formation in the reaction of 1,3-diaminopropanes with aromatic aldehydes. Tetrahedron 2009, 65, 10685–10692. [Google Scholar] [CrossRef]
- Bower, D.I. An Introduction to Polymer Physics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Sperling, L.H. Introduction to Physical Polymer Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Luo, J.; Gao, D. Synthesis and microwave absorption properties of PPy/Co nanocomposites. J. Magn. Magn. Mater. 2014, 368, 82–86. [Google Scholar] [CrossRef]
- Shan, L.; Chen, X.; Tian, X.; Chen, J.; Zhou, Z.; Jiang, M.; Xu, X.; Hui, D. Fabrication of polypyrrole/nano-exfoliated graphite composites by in situ intercalation polymerization and their microwave absorption properties. Compos. B 2015, 73, 181–187. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, S.; Zhang, J.; Li, X.; Sun, X. Facile synthesis of sandwich-like RGO/CuS/polypyrrole nanoarchitectures for efficient electromagnetic absorption. Materials 2020, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Cheng, S.; Wu, F.; Li, Y.; Zhuang, Q.; Dong, W.; Xie, A. Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption. Compos. Sci. Technol. 2022, 221, 109350. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, M.; Liao, Z.; Tong, Z.; Chen, Y.; Wang, R.; Ma, Y.; Wu, G. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interf. Sci. 2022, 605, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Li, T.; Wang, H.; Guo, Z.; Chen, T.; Meng, F. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, F.; Xie, A.; Sun, M.; Dong, W. In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Inter. 2017, 9, 33041–33048. [Google Scholar] [CrossRef]
- Blythe, T. Electrical Properties of Polymers; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014, 6, 2447. [Google Scholar] [CrossRef]
- Yue Zuo, J.L.M.C. Synthesis, characterization and enhanced electromagnetic properties of BaTio3/NiFe2O4-decorated reduced graphene oxide nanosheets. J. Alloys Compd. 2018, 744, 310–320. [Google Scholar] [CrossRef]
- Che, R.C.; Peng, L.M.; Duan, X.F.; Chen, Q.; Liang, X.L. Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405. [Google Scholar] [CrossRef]
- Xie, A.; Zhang, K.; Sun, M.; Xia, Y.; Wu, F. Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater. Design 2018, 154, 192–202. [Google Scholar] [CrossRef]
- Wang, X.; Shu, J.; He, X.; Zhang, M.; Wang, X.; Gao, C.; Yuan, J.; Cao, M. Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 2018, 6, 14017–14025. [Google Scholar] [CrossRef]
- Liu, X.; Feng, C.; Bi, N.; Sun, Y.; Fan, J.; Lv, Y.; Jin, C.; Wang, Y.; Li, C. Synthesis and electromagnetic properties of Fe3S4 nanoparticles. Ceram. Int. 2014, 40, 9917–9922. [Google Scholar] [CrossRef]
- Liu, P.; Huang, Y.; Wang, L.; Zong, M.; Zhang, W. Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater. Lett. 2013, 107, 166–169. [Google Scholar] [CrossRef]
- Correia, H.M.G.; Ramos, M.M.D. Theoretical study of electric field-dependent polaron-type mobility in conjugated polymers. J. Mater. Sci. Mater. Electron. 2007, 18, 339–342. [Google Scholar] [CrossRef]
- Sameshima, T.; Hayasaka, H.; Haba, T. Analysis of microwave absorption caused by free carriers in silicon. Jpn. J. Appl. Phys. 2009, 48, 21204. [Google Scholar] [CrossRef]
- Guan, H.; Wang, Q.; Wu, X.; Pang, J.; Jiang, Z.; Chen, G.; Dong, C.; Wang, L.; Gong, C. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. B. 2021, 207, 108562. [Google Scholar] [CrossRef]
- Min, Y.; Shin, H.; Suhr, J.; Lee, G. A suggested vacuum bagging process for the fabrication of single-walled carbon nanotube/epoxy composites that maximize electromagnetic interference shielding effectiveness. Polymers. 2021, 13, 1867. [Google Scholar]
Sample | Filling Ratio (wt%) | Thickness (mm) | RLmax (dB) | EAB (GHz) | Refs |
---|---|---|---|---|---|
PPy/Co | 30 | 3 | −20 | 7.2 | [32] |
PPy/graphite | 30 | 2.7 | −48 | 3.4 | [33] |
PPy-RGO | 30 | 4.0 | −49.11 | 4.88 | [34] |
PPy-PEDOT | 30 | 2.5 | −36 | 6.28 | [35] |
PPy@PANI | 30 | 2 | −34.8 | 4.7 | [36] |
PPy/SMPP | 30 | 3.7 | −56.3 | 6.48 | [37] |
PPy/SiC nanowires | 30 | 2.5 | −16.2 | 6.52 | [38] |
PPy/rGO aerogel | 30 | 3 | −54.4 | 6.76 | [39] |
C@PPy/Ni@Co | 30 | 2 | −48.76 | 5.54 | [40] |
PPy/HSB-0.6 | 30 | 2.8 | −43.1 | 7.12 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Gu, H.; Li, N.; Yang, H.; Chen, G.; Zhang, L.; Dong, C.; Guan, H. Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance. Molecules 2022, 27, 6160. https://doi.org/10.3390/molecules27196160
Huang J, Gu H, Li N, Yang H, Chen G, Zhang L, Dong C, Guan H. Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance. Molecules. 2022; 27(19):6160. https://doi.org/10.3390/molecules27196160
Chicago/Turabian StyleHuang, Ji, Huiling Gu, Na Li, Hua Yang, Gang Chen, Lizhu Zhang, Chengjun Dong, and Hongtao Guan. 2022. "Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance" Molecules 27, no. 19: 6160. https://doi.org/10.3390/molecules27196160
APA StyleHuang, J., Gu, H., Li, N., Yang, H., Chen, G., Zhang, L., Dong, C., & Guan, H. (2022). Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance. Molecules, 27(19), 6160. https://doi.org/10.3390/molecules27196160