Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices
Abstract
:1. Introduction
2. Results
2.1. Measurement of the Total Phenols, Flavonoids and pH of Selected Lyophilized Antimicrobial Powders
2.2. Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC)
2.3. Inhibition of Growth Measured by Optical Density
2.4. Mycelium Growth Assay
2.5. Antimicrobials Effects In Vivo (in Food Samples)
3. Discussion
3.1. In Vitro Antimicrobial Activity
3.2. Antimicrobial Activity In Vivo (in Food Samples)
4. Materials and Methods
4.1. Preparation of Novel Olive, Pomegranate and Orange Extracts and Lyophilized Powders Thereof
4.2. Measurement of Total Phenols and Flavonoids of the Lyophilized Powders
4.3. Cultures of Microorganism
4.4. Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC)
4.5. Measurement of Optical Density of Microbial Cultures
4.6. Mycelium Growth Assay
4.7. In Vivo Antimicrobial Activity (Application in Food Samples)
- (a)
- A fresh pork/beef burger stored for 4 days at 4 °C;
- (b)
- A fresh cheese spread stored for 21 days at 4 °C;
- (c)
- A fresh yogurt stored for 21 days at 4 °C;
- (d)
- A fresh pasteurized tomato juice stored 21 days at 4 °C.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- Beltrán-Ramírez, F.; Orona-Tamayo, D.; Cornejo-Corona, I.; González-Cervantes, J.L.N.; de Jesús Esparza-Claudio, J.; Quintana-Rodríguez, E. Agro-industrial waste revalorization: The growing biorefinery. In Biomass for Bioenergy-Recent Trends and Future Challenges; Abomohra, A.E.-F., Ed.; IntechOpen: London, UK, 2019; pp. 83–102. [Google Scholar]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2829–2841. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontopoulos, S.; Mitsagga, C.; Giavasis, I.; Papaioannou, C.; Vasilakoglou, I.; Petrotos, K. Potential Synergistic Action of Liquid Olive Fruit Polyphenol Extract with Aqueous Extracts of Solid Wastes of Pomegranate or/and Orange Juice Industry as Organic Phyto-protective Agents against Important Plant Pathogens—Part 1 (in vitro Studies). Univers. J. Agric. Res. 2020, 8, 202–222. [Google Scholar] [CrossRef]
- Leontopoulos, S.V.; Petrotos, K.B.; Kokkora, M.I.; Giavasis, I.; Papaioannou, C. In vivo evaluation of liquid polyphenols obtained from OMWW as natural bio-chemicals against several fungal pathogens on tomato plants. Desal Water Treatm. 2016, 57, 20646–20660. [Google Scholar]
- Elsherbiny, E.A.; Amin, B.H.; Baka, Z.A. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol. Tec. 2016, 111, 256–263. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Chowdhury, A.K.M.M.B.; Akratos, C.S.; Vayenas, D.V.; Pavlou, S. Olive mill waste composting: A review. Int. Biodeterior. Biodegrad. 2013, 85, 108–119. [Google Scholar] [CrossRef]
- Belaqziz, M.; El-Abbassi, A.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J. Environ. Manag. 2016, 171, 158–165. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 61, 920–945. [Google Scholar] [CrossRef]
- Leouifoudi, I.; Harnafi, H.; Zyad, A. Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities. Adv. Pharmacol. Sci. 2015, 2015, 714138. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Geraci, A.; Di Stefano, V.; Di Martino, E.; Schillaci, D.; Schicchi, R. Essential oil components of orange peels and antimicrobial activity. Nat. Prod. Res. 2017, 31, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Dhanavade, M.J.; Jalkute, C.B.; Ghosh, J.S.; Sonawane, K.D. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Br. J. Pharmac. Toxic. 2011, 2, 119–122. [Google Scholar]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Optimization of Vacuum Microwave-Assisted Extraction of Pomegranate Fruits Peels by the Evaluation of Extracts’ Phenolic Content and Antioxidant Activity. Foods 2020, 9, 1655. [Google Scholar] [CrossRef]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Meas. Character 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Tsagaraki, E.; Lazarides, H.N.; Petrotos, K.B. Olive mill wastewater treatment. In Utilization of By-Products and Treatment of Waste in the Food Industry; Springer: Boston, MA, USA, 2007; pp. 133–157. [Google Scholar]
- Giavasis, I.; Tsante, E.; Goutsidis, P.; Papatheodorou, K.; Petrotos, K. Stimulatory effect of novel polyphenol-based supplements from olive mill waste on the growth and acid production of lactic acid bacteria. In Microbes in Applied Research: Current Advances and Challenges; Mendez-Vilas, A., Ed.; World Scientific Publishing Group: London, UK, 2012; pp. 308–312. [Google Scholar]
- Petrotos, K.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale. Molecules 2021, 26, 1033. [Google Scholar] [CrossRef]
- Petrotos, K.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Optimization of Vacuum-Microwave-Assisted Extraction of Natural Polyphenols and Flavonoids from Raw Solid Waste of the Orange Juice Producing Industry at Industrial Scale. Molecules 2021, 26, 246. [Google Scholar] [CrossRef]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.A.; Zeitoun, M.A.; Ali, S. Antimicrobial and antioxidant activity of some plant extracts against different food spoilage and pathogenic microbes. Eur. J. Nutr. Food Saf. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Duman, A.D.; Ozgen, M.; Dayisoylu, K.S.; Erbil, N.; Durgac, C. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules 2009, 14, 1808–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, R.M.; Essawy, H.S. Screening and Quantification of Bioactive Compounds and Antimicrobial Activities of Fresh Juice, Methanolic Peel and Pulp Extract of Citrus sinensis L. (Sweet Orange). Egypt. Acad. J. Biol. Sci. G. Microbiol. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoğlu, I.; Gan, Y.; Li, M. Antimicrobial activity of pomegranate peel and its applications on food preservation. J. Food Qual. 2020, 2020, 8850339. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, Y. Flavonols and Flavones Changes in Pomegranate (Punica granatum L.) Fruit Peel during Fruit Development. J. Agric. Sci. Technol. 2014, 16, 1649–1659. [Google Scholar]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC–MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Mitsagga, C.; Giavasis, I. The In Vitro and In Vivo Synergistic Antimicrobial Activity Assessment of Vacuum Microwave Assisted Aqueous Extracts from Pomegranate and Avocado Fruit Peels and Avocado Seeds Based on a Mixtures Design Model. Plants 2021, 10, 1757. [Google Scholar] [CrossRef]
- Nicosia, M.G.L.D.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Schena, L. Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharv. Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Molva, Ç.; Baysal, A.H. Evaluation of bioactivity of pomegranate fruit extract against Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT 2015, 62, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Hazeleger, W.C.; Beumer, R.R. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Contr. 2012, 23, 66–72. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A.M. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar] [CrossRef]
- Leontopoulos, S.V.; Giavasis, I.; Petrotos, K.; Kokkora, M.; Makridis, C. Effect of different formulations of polyphenolic compounds obtained from OMWW on the growth of several fungal plant and food borne pathogens. Studies in vitro and in vivo. Agric. Agric. Sci. Proced. 2015, 4, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Quaglia, M.; Moretti, C.; Cerri, M.; Linoci, G.; Cappelletti, G.; Urbani, S.; Taticchi, A. Effect of extracts of wastewater from olive milling in postharvest treatments of pomegranate fruit decay caused by Penicillium adametzioides. Postharv. Biol. Technol. 2016, 118, 26–34. [Google Scholar] [CrossRef]
- Thielmann, J.; Kohnen, S.; Hauser, C. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int. J. Food Microb. 2017, 251, 48–66. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial effect of olive (Olea europaea L.) leaves extract in raw peeled undeveined shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar]
- Polyhealth, S.A. General Description and Technical Characteristics of Medoliva Olive Extract. Available online: https://www.polyhealth.gr/en/proionta/medoliva (accessed on 13 August 2021).
- Soni, M.G.; Burdock, G.A.; Christian, M.S.; Bitler, C.M.; Crea, R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol. 2006, 44, 903–915. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Nunes, A.V.; Leitão, M.C.; Brito, D.; Bronze, R.; Silva, S.; Pires, A.; Crespo, M.T.; San Romão, M.V.; et al. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008, 9, 311–319. [Google Scholar] [CrossRef]
- Tafesh, A.; Najami, N.; Jadoun, J.; Halahlih, F.; Riepl, H.; Azaizeh, H. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evid. Based Complem. Altern. Med. 2011, 2011, 431021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khemakhem, I.; Abdelhedi, O.; Trigui, I.; Ayadi, M.A.; Bouaziz, M. Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int. J. Biol. Macromol. 2018, 106, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Determination of total phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley and Sons: New York, NY, USA, 2002; pp. I1.1.1–I1.1.8. [Google Scholar]
- Hassan, S.M.; Al Aqil, A.A.; Attimarad, M. Determination of crude saponin and total flavonoids content in guar meal. Adv. Med. Plant Res. 2013, 1, 24–28. [Google Scholar]
Powder Code No. | Phenols g/Kg Powder | Flavonoids g/Kg Powder | pH (of 10% Water Solution) |
---|---|---|---|
100/0/0 | 47.86 | 51.15 | 5.08 |
90/5/5 | 41.88 | 54.60 | 5.07 |
90/10/0 | 43.38 | 59.58 | 5.10 |
90/0/10 | 38.76 | 55.80 | 5.05 |
80/10/10 | 42.89 | 57.50 | 5.03 |
80/20/0 | 40.05 | 65.50 | 5.07 |
80/0/20 | 36.25 | 51.80 | 5.01 |
Powder.Code No. | E. coli | S. aureus | L. monocytogenes | S. typhimurium | B. cereus | C. jejuni | C. perfingens | P. expansum | A. niger | A. flavus | P. italicum | F. oxysporum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100/0/0 | 10% | 10% | 7.5% | 7.5% | 7.5% | 7.5% | 10% | >10% | >10% | >10% | >10% | 7.5% |
90/5/5 | 10% | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% | 10% | >10% | >10% | >10% | >10% | 7.5% |
90/10/0 | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% | 10% | >10% | >10% | >10% | >10% | 10% |
90/0/10 | 10% | 10% | 7.5% | 7.5% | 7.5% | 10% | 10% | >10% | >10% | >10% | >10% | 10% |
80/10/10 | 10% | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% | 10% | >10% | >10% | >10% | >10% | 7.5% |
80/20/0 | 10% | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% | 10% | >10% | >10% | >10% | >10% | 10% |
80/0/20 | 10% | >10% | 7.5% | 7.5% | 7.5% | 10% | 10% | >10% | >10% | >10% | >10% | 10% |
Powder Code No. | Olive Extract Ratio | Pomegranate Extract Ratio | Orange Extract Ratio |
---|---|---|---|
100/0/0 | 100 | 0 | 0 |
90/5/5 | 90 | 5 | 5 |
90/10/0 | 90 | 10 | 0 |
90/0/10 | 90 | 0 | 10 |
80/10/10 | 80 | 10 | 10 |
80/20/0 | 80 | 20 | 0 |
80/0/20 | 80 | 0 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsagga, C.; Petrotos, K.; Giavasis, I. Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices. Molecules 2021, 26, 7038. https://doi.org/10.3390/molecules26227038
Mitsagga C, Petrotos K, Giavasis I. Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices. Molecules. 2021; 26(22):7038. https://doi.org/10.3390/molecules26227038
Chicago/Turabian StyleMitsagga, Chrysanthi, Konstantinos Petrotos, and Ioannis Giavasis. 2021. "Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices" Molecules 26, no. 22: 7038. https://doi.org/10.3390/molecules26227038
APA StyleMitsagga, C., Petrotos, K., & Giavasis, I. (2021). Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices. Molecules, 26(22), 7038. https://doi.org/10.3390/molecules26227038