Elemental Characterization of Ciders and Other Low-Percentage Alcoholic Beverages Available on the Polish Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Samples Preparation and Equipment
2.2.1. ICP MS and ICP OES
2.2.2. Mercury Analyzer
2.2.3. pH-Meter
2.3. Data Analysis
3. Results and Discussion
3.1. Level of Metals in Analysed Alcoholic Beverages
3.1.1. Results Collected for One Brand of Cider—The Influence of Type of Packaging
3.1.2. Results Collected for All Analyzed Ciders—Comparison of Commercial Ciders with Home-Made Products
3.2. Chemometric Analysis of Multiparametric Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Aung, M.T.; Lee, P.-R.; Yu, B.; Liu, S.-Q. Cider fermentation with three Williopsis saturnus yeast strains and volatile changes. Ann. Microbiol. 2015, 56, 921–928. [Google Scholar] [CrossRef]
- Coton, E.; Coton, H.; Guichard, H. Cider (Cyder; Hard Cider): The Product and Its Manufacture. In Encyclopedia of Food and Health, 1st ed.; Cabalerro, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 2, pp. 119–128. [Google Scholar]
- Dz, U. Nr 120 poz. 690. Ustawa z dnia 12 maja 2011r. o wyrobie i rozlewie wyrobów winiarskich, obrocie tymi wyrobami i organizacji rynku wina. 2011. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20111200690, (accessed on 13 February 2021).
- Alberti, A.; Dos Santos, T.P.M.; Zielinski, A.A.F.; Dos Santos, C.M.E.; Braga, C.M.; Demiate, I.M.; Nogueira, A. Impact on chemical profile in apple juice and cider made from unripe, ripe and senescent dessert varieties. LWT 2016, 65, 436–443. [Google Scholar] [CrossRef]
- Kliks, J.; Kawa-Rygielska, J.; Gasiński, A.; Głowacki, A.; Szumny, A. Analysis of Volatile Compounds and Sugar Content in Three Polish Regional Ciders with Pear Addition. Molecules 2020, 25, 3564. [Google Scholar] [CrossRef] [PubMed]
- Cristea, G.; Voica, C.; Feher, I.; Radu, S.; Magdas, D.A. Isotopic and Elemental Characterization of Cider Commercialized on Romanian Market. Anal. Lett. 2019, 52, 139–149. [Google Scholar] [CrossRef]
- Dragusha, B.; Zogaj, M.; Ramadani, X.; Susaj, L. Determination of some heavy metals in some wines of Kosovo. Int. J. Ecosyst. Ecol. Sci. 2017, 7, 635–638. [Google Scholar]
- Fabani, M.P.; Arrúa, R.C.; Vazquez, F.; Diaz, M.P.; Baroni, M.V.; Wunderlin, D.A. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem. 2010, 1, 372–379. [Google Scholar] [CrossRef]
- Pawlaczyk, A.; Gajek, M.; Jozwik, K.; Szynkowska, M.I. Multielemental Analysis of Various Kinds of Whisky. Molecules 2019, 24, 1193. [Google Scholar] [CrossRef] [Green Version]
- Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin and Grape Variety. Molecules 2021, 26, 214. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Frankwski, M.; Simeonov, V.; Polkowska, Z.; Namieśnik, J. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules 2018, 23, 2886. [Google Scholar] [CrossRef] [Green Version]
- Irina, G.; Iordache, A.M.; Ionete, R.; Ranca, A. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar]
- Alexa, L.; Kántor, A.; Kovács, B.; Czipa, N. Determination of micro and trace elements of commercial beers. JBMFS 2018, 7, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Greenough, J.D.; Longerich, H.P.; Jackson, S.E. Element fingerprinting of Okanagan Valley wines using ICP–MS: Relationships between wine composition, vineyard and wine colour. Aust. J. Grape Wine Res. 1997, 3, 75–83. [Google Scholar] [CrossRef]
- Jakubowski, N.; Brandt, R.; Stuewer, D.; Eschnauer, H.R.; Gortges, S. Analysis of wines by ICP-MS: Is the pattern of the rare earth elements a reliable fingerprint for the provenance. Fresenius J. Anal. Chem. 1999, 364, 424–428. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, W.A.; Louie, H.; Wu, M.; Harrison, M.; Goldberg, D. Trace elements in Australian orange juice and other products. Food Chem. 2000, 71, 423–433. [Google Scholar] [CrossRef]
- Bednarek, W.; Dresler, S.; Tkaczyk, P. Contents of heavy metals as a criterion for apple quality assessment and soil properties. Pol. J. Soil Sci. 2007, 1. PL ISSN 0079-2985. [Google Scholar]
- García-Ruiz, S.; Moldovan, M.; Fortunato, G.; Wunderli, S.; García Alanso, J.I. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders. Anal. Chem. Acta 2007, 590, 55–66. [Google Scholar] [CrossRef]
- Available online: http://www.oiv.int/public/medias/3741/e-code-annex-maximumacceptable-limits.pdf (accessed on 13 February 2020).
- World Health Organization. Guidelines for Drinking-Water Quality, Genewa. 2008. Available online: http://indiawrm.org/HP-2/PDF/waterQualityWHO.pdf (accessed on 15 February 2021).
- Regulation of the Minister of Health on the Quality of Water Intended for Human Consumption of 7 December 2017 (Journal of Laws of 2017, item 2294). Available online: igwp.org.pl (accessed on 15 February 2021).
- Regulation of the Minister of Health on the Maximum Levels of Biological and Chemical Contaminants that May Be Present in Food, Food Ingredients, Permitted Additives, Processing Aids or on the Surface of Food of 13 January 2003 (Journal of Laws of 2003). Available online: sejm.gov.pl (accessed on 15 February 2021).
- Nicolini, G.; Román, T.; Carlin, S.; Malacarne, M.; Nardin, T.; Bertoldi, D.; Larcher, R. Characterisation of single-variety still ciders produced with dessert apples in the Italian Alps. J. Inst. Brew. 2018, 124, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Tarko, T.; Januszek, M.; Pater, A.; Sroka, P.; Duda-Chodak, A. The Quality of Ciders Depends on the Must Supplementation with Mineral Salts. Molecules 2020, 25, 3640. [Google Scholar] [CrossRef]
- Woldemariam, D.M.; Chandravanshi, B.S. Concentration levels of essential and non-essential elements in selected Ethiopian wines. Bull. Chem. Soc. Ethiop. 2011, 25, 169–180. [Google Scholar] [CrossRef]
- Tabira, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [Google Scholar]
- Sakellari, A.; Karavoltsos, S.; Plavšić, S.; Bempi, E.; Papantonopoulou, G.; Dassenakis, M.; Kalogeropoulos, N. Copper complexing properties, trace metal content and organic matter physicochemical characterization of Greek beers. Microchem. J. 2017, 135, 66–73. [Google Scholar] [CrossRef]
- Chen, G.; Leea, H.; Young, K.L.; Yue, P.L.; Wong, A.; Tao, T.; Choi, K.K. Glass recycling in cement production—An innovative approach. Waste Manag. 2002, 22, 747–753. [Google Scholar] [CrossRef]
- Federico, L.M.; Chidiac, S.E. Waste glass as a supplementary cementitious material in concrete—Critical review of treatment methods. Cem. Concr. Compos. 2009, 31, 606–610. [Google Scholar] [CrossRef]
- Michalski, B. Aluminium Market. Available online: https://www.ism.uni.wroc.pl/sites/ism/art/michalski_rynek_aluminium.pdf (accessed on 24 February 2021).
- Schmid, P.; Welle, F. Chemical Migration from Beverage Packaging Materials—A Review. Beverages 2020, 6, 37. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M.; Filzmoser, P. Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Appl. Geochem. 2010, 25, 1030–1046. [Google Scholar] [CrossRef]
- 300 GOSPODARKA. Available online: https://300gospodarka.pl/news/polska-potega-produkcji-jablek-jestesmy-najwiekszym-producentem-w-ue-i-3-najwiekszym-na-swiecie (accessed on 19 February 2021).
- Sad24. Available online: https://www.sad24.pl/sady/odmiana-jablek-ligol-charakterystyka/ (accessed on 19 February 2021).
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as traces of ecosystem processes, theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Stevenson, R.; Pedneault, K.; Poirier, A.; Hélie, F.F.; Widory, D. Strontium isotope characterization of wines from Quebec, Canada. Food Chem. 2016, 210, 121–128. [Google Scholar] [CrossRef]
- Fortunato, G.; Mumic, K.; Wunderli, S.; Wunderli, S. Application of strontium IR measured by MC-ICP-MS for food authentication. JAAS 2004, 19, 227–234. [Google Scholar]
- Oganesyants, L.A.; Panasyuk, A.L.; Kuzmina, E.I.; Sviridov, D.A. Modern Analysis Methods Use in Order to Establish the Geographic Origin of Food Products. Food Syst. 2020, 3, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Pepi, S.; Chicca, M.; Telloli, C.; Di Roma, A.; Grisenti, P.; Tessari, U.; Vaccaro, C. Discrimination of geographical origin of hop (Humulus lupulus L.) using geochemical elements combined with statistical analysis. Environ. Geochem. Health 2018, 41, 1559–1576. [Google Scholar] [CrossRef] [PubMed]
- Gramss, G. Control of Heavy Metals from Barley and Wheat Grains during Malting and Brewing. Adv. Nutr. Food Sci. 2020, 5, 10–18. [Google Scholar] [CrossRef]
- Water quality indicators. Available online: https://zwik.lodz.pl/pl/artykuly/277/wskazniki-jakosci-wody (accessed on 1 April 2021).
Origin | Maximum Concentration of Metals [mg/L] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | Al | B | Ba | Cd | Cr | Cu | Fe | Hg | Mg | Mn | Na | Ni | Pb | Zn | |
WHO (water) | − | 0.9 | − | 1.3 | 0.003 | 0.05 | 2.00 | − | − | − | − | − | 0.07 | 0.01 | − |
OIV (wine) | − | − | − | − | 0.01 | − | 1.00 | − | − | − | − | − | − | 0.15 | 5.00 |
POLISH (water) | 0.01 | − | 1 | − | 0.005 | 0.05 | 2 | 0.2 | 0.001 | 7–125 | 0.05 | 200 | 0.02 | 0.01 | 5.00 |
POLISH (beer) | − | − | − | − | 0.02 | − | − | − | 0.01 | − | − | − | − | 0.1 | − |
POLISH (wine) | − | − | − | − | 0.01 | − | 1.00 | − | 0.01 | − | − | − | v | 0.2 | 5.00 |
Ciders | Other Alcoholic Beverages | Juice | |||
---|---|---|---|---|---|
Home-Made | Commercial | Home-Made | Commercial | ||
n | 6 | 25 | 40 | 1 | 1 |
Total | 31 | 40 | 2 |
Parameter and Accessories | ICP MS | ICP OES |
---|---|---|
Number of replicates | 3 | 3 |
Carrier gas | Argon | Argon |
Plasma gas flow rate [L·min−1] | 12.9 | 12 |
Auxiliary gas flow rate [L·min−1] | 0.84 | 0.5 |
Nebulization gas flow rate [L·min−1] | 0.92 | 0.5 |
Torch | Quartz | Quartz |
Nebulizer | Concentric quartz | Concentric quartz |
Generator power [W] | 1380 | 1150 |
Internal standard | In | In |
Elements | Concentration Unit | Mean | Median | Min | Max | Std. Dev. |
---|---|---|---|---|---|---|
Ag | µg/L | 0.927 | 0.848 | <LOD | 2.569 | 0.688 |
Al | µg/L | 1249 | 1221 | 417.1 | 1953 | 319.2 |
B | µg/L | 1201 | 1162 | 477.3 | 2033 | 380.7 |
Ba | µg/L | 164.7 | 144.7 | 71.58 | 465.2 | 93.29 |
Bi | µg/L | 0.398 | 0.194 | <LOD | 3.526 | 0.589 |
Ca | mg/L | 58.57 | 45.53 | 25.58 | 159.6 | 35.01 |
Cd | µg/L | 0.707 | 0.349 | 0.046 | 3.074 | 0.783 |
Co | µg/L | 2.601 | 0.943 | 0.032 | 13.42 | 3.226 |
Cr | µg/L | 14.30 | 10.54 | 1.636 | 74.91 | 11.07 |
Cu | µg/L | 60.33 | 34.01 | 0.779 | 490.0 | 90.33 |
Fe | mg/L | 1.420 | 0.621 | <LOD | 16.59 | 2.521 |
Hg | µg/L | <LOD | <LOD | <LOD | <LOD | <LOD |
K | mg/L | 418.2 | 310.9 | 24.86 | 1053 | 283.49 |
Li | µg/L | 1.303 | 1.060 | 0.089 | 9.078 | 1.121 |
Mg | mg/L | 48.87 | 47.29 | 17.30 | 114.8 | 19.96 |
Mn | µg/L | 222.4 | 135.7 | 31.26 | 649.5 | 180.1 |
Na | mg/L | 83.50 | 80.50 | 11.46 | 334.3 | 54.66 |
Ni | µg/L | 50.99 | 15.21 | 1.581 | 199.2 | 63.68 |
Pb | µg/L | 5.914 | 2.114 | <LOD | 18.72 | 9.843 |
Sr | µg/L | 109.7 | 19.15 | 3.266 | 1217 | 269.6 |
Ti | µg/L | 5.328 | 3.124 | <LOD | 30.42 | 6.698 |
Tl | µg/L | 0.058 | 0.045 | <LOD | 0.509 | 0.070 |
Zn | µg/L | 126.5 | 18.24 | 2.521 | 606.0 | 169.5 |
This Study | García-Ruiz et al., 2007 [19] (Ciders) | Cristea et al., 2019 [6] (Ciders) | Alexa et al., 2018 [13] (Beers) | Sakellari et al., 2017 [28] (Beers) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Others | Ciders | |||||||||||
Element | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max |
Ag | 0.046 | 2.569 | <LOD | 1.852 | − | − | − | − | − | − | − | − |
Al | 854.4 | 1905 | 417.1 | 1954 | 6.4 | 1000 | 39.34 | 1289 | <LOD | 92.8 | − | − |
B | 477.3 | 2033 | 486.7 | 1826 | 210 | 4200 | − | − | − | − | − | − |
Ba | 71.58 | 211.2 | 76.13 | 460.1 | 4.9 | 330 | − | − | 9.95 | 39.9 | 11 | 56 |
Bi | <LOD | 3.526 | 0.033 | 1.386 | <LOD | 0.49 | − | − | − | − | − | − |
Cd | 0.046 | 0.422 | 0.097 | 3.074 | <LOD | 3.4 | − | − | <LOD | <LOD | <LOD | 1 |
Co | 0.032 | 1.408 | 0.275 | 13.42 | <LOD | 3.9 | − | − | 0.169 | 0.481 | <LOD | 1.1 |
Cr | 2.258 | 74.91 | 1.636 | 34.86 | <LOD | 18 | <LOD | 247 | 0.919 | 9.36 | 1.7 | 48 |
Cu | 4.937 | 95.38 | 5.080 | 490.0 | <LOD | 180 | <LOD | 240.5 | 27.3 | 109 | <LOD | 84 |
Hg | <LOD | <LOD | <LOD | <LOD | − | − | − | − | − | − | − | − |
Li | 0.274 | 2.146 | 0.090 | 9.078 | <LOD | 8.7 | − | − | − | − | − | − |
Mn | 38.29 | 269.0 | 31.26 | 649.5 | 18 | 470 | 29.68 | 475.7 | 41 | 260 | 44 | 377 |
Ni | 3.161 | 111.1 | 1.581 | 199.2 | <LOD | 110 | <LOD | 523.7 | <LOD | 11.2 | 3.1 | 40 |
Pb | <LOD | 16.93 | <LOD | 17.05 | 0.44 | 32 | <LOD | 14.86 | <LOD | 6.01 | 0.39 | 11 |
Sr | 4.881 | 29.57 | 3.266 | 1217 | 4.4 | 470 | − | − | <LOD | 212 | 58 | 292 |
Ti | <LOD | 24.02 | <LOD | 30.42 | 0.62 | 33 | − | − | − | − | − | − |
Tl | <LOD | 0.078 | 0.017 | 0.509 | <LOD | 0.36 | − | − | − | − | − | − |
Zn | 2.521 | 92.24 | 7.216 | 533.2 | 8.7 | 560 | 6.7 | 407.9 | 23.9 | 98.1 | <LOD | 105 |
*Ca | 31.09 | 140.4 | 25.58 | 159.6 | 14 | 180 | 0.15 | 68.89 | − | − | ||
*Fe | <LOD | 1.298 | 0.163 | 16.59 | 0.034 | 2 | <LOD | 7.68 | <LOD | <LOD | 0.058 | 0.838 |
*K | 24.86 | 489.5 | 237.3 | 1050 | 74 | 1300 | 67.89 | 555.9 | − | − | − | − |
*Mg | 21.52 | 114.79 | 17.30 | 79.38 | 16 | 69 | 5.25 | 50.29 | − | − | − | − |
*Na | 17.12 | 334.3 | 11.46 | 175.4 | 3.4 | 190 | 5.74 | 170.2 | − | − | − | − |
Element | Type | n | Mean | Median | Min | Max | Std. Dev |
---|---|---|---|---|---|---|---|
Ag | Commercial | 25 | 0.827 | 0.802 | < LOD | 1.852 | 0.579 |
Home-made | 6 | 0.183 | 0.135 | 0.073 | 0.472 | 0.145 | |
Al | Commercial | 25 | 1316 | 1273 | 994.6 | 1954 | 264.5 |
Home-made | 6 | 622.1 | 597.6 | 417.1 | 916.6 | 174.1 | |
B | Commercial | 25 | 1259 | 1186 | 851.0 | 1825 | 299.8 |
Home-made | 6 | 689.0 | 645.1 | 486.7 | 935.8 | 181.9 | |
Bi | Commercial | 25 | 0.319 | 0.244 | 0.033 | 1.386 | 0.291 |
Home-made | 6 | 0.741 | 0.695 | 0.415 | 1.256 | 0.328 | |
Co | Commercial | 25 | 4.317 | 3.963 | 0.590 | 13.42 | 3.172 |
Home-made | 6 | 7.592 | 7.015 | 4.382 | 11.53 | 3.270 | |
Cr | Commercial | 25 | 18.42 | 23.16 | 4.934 | 34.86 | 8.522 |
Home-made | 6 | 25.08 | 24.71 | 24.17 | 27.33 | 1.154 | |
Cu | Commercial | 25 | 48.46 | 44.00 | 5.080 | 164.9 | 35.20 |
Home-made | 6 | 254.7 | 236.5 | 97.00 | 490.0 | 170.3 | |
*Fe | Commercial | 25 | 2.615 | 1.993 | 0.218 | 16.60 | 3.466 |
Home-made | 6 | 4.121 | 2.840 | 2.411 | 9.090 | 2.589 | |
*K | Commercial | 25 | 563.1 | 575.7 | 207.1 | 797.8 | 161.4 |
Home-made | 6 | 991.2 | 1001 | 918.7 | 1050 | 54.91 | |
Li | Commercial | 25 | 1.487 | 0.880 | 0.503 | 9.078 | 1.762 |
Home-made | 6 | 1.855 | 1.947 | 1.390 | 2.358 | 0.362 | |
*Mg | Commercial | 25 | 37.88 | 36.69 | 17.30 | 65.02 | 12.05 |
Home-made | 6 | 60.05 | 59.15 | 44.31 | 79.38 | 16.77 | |
*Na | Commercial | 25 | 106.6 | 112.4 | 24.15 | 175.4 | 37.73 |
Home-made | 6 | 22.63 | 25.04 | 11.46 | 31.48 | 8.507 | |
Ni | Commercial | 25 | 75.96 | 59.60 | 6.093 | 152.5 | 57.14 |
Home-made | 6 | 188.8 | 188.4 | 180.2 | 199.2 | 6.794 | |
Ti | Commercial | 25 | 5.955 | 4.800 | < LOD | 30.42 | 6.627 |
Home-made | 6 | 11.55 | 11.35 | 5.200 | 18.80 | 5.773 | |
Zn | Commercial | 25 | 205.3 | 256.0 | 7.216 | 533.2 | 152.4 |
Home-made | 6 | 395.7 | 407.0 | 277.0 | 494.0 | 74.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajek, M.; Pawlaczyk, A.; Wysocki, P.; Szynkowska-Jozwik, M.I. Elemental Characterization of Ciders and Other Low-Percentage Alcoholic Beverages Available on the Polish Market. Molecules 2021, 26, 2186. https://doi.org/10.3390/molecules26082186
Gajek M, Pawlaczyk A, Wysocki P, Szynkowska-Jozwik MI. Elemental Characterization of Ciders and Other Low-Percentage Alcoholic Beverages Available on the Polish Market. Molecules. 2021; 26(8):2186. https://doi.org/10.3390/molecules26082186
Chicago/Turabian StyleGajek, Magdalena, Aleksandra Pawlaczyk, Piotr Wysocki, and Malgorzata I. Szynkowska-Jozwik. 2021. "Elemental Characterization of Ciders and Other Low-Percentage Alcoholic Beverages Available on the Polish Market" Molecules 26, no. 8: 2186. https://doi.org/10.3390/molecules26082186
APA StyleGajek, M., Pawlaczyk, A., Wysocki, P., & Szynkowska-Jozwik, M. I. (2021). Elemental Characterization of Ciders and Other Low-Percentage Alcoholic Beverages Available on the Polish Market. Molecules, 26(8), 2186. https://doi.org/10.3390/molecules26082186