Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
Abstract
:1. Introduction
2. Gas Chromatography–Atmospheric Pressure Ionization Techniques
2.1. Atmospheric Pressure Chemical Ionization (APCI)
2.2. Atmospheric Pressure Photoionization (APPI)
2.3. Atmospheric Pressure Laser Ionization (APLI)
2.4. Electrospray Ionization (ESI)
2.5. Penning Ionization (PI)
2.6. Dielectric Barrier Discharge Ionization (DBDI)
3. Strategies to Identify Unknowns by GC–API
3.1. Multidimensional Chromatography
3.2. Data-Independent Identification
3.3. Evaluating Confidence in Structure Assignments
3.4. Ion-Molecule Reactions for Separation and Structural Elucidation
3.5. Retrospective Analysis and Compound Discovery
3.6. Computational Tools to Predict Mass Spectra
4. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Muir, D.C.G.; Howard, P.H. Are There Other Persistent Organic Pollutants? A Challenge for Environmental Chemists. Environ. Sci. Technol. 2006, 40, 7157–7166. [Google Scholar] [CrossRef]
- McGuire, J.M.; Collette, T.W.; Thurston, A.D.; Richardson, S.D.; Payne, W.D. Multispectral Identification and Confirmation of Organic Compounds in Wastewater Extracts; Environmental Research Laboratory: Athens, GA, USA, 1990. [Google Scholar]
- UN. UN Report: Urgent Action Needed to Tackle Chemical Pollution as Global Production is Set to Double by 2030. Available online: https://www.unep.org/news-and-stories/press-release/un-report-urgent-action-needed-tackle-chemical-pollution-global (accessed on 9 August 2021).
- Stockholm Convention. What are POPs? Available online: http://www.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx (accessed on 9 August 2021).
- Hites, R.A.; Jobst, K.J. Is Nontargeted Screening Reproducible? Environ. Sci. Technol. 2018, 52, 11975–11976. [Google Scholar] [CrossRef] [Green Version]
- Chiaia-Hernandez, A.C.; Schymanski, E.L.; Kumar, P.; Singer, H.P.; Hollender, J. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal. Bioanal. Chem. 2014, 406, 7323–7335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostkowski, P.; Haglund, P.; Aalizadeh, R.; Alygizakis, N.; Thomaidis, N.; Arandes, J.B.; Nizzetto, P.B.; Booij, P.; Budzinski, H.; Brunswick, P.; et al. The Strength in Numbers: Comprehensive Characterization of House Dust Using Complementary Mass Spectrometric Techniques. Anal. Bioanal. Chem. 2019, 411, 1957–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, B.; van Bavel, B.; Fischer, S.; Haglund, P.; Rostkowski, P.; Reid, M.J.; Samanipour, S.; Schlabach, M.; Veenaas, C.; Dam, M. Maximizing Output from Non-Target Screening; Nordisk Ministerråd: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Hertz, H.S.; Hites, R.A.; Biemann, K. Identification of Mass Spectra by Computer-Searching a File of Known Spectra. Anal. Chem. 1971, 43, 681–691. [Google Scholar] [CrossRef]
- Harrison, A.G. Chemical Ionization Mass Spectrometry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Kauppila, T.J.; Syage, J.A.; Benter, T. Recent Developments in Atmospheric Pressure Photoionization-Mass Spectrometry. Mass Spectrom. Rev. 2017, 36, 423–449. [Google Scholar] [CrossRef]
- Gross, J.H. From the Discovery of Field Ionization to Field Desorption and Liquid Injection Field Desorption/Ionization-Mass Spectrometry—A Journey from Principles and Applications to a Glimpse into the Future. Eur. J. Mass Spectrom. 2020, 26, 241–273. [Google Scholar] [CrossRef] [PubMed]
- McEwen, C.N. GC/MS on an LC/MS Instrument Using Atmospheric Pressure Photoionization. Int. J. Mass Spectrom. 2007, 259, 57–64. [Google Scholar] [CrossRef]
- Horning, E.C.; Horning, M.G.; Carroll, D.I.; Dzidic, I.; Stillwell, R.N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936–943. [Google Scholar] [CrossRef]
- Revelsky, I.A.; Yashin, Y.S.; Sobolevsky, T.G.; Revelsky, A.I.; Miller, B.; Oriedo, V. Electron Ionization and Atmospheric Pressure Photochemical Ionization in Gas Chromatography—Mass Spectrometry Analysis of Amino Acids. Eur. J. Mass Spectrom. 2003, 507, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Schiewek, R.; Schellentra, M.; Mo, R.; Lorenz, M.; Giese, R.; Brockmann, K.J.; Ga, S. Ultrasensitive Determination of Polycyclic Aromatic Compounds with Atmospheric-Pressure Laser Ionization as an Interface for GC/MS. Anal. Chem. 2007, 79, 4135–4140. [Google Scholar] [CrossRef]
- Brenner, N.; Haapala, M.; Vuorensola, K.; Kostiainen, R. Simple Coupling of Gas Chromatography to Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80, 8334–8339. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Liu, J.; Yang, R.; Zhang, J.; Shao, B. Atmospheric Pressure Chemical Ionization Source as an Advantageous Technique for Gas Chromatography-Tandem Mass Spectrometry. TrAC—Trends Anal. Chem. 2020, 132, 116053. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, H.; Zhang, Y.; Lu, M.; Cai, Z. Atmospheric Pressure Chemical Ionization in Gas Chromatography-Mass Spectrometry for the Analysis of Persistent Organic Pollutants. Trends Environ. Anal. Chem. 2020, 25, e00076. [Google Scholar] [CrossRef]
- Schreckenbach, S.A.; Simmons, D.; Ladak, A.; Mullin, L.; Muir, D.C.G.; Simpson, M.J.; Jobst, K.J. Data-Independent Identification of Suspected Organic Pollutants Using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal. Chem. 2021, 93, 1498–1506. [Google Scholar] [CrossRef]
- Lipok, C.; Hippler, J.; Schmitz, O.J. A Four Dimensional Separation Method Based on Continuous Heart-Cutting Gas Chromatography with Ion Mobility and High Resolution Mass Spectrometry. J. Chromatogr. A 2018, 1536, 50–57. [Google Scholar] [CrossRef]
- García-Villalba, R.; Pacchiarotta, T.; Carrasco-Pancorbo, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Deelder, A.M.; Mayboroda, O.A. Gas Chromatography-Atmospheric Pressure Chemical Ionization-Time of Flight Mass Spectrometry for Profiling of Phenolic Compounds in Extra Virgin Olive Oil. J. Chromatogr. A 2011, 1218, 959–971. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Pacchiarotta, T.; Mayboroda, O.A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Metabolomic Analysis of Avocado Fruits by GC-APCI-TOF MS: Effects of Ripening Degrees and Fruit Varieties. Anal. Bioanal. Chem. 2015, 407, 547–555. [Google Scholar] [CrossRef]
- Garlito, B.; Portolés, T.; Niessen, W.M.A.; Navarro, J.C.; Hontoria, F.; Monroig, O.; Varó, I.; Serrano, R. Identification of Very Long-Chain (>C 24) Fatty Acid Methyl Esters Using Gas Chromatography Coupled to Quadrupole/Time-of-Flight Mass Spectrometry with Atmospheric Pressure Chemical Ionization Source. Anal. Chim. Acta 2019, 1051, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Allers, M.; Langejuergen, J.; Gaida, A.; Holz, O.; Schuchardt, S.; Hohlfeld, J.M.; Zimmermann, S. Measurement of Exhaled Volatile Organic Compounds from Patients with Chronic Obstructive Pulmonary Disease (COPD) Using Closed Gas Loop GC-IMS and GC-APCI-MS. J. Breath Res. 2016, 10, 026004. [Google Scholar] [CrossRef]
- Hennig, K.; Antignac, J.P.; Bichon, E.; Morvan, M.-L.; Miran, I.; Delaloge, S.; Feunteun, J.; le Bizec, B. Steroid Hormone Profiling in Human Breast Adipose Tissue Using Semi-Automated Purification and Highly Sensitive Determination of Estrogens by GC-APCI-MS/MS. Anal. Bioanal. Chem. 2018, 410, 259–275. [Google Scholar] [CrossRef]
- Li, D.X.; Gan, L.; Bronja, A.; Schmitz, O.J. Gas Chromatography Coupled to Atmospheric Pressure Ionization Mass Spectrometry (GC-API-MS): Review. Anal. Chim. Acta 2015, 891, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Mcewen, C.N.; Mckay, R.G. A Combination Atmospheric Pressure LC/MS:GC/MS Ion Source: Advantages of Dual AP-LC/MS:GC/MS Instrumentation. J. Am. Soc. Mass Spectrom. 2005, 16, 1730–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiewek, R.; Lorenz, M.; Giese, R.; Brockmann, K.; Benter, T.; Gäb, S.; Schmitz, O.J. Development of a Multipurpose Ion Source for LC-MS and GC-API MS. Anal. Bioanal. Chem. 2008, 392, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Robb, D.B.; Covey, T.R.; Bruins, A.P. Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2000, 72, 3653–3659. [Google Scholar] [CrossRef]
- Syage, J.; Matthew, A.; Evans, D.; Hanold, K.A. Photoionization Mass Spectrometry. Am. Lab. 2000, 32, 24–29. [Google Scholar]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef] [PubMed]
- Cody, R.B. GC/MS with a DARTTM Ion Source. In LC GC North America; Advanstar Communications: Duluth, MN, USA, 2008; p. 59. [Google Scholar]
- Faubert, D.; Paul, G.J.C.; Giroux, J.; Bertrand, M.J. Selective Fragmentation and Ionization of Organic Compounds Using an Energy-Tunable Rare-Gas Metastable Beam Source. Int. J. Mass Spectrom. Ion Process. 1993, 124, 69–77. [Google Scholar] [CrossRef]
- Nudnova, M.M.; Zhu, L.; Zenobi, R. Active Capillary Plasma Source for Ambient Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1447–1452. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Domeño, C.; Alfaro, P.; Nerín, C. Atmospheric Pressure Gas Chromatography Coupled to Quadrupole-Time of Flight Mass Spectrometry as a Powerful Tool for Identification of Non Intentionally Added Substances in Acrylic Adhesives Used in Food Packaging Materials. J. Chromatogr. A 2012, 1235, 141–148. [Google Scholar] [CrossRef]
- Sales, C.; Portolés, T.; Sancho, J.V.; Abad, E.; Ábalos, M.; Sauló, J.; Fiedler, H.; Gómara, B.; Beltrán, J. Potential of Gas Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry for Screening and Quantification of Hexabromocyclododecane. Anal. Bioanal. Chem. 2016, 408, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, F.; Ibáñez, M.; Portolés, T.; Cervera, M.I.; Sancho, J.V.; López, F.J. Advancing towards Universal Screening for Organic Pollutants in Waters. J. Hazard. Mater. 2015, 282, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Sheu, R.; Marcotte, A.; Khare, P.; Charan, S.; Ditto, J.C.; Gentner, D.R. Advances in Offline Approaches for Chemically Speciated Measurements of Trace Gas-Phase Organic Compounds via Adsorbent Tubes in an Integrated Sampling-to-Analysis System. J. Chromatogr. A 2018, 1575, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhen, Y.; Wang, R.; Li, T.; Dong, S.; Zhang, W.; Cheng, J.; Wang, P.; Su, X. Application of Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry (GC-(APCI)MS/MS) in Determination of PCBs (Mono-to Deca-) and PCDD/Fs in Chinese Mitten Crab Food Webs. Chemosphere 2021, 265, 129055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; di Lorenzo, R.A.; Helm, P.A.; Reiner, E.J.; Howard, P.H.; Muir, D.C.G.; Sled, J.G.; Jobst, K.J. Compositional Space: A Guide for Environmental Chemists on the Identification of Persistent and Bioaccumulative Organics Using Mass Spectrometry. Environ. Int. 2019, 132, 104808. [Google Scholar] [CrossRef]
- Larson, E.A.; Hutchinson, C.P.; Lee, Y.J. Gas Chromatography-Tandem Mass Spectrometry of Lignin Pyrolyzates with Dopant-Assisted Atmospheric Pressure Chemical Ionization and Molecular Structure Search with CSI:FingerID. J. Am. Soc. Mass Spectrom. 2018, 29, 1908–1918. [Google Scholar] [CrossRef]
- Ojanperä, I.; Mesihää, S.; Rasanen, I.; Pelander, A.; Ketola, R.A. Simultaneous Identification and Quantification of New Psychoactive Substances in Blood by GC-APCI-QTOFMS Coupled to Nitrogen Chemiluminescence Detection without Authentic Reference Standards. Anal. Bioanal. Chem. 2016, 408, 3395–3400. [Google Scholar] [CrossRef] [Green Version]
- Mesihää, S.; Ketola, R.A.; Pelander, A.; Rasanen, I.; Ojanperä, I. Development of a GC-APCI-QTOFMS Library for New Psychoactive Substances and Comparison to a Commercial ESI Library. Anal. Bioanal. Chem. 2017, 409, 2007–2013. [Google Scholar] [CrossRef]
- Ma, S.; Ma, C.; Qian, K.; Zhou, Y.; Shi, Q. Characterization of Phenolic Compounds in Coal Tar by Gas Chromatography/Negative-Ion Atmospheric Pressure Chemical Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 1806–1810. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Jogsten, I.E.; Dunstan, J.; Hagberg, J.; Wang, T.; Ruzzin, J.; Rabasa-Lhoret, R.; van Bavel, B. Gas Chromatography/Atmospheric Pressure Chemical Ionization/Mass Spectrometry for the Analysis of Organochlorine Pesticides and Polychlorinated Biphenyls in Human Serum. J. Chromatogr. A 2016, 1453, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Mesihaa, S.; Rasanen, I.; Ojanpera, I. Quantitative Estimation of α-PVP Metabolites in Urine by GC-APCI-QTOFMS with Nitrogen Chemiluminescence Detection Based on Parent Drug Calibration. Forensic Sci. Int. 2018, 286, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacs, D.; Perkons, I.; Bartkevics, V. Evaluation of Analytical Performance of Gas Chromatography Coupled with Atmospheric Pressure Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GC-APCI-FT-ICR-MS) in the Target and Nontargeted Analysis of Brominated and Chlo. Chemosphere 2019, 225, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Raro, M.; Portolés, T.; Pitarch, E.; Sancho, J.V.; Hernández, F.; Garrostas, L.; Marcos, J.; Ventura, R.; Segura, J.; Pozo, O.J. Potential of Atmospheric Pressure Chemical Ionization Source in Gas Chromatography Tandem Mass Spectrometry for the Screening of Urinary Exogenous Androgenic Anabolic Steroids. Anal. Chim. Acta 2016, 906, 128–138. [Google Scholar] [CrossRef]
- Geng, D.; Kukucka, P.; Jogsten, I.E. Analysis of Brominated Flame Retardants and Their Derivatives by Atmospheric Pressure Chemical Ionization Using Gas Chromatography Coupled to Tandem Quadrupole Mass Spectrometry. Talanta 2017, 162, 618–624. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Li, R.; Chen, W.; Song, Y.; Hu, D.; Cai, Z. Determination of PM2.5-Bound Polyaromatic Hydrocarbons and Their Hydroxylated Derivatives by Atmospheric Pressure Gas Chromatography-Tandem Mass Spectrometry. Talanta 2019, 195, 757–763. [Google Scholar] [CrossRef]
- Gill, B.; Mell, A.; Shanmuganathan, M.; Jobst, K.; Zhang, X.; Kinniburgh, D.; Cherry, N.; Britz-McKibbin, P. Urinary Hydroxypyrene Determination for Biomonitoring of Firefighters Deployed at the Fort McMurray Wildfire: An Inter-Laboratory Method Comparison. Anal. Bioanal. Chem. 2019, 411, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Organtini, K.L.; Myers, A.L.; Jobst, K.J.; Reiner, E.J.; Ross, B.; Ladak, A.; Mullin, L.; Stevens, D.; Dorman, F.L. Quantitative Analysis of Mixed Halogen Dioxins and Furans in Fire Debris Utilizing Atmospheric Pressure Ionization Gas Chromatography-Triple Quadrupole Mass Spectrometry. Anal. Chem. 2015, 87, 10368–10377. [Google Scholar] [CrossRef]
- Organtini, K.L.; Haimovici, L.; Jobst, K.J.; Reiner, E.J.; Ladak, A.; Stevens, D.; Cochran, J.W.; Dorman, F.L. Comparison of Atmospheric Pressure Ionization Gas Chromatography-Triple Quadrupole Mass Spectrometry to Traditional High-Resolution Mass Spectrometry for the Identification and Quantification of Halogenated Dioxins and Furans. Anal. Chem. 2015, 87, 7902–7908. [Google Scholar] [CrossRef]
- Portoles, T.; Sales, C.; Abalos, M.; Saulo, J.; Abad, E. Evaluation of the Capabilities of Atmospheric Pressure Chemical Ionization Source Coupled to Tandem Mass Spectrometry for the Determination of Dioxin-like Polychlorobiphenyls in Complex-Matrix Food Samples. Anal. Chim. Acta 2016, 937, 96–105. [Google Scholar] [CrossRef]
- Megson, D.; Robson, M.; Jobst, K.J.; Helm, P.A.; Reiner, E.J. Determination of Halogenated Flame Retardants Using Gas Chromatography with Atmospheric Pressure Chemical Ionization (APCI) and a High-Resolution Quadrupole Time-of-Flight Mass Spectrometer (HRqTOFMS). Anal. Chem. 2016, 88, 11406–11411. [Google Scholar] [CrossRef]
- Mirabelli, M.F.; Zenobi, R. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds. Anal. Chem. 2018, 90, 5015–5022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deibel, E.; Klink, D.; Schmitz, O.J. New Derivatization Strategies for the Ultrasensitive Analysis of Non-Aromatic Analytes with APLI-TOF-MS. Anal. Bioanal. Chem. 2015, 407, 7425–7434. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Cabrera, J.F.; Contreras-Llin, A.; Moyano, E.; Santos, F.J. A Novel Methodology for the Determination of Neutral Perfluoroalkyl and Polyfluoroalkyl Substances in Water by Gas Chromatography-Atmospheric Pressure Photoionization-High Resolution Mass Spectrometry. Anal. Chim. Acta 2020, 1100, 97–106. [Google Scholar] [CrossRef]
- Cervera, M.I.; Portolés, T.; López, F.J.; Beltrán, J.; Hernández, F. Screening and Quantification of Pesticide Residues in Fruits and Vegetables Making Use of Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry with Atmospheric Pressure Chemical Ionization. Anal. Bioanal. Chem. 2014, 406, 6843–6855. [Google Scholar] [CrossRef]
- Richter-Brockmann, S.; Dettbarn, G.; Jessel, S.; John, A.; Seidel, A.; Achten, C. GC-APLI-MS as a Powerful Tool for the Analysis of BaP-Tetraol in Human Urine. J. Chromatogr. B 2018, 1100, 1–5. [Google Scholar] [CrossRef]
- Leider, A.; Richter-Brockmann, S.; Nettersheim, B.J.; Achten, C.; Hallmann, C. Low-Femtogram Sensitivity Analysis of Polyaromatic Hydrocarbons Using GC-APLI-TOF Mass Spectrometry: Extending the Target Window for Aromatic Steroids in Early Proterozoic Rocks. Org. Geochem. 2019, 129, 77–87. [Google Scholar] [CrossRef]
- Dohmann, J.F.; Thiäner, J.B.; Achten, C. Ultrasensitive Detection of Polycyclic Aromatic Hydrocarbons in Coastal and Harbor Water Using GC-APLI-MS. Mar. Pollut. Bull. 2019, 149, 110547. [Google Scholar] [CrossRef]
- Große Brinkhaus, S.; Thiäner, J.B.; Achten, C.; Grosse Brinkhaus, S.; Thiaener, J.B.; Achten, C. Ultra-High Sensitive PAH Analysis of Certified Reference Materials and Environmental Samples by GC-APLI-MS. Anal. Bioanal. Chem. 2017, 409, 2801–2812. [Google Scholar] [CrossRef]
- Cha, E.; Sook, E.; Cha, S.; Lee, J. Analytica Chimica Acta Coupling of Gas Chromatography and Electrospray Ionization High Resolution Mass Spectrometry for the Analysis of Anabolic Steroids as Trimethylsilyl Derivatives in Human Urine. Anal. Chim. Acta 2017, 964, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.; Jeong, E.S.; Han, S.B.; Cha, S.; Son, J.; Kim, S.; Oh, H.B.; Lee, J. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography. Anal. Chem. 2018, 90, 4203–4211. [Google Scholar] [CrossRef]
- Ayala-Cabrera, J.F.; Galceran, M.T.; Moyano, E.; Santos, F.J. Chloride-Attachment Atmospheric Pressure Photoionisation for the Determination of Short-Chain Chlorinated Paraffins by Gas Chromatography-High-Resolution Mass Spectrometry. Anal. Chim. Acta 2021, 1172, 338673. [Google Scholar] [CrossRef]
- Di Lorenzo, R.A.; Lobodin, V.V.; Cochran, J.; Kolic, T.; Besevic, S.; Sled, J.G.; Reiner, E.J.; Jobst, K.J. Fast Gas Chromatography-Atmospheric Pressure (Photo)Ionization Mass Spectrometry of Polybrominated Diphenylether Flame Retardants. Anal. Chim. Acta 2019, 1056, 70–78. [Google Scholar] [CrossRef]
- Kauppila, T.J.; Kersten, H.; Benter, T. Ionization of EPA Contaminants in Direct and Dopant- and Atmospheric Pressure Laser Ionization. J. Am. Soc. Mass Spectrom. 2015, 26, 1036–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stader, C.; Beer, F.T.; Achten, C. Environmental PAH Analysis by Gas Chromatography-Atmospheric Pressure Laser Ionization-Time-of-Flight-Mass Spectrometry (GC-APLI-MS). Anal. Bioanal. Chem. 2013, 405, 7041–7052. [Google Scholar] [CrossRef]
- Mollah, S.; Pris, A.D.; Johnson, S.K.; Gwizdala, A.B., III; Houk, R.S. Identification of Metal Cations, Metal Complexes, and Anions by Electrospray Mass Spectrometry Inthe Negative Ion Mode. Anal. Chem. 2000, 72, 985–991. [Google Scholar] [CrossRef]
- Cody, R.B. Observation of Molecular Ions and Analysis of Nonpolar Compounds with the Direct Analysis in Real Time Ion Source. Anal. Chem. 2009, 81, 1101–1107. [Google Scholar] [CrossRef]
- Moore, S. Use of the Metastable Atom Bombardment (MAB) Ion Source for the Elimination of PCDE Interference in PCDD/PCDF Analysis. Chemosphere 2002, 49, 121–125. [Google Scholar] [CrossRef]
- Nørgaard, A.W.; Kofoed-Sørensen, V.; Svensmark, B.; Wolkoff, P.; Clausen, P.A. Gas Chromatography Interfaced with Atmospheric Pressure Ionization-Quadrupole Time-of-Flight-Mass Spectrometry by Low-Temperature Plasma Ionization. Anal. Chem. 2013, 85, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.F.; Wolf, J.C.; Zenobi, R. Atmospheric Pressure Soft Ionization for Gas Chromatography with Dielectric Barrier Discharge Ionization-Mass Spectrometry (GC-DBDI-MS). Analyst 2017, 142, 1909–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagenhoff, S.; Korf, A.; Markgraf, U.; Brandt, S.; Schütz, A.; Franzke, J.; Hayen, H. Screening of Semifluorinated N-Alkanes by Gas Chromatography Coupled to Dielectric Barrier Discharge Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1092–1098. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Singer, H.P.; Slobodnik, J.; Ipolyi, I.M.; Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; et al. Non-Target Screening with High-Resolution Mass Spectrometry: Critical Review Using a Collaborative Trial on Water Analysis. Anal. Bioanal. Chem. 2015, 407, 6237–6255. [Google Scholar] [CrossRef]
- Pitarch, E.; Cervera, M.I.; Portolés, T.; Ibáñez, M.; Barreda, M.; Renau-Pruñonosa, A.; Morell, I.; López, F.; Albarrán, F.; Hernández, F. Comprehensive Monitoring of Organic Micro-Pollutants in Surface and Groundwater in the Surrounding of a Solid-Waste Treatment Plant of Castellón, Spain. Sci. Total Environ. 2016, 548, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Gómez, A.; de Boer, J.; Leonards, P.E.G. Novel Analytical Methods for Flame Retardants and Plasticizers Based on Gas Chromatography, Comprehensive Two-Dimensional Gas Chromatography, and Direct Probe Coupled to Atmospheric Pressure Chemical Ionization-High Resolution Time-of-Flight-Mass Spectrometry. Anal. Chem. 2013, 85, 9572–9580. [Google Scholar] [CrossRef]
- Jobst, K.J.; Arora, A.; Pollitt, K.G.; Sled, J.G. Dried Blood Spots for the Identification of Bioaccumulating Organic Compounds: Current Challenges and Future Perspectives. Curr. Opin. Environ. Sci. Health 2020, 15, 66–73. [Google Scholar] [CrossRef]
- Patterson, D.G.; Welch, S.M.; Turner, W.E.; Sjödin, A.; Focant, J.-F. Cryogenic Zone Compression for the Measurement of Dioxins in Human Serum by Isotope Dilution at the Attogram Level Using Modulated Gas Chromatography Coupled to High Resolution Magnetic Sector Mass Spectrometry. J. Chromatogr. A 2011, 1218, 3274–3281. [Google Scholar] [CrossRef] [Green Version]
- Seeley, J.V.; Schimmel, N.E.; Seeley, S.K. The Multi-Mode Modulator: A Versatile Fluidic Device for Two-Dimensional Gas Chromatography. J. Chromatogr. A 2018, 1536, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Jobst, K.J.; Seeley, J.V.; Reiner, E.J.; Mullin, L.; Ladak, A. Enhancing the Sensitivity of Atmospheric Pressure Ionization Mass Spectrometry Using Flow Modulated Gas Chromatography. Curr. Trends Mass Spectrom. 2018, 16, 15–19. [Google Scholar]
- Bowman, D.T.; Jobst, K.J.; Helm, P.A.; Kleywegt, S.; Diamond, M.L. Characterization of Polycyclic Aromatic Compounds in Commercial Pavement Sealcoat Products for Enhanced Source Apportionment. Environ. Sci. Technol. 2019, 53, 3157–3165. [Google Scholar] [CrossRef] [PubMed]
- Venable, J.D.; Dong, M.; Wohlschlegel, J.; Dillin, A.; Yates, J.R., III. Automated Approach for Quantitative Analysis of Complex Peptide Mixtures from Tandem Mass Spectra. Nat. Methods 2004, 1, 39–45. [Google Scholar] [CrossRef]
- Gillet, L.C.; Navarro, P.; Tate, S.; Ro, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the MS/MS Spectra Generated by Data-Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol. Cell. Proteom. 2012, 11, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseley, M.A.; Hughes, C.J.; Juvvadi, P.R.; Soderblom, E.J.; Lennon, S.; Perkins, S.R.; Thompson, J.W.; Steinbach, W.J.; Geromanos, S.J.; Wildgoose, J.; et al. Scanning Quadrupole Data-Independent Acquisition, Part A: Qualitative and Quantitative Characterization. J. Proteome Res. 2018, 17, 770–779. [Google Scholar] [CrossRef]
- Waters. MassFragment for Structural Elucidation in Metabolite ID Using Exact Mass MS. Available online: https://www.waters.com/waters/library.htm?locale=en_US&lid=10064396 (accessed on 9 August 2021).
- Waters. UNIFI Scientific Information System. Available online: https://www.waters.com/waters/en_US/UNIFI-Scientific-Information-System/nav.htm?cid=134801359&locale=en_US (accessed on 9 August 2021).
- Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In Silico Fragmentation for Computer Assisted Identification of Metabolite Mass Spectra. BMC Bioinform. 2010, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S.; Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI: FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef] [Green Version]
- Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: A Web Server for Annotation, Spectrum Prediction and Metabolite Identification from Tandem Mass Spectra. Nucleic Acids Res. 2014, 42, W94–W99. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Towards First Principles Calculation of Electron Impact Mass Spectra of Molecules. Angewandte Chemie; Verlag Chemie: Weinheim/Bergstrasse, Germany; New York, NY, USA, 2013; pp. 6306–6312. [Google Scholar] [CrossRef]
- Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H. Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, C.A.; Ramirez, C.E.; Fernandez-Lima, F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal. Chem. 2021, 93, 6080–6087. [Google Scholar] [CrossRef]
- Giles, K.; Ujma, J.; Wildgoose, J.; Pringle, S.; Richardson, K.; Langridge, D.; Green, M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91, 8564–8573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheubert, K.; Hufsky, F.; Böcker, S. Computational Mass Spectrometry for Small Molecules. J. Cheminform. 2013, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.Z.; Vera, P.; van de Wiele, C.; Nerín, C.; Lin, Q.B.; Zhong, H.N. Non-Target Screening of (Semi-)Volatiles in Food-Grade Polymers by Comparison of Atmospheric Pressure Gas Chromatography Quadrupole Time-of-Flight and Electron Ionization Mass Spectrometry. Talanta 2019, 202, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Cherta, L.; Portolés, T.; Pitarch, E.; Beltran, J.; López, F.J.; Calatayud, C.; Company, B.; Hernández, F. Analytical Strategy Based on the Combination of Gas Chromatography Coupled to Time-of-Flight and Hybrid Quadrupole Time-of-Flight Mass Analyzers for Non-Target Analysis in Food Packaging. Food Chem. 2015, 188, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Mltchum, R.K.; Korfmacher, W.A.; Molar, G.F.; Stalling, D.L. Capillary Gas Chromatography/Atmospheric Pressure Negative Chemical Ionization Mass Spectrometry of the 22 Isomeric T Etrachlorodlbenzo-p-Dioxins. Anal. Chem. 1982, 54, 719–722. [Google Scholar] [CrossRef]
- Korfmacher, W.A.; Rowland, K.R.; Mitchum, R.K.; Daly, J.J.; McDaniel, R.C.; Plummer, M.V. Analysis of Snake Tissue and Snake Eggs for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin via Fused Silica GC Combined with Atmospheric Pressure Ionization MS. Chemosphere 1984, 13, 1229–1233. [Google Scholar] [CrossRef]
- Korfmacher, W.A.; Hansen, E.B.; Rowland, K.L. Tissue Distribution of 2,3,7,8-TCDD in Bullfrogs Obtained from a 2,3,7,8-TCDD-Contaminated Area. Chemosphere 1986, 15, 121–126. [Google Scholar] [CrossRef]
- Fernando, S.; Green, M.K.; Organtini, K.; Dorman, F.; Jones, R.; Reiner, E.J.; Jobst, K.J. Differentiation of (Mixed) Halogenated Dibenzo-p-Dioxins by Negative Ion Atmospheric Pressure Chemical Ionization. Anal. Chem. 2016, 88, 5205–5211. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, R.; Näf, C.; Zebühr, Y.; Broman, D.; Järnberg, U. PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in Air and Water Particulate Samples––Patterns and Variations. Chemosphere 2003, 50, 1131–1150. [Google Scholar] [CrossRef]
- Ayrton, S.T.; Jones, R.; Douce, D.S.; Morris, M.R.; Cooks, R.G. Uncatalyzed, Regioselective Oxidation of Saturated Hydrocarbons in an Ambient Corona Discharge. Angew. Chem. 2018, 130, 777–781. [Google Scholar] [CrossRef]
- Megson, D.; Hajimirzaee, S.; Doyle, A.; Cannon, F.; Balouet, J.-C. Investigating the Potential for Transisomerisation of Trycresyl Phosphate with a Palladium Catalyst and Its Implications for Aircraft Cabin Air Quality. Chemosphere 2019, 215, 532–534. [Google Scholar] [CrossRef]
- Lai, A.; Singh, R.R.; Kovalova, L.; Jaeggi, O.; Kondić, T.; Schymanski, E.L. Retrospective Non-Target Analysis to Support Regulatory Water Monitoring: From Masses of Interest to Recommendations via in Silico Workflows. Environ. Sci. Eur. 2021, 33, 1–21. [Google Scholar] [CrossRef]
- Waters. MassFragment. Available online: https://www.waters.com/waters/en_US/MassFragment-/nav.htm?cid=1000943&locale=en_US (accessed on 9 August 2021).
- Thermo Fisher. Mass Frontier Spectral Interpretation Software. Available online: https://www.thermofisher.com/ca/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/mass-frontier-spectral-interpretation-software.html (accessed on 9 August 2021).
- Schreckenbach, S.A.; Anderson, J.S.M.; Koopman, J.; Grimme, S.; Simpson, M.J.; Jobst, K.J. Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. J. Am. Soc. Mass Spectrom. 2021, 32, 1508–1518. [Google Scholar] [CrossRef]
- Koopman, J.; Grimme, S. From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. J. Am. Soc. Mass Spectrom. 2021, 32, 1735–1751. [Google Scholar] [CrossRef] [PubMed]
Sample | Detector | (Non)Targeted Chemicals | Method Merits | Ref. | |
---|---|---|---|---|---|
APCI | Food packaging materials | QTOF, HP-5MS | Acrylic adhesives including 2-methyl-1,2-thiazol-3(2H)-one, 5-chloro-2-methyl-1,2-thiazol-3(2H)-one and 1,2-benzothiazol-3(2H)-one | [36] | |
APCI | Polyurethane foam disks (PUFs), food, and marine samples | Xevo TQ-S QQQ | Hexabromocyclododecane | IDL: 0.10 pg/μL RSD: <7% | [37] |
APCI | Surface water, groundwater, wastewater | Pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), fragrances, musks, antimicrobials, insect repellents, UV filters, polychloronaphthalenes (PCNs) | [38] | ||
APCI | Indoor air sample | QTOF, HP-1-MS | volatile, intermediate-volatility, and semivolatile organic compound | LOD: 10~100 ppq | [39] |
APCI | Chinese mitten crab food webs | Xevo TQ-XS QQQ, DB-5MS | PCBs (mono-to deca-) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) | RSD: PCBs: 3.4%~15.5%; PCDD/Fs: 1.7%~7.9% LOD: PCBs: 0.021~0.150 pg/mL; PCDD/Fs: 0.051~0.237 pg/mL | [40] |
APCI | Standard Reference Material (SRM 2585) of household dust | QTOF | 191 POPs including PCBs and agricultural drug residues, such as chlordane and degradation products of DDT and Fentichlor, polychlorinated and polybrominated diphenyl ethers (PCDEs and PBDEs), other brominated flame retardants such as tetrabromobisphenol A (TBBPA) and bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), chlorine-containing organophosphate flame retardants tris(1,3-dichloro-2-propyl)phosphate (2 isomers), tris(2-chloroisopropyl)phosphate and tris(2-chloroethyl)phosphate | [41] | |
APCI | Electronic waste dust | Q-TOF DB5-HT | 52 brominated, chlorinated, and organophosphorus compounds identified by suspect screening; 15 unique elemental compositions identified using NTS with 17 chemicals confirmed using standards | [20] | |
APCI | Low sulfonate lignin | Q-TOF TOF | 59 lignin pyrolysis products were positively identified, with 10 chemicals confirmed using standards | [42] | |
APCI | Urine Blood | QTOF DB- 5MS | Illicit psychostimulant drugs | [43,44] | |
APGC | Low-temperature coal tar sample and its distillation products | TQ-S DB-35 MS | Phenolic compounds (phenols, indanols, naphthols, and benzenediols) | [45] | |
APGC | Human serums | Xevo TQ-S | Organochlorine pesticides (OCPs) and PCBs | RSD: <15% | [46] |
APCI | Urine samples | QTOF | α-pyrrolidinovalerophenone metabolites | [47] | |
APGC | Food | FT-ICR, Rtx-1614 | Halogenated flame retardants (HFRs) | Recovery: 59~115%; RSD: 5–15%; IQL: 1~5 pg/g; MQL: 0.002~0.04 ng/g | [48] |
APCI | Urine | QQQ, HP Ultra 1 | Exogenous androgenic anabolic steroids | RSD: 15–25% Most LOD: below 0.5 ng/ mL | [49] |
APGC | Seal and egg samples | Xevo TQ-S QQQ, Rtx-1614 | PBDEs, their methoxylated derivatives (MeO-PBDEs) and other emerging (brominated flame retardants) BFRs | RSD: <1. IDL: emerging BFRs, BDE 209 and MeO-PBDEs mixtures: 0.075~0.1 pg/µL; Br1–9 PBDEs mixtures: 0.625~6.25 pg/µL | [50] |
APGC | Air fine particulate matter (PM 2.5) | Xevo TQ-S QQQ | Nitro-polyaromatic hydrocarbons | IDL: (0.20~2.18 pg/mL MDL: 0.001~0.015 pg/m3; Recovery: 70%~120% | [51] |
APGC | Urine samples | Xevo G2-XS QTOF, DB-17+ custom MXT | 1-Hydroxypyrene, 3-hydroxyphenanthrene, 9-hydroxyfluorene | 1-Hydroxypyrene LOD: 0.64 ng/L, LOQ 2.16 ng/L; average CV: 11.5% | [52] |
APGC | Simulated burn study samples (household and electronics), Particulate matter coating the firefighter’s helmets | Xevo TQ-S, Rtx Dioxin-2 | Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) and polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) | total levels of each halogenated homologue group: parts per billion | [53] |
APGC | Fish, dust | Xevo TQ-S, Rtx Dioxin-2 | Soil: MDL: 0.15~1.4 pg/g, RSD < 11% Fish: 0.21~2.0 pg/g, RSD < 33% | [54] | |
APGC | Food and feed | Orbitrap, DB-5MS | Polychlorinated dioxins and polychlorinated biphenyls | S/N: 753 for 40 fg on column Average RSD: 9.8% | [55] |
APCI | Dust | Xevo G2-XS qTOF, DB-5 HT | 40 PBDEs and 25 emerging HFRs | LOD: HFRs: 0.65 (0.016~9.1) pg/ μL; PBDE: 0.17 (0.0123~2.5) pg μL | [56] |
APPI | Drug solutions | HR-LTQ Orbitrap, SLB-5 ms | Triazines and organophosphorus pesticides, PAHs, Drugs (diazepam and methadone) | Pesticide: average 3 pg/mL PAH: 0.1 pg/mL Drugs: average 30 pg/mL | [57] |
APPI | Derivazation | oaTOF | Amines, alcohols, carboxylic acids | LOD: pmol~attmol | [58] |
APPI | River water, tap water | HRMS (Q-Orbitrap) | fluorotelomer olefins (FTOs), fluorotelomer alcohols (FTOHs), fluoroctanesulfonamides (FOSAs) and sulfonamidoethanols (FOSEs) | LOD: 0.02–15 ng/L; RSD% < 11 | [59] |
APPI | Fruit and vegetable samples | QTOF | 416 pesticides 416 pesticides | [60] | |
APLI | Human urine | TOF, DB-35 | Trans-anti-benzo[a]pyrene-tetraol (BaP-tetraol) (PAH biomarker) | IOD of 0.5 fg | [61] |
APLI | Rocks | HR TOF, RXI-PAH | Triaromatic steroids | LOD: retene: 25 fg on column | [62] |
APLI | Coastal and harbor water | HR TOF, RXI-PAH | 48 PAHs (alkylated PAHs in suspected target analysis) | Recovery rate: 60.7% to 157.0%, mean 92.1% | [63] |
APLI | Reference materials (urban dust, organics in marine sediment, fresh water harbor sediment, and contaminated soil from a former gas plant site) and environment samples (bituminous coal, suspended particulate matter from river and pine needles) | HR TOF, RXI-PAH | 59 PAHs | Recovery: 34%~102%, median, 80% mean 78% LODs: 5~50 fg/μL | [64] |
ESI | Human urine | LTQ Orbitrap QQQ Ultra-1 | Trimethylsilyl (TMS) derivatives of steroids | LOD 0.5~10 ng/mL | [65] |
ESI | Soil | QQQ, DB-EUPAH | PAHs | LOD 0.002~10 μg/mL | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dorman, F.L.; Helm, P.A.; Kleywegt, S.; Simpson, A.; Simpson, M.J.; Jobst, K.J. Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules 2021, 26, 6911. https://doi.org/10.3390/molecules26226911
Li X, Dorman FL, Helm PA, Kleywegt S, Simpson A, Simpson MJ, Jobst KJ. Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules. 2021; 26(22):6911. https://doi.org/10.3390/molecules26226911
Chicago/Turabian StyleLi, Xiaolei, Frank L. Dorman, Paul A. Helm, Sonya Kleywegt, André Simpson, Myrna J. Simpson, and Karl J. Jobst. 2021. "Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential" Molecules 26, no. 22: 6911. https://doi.org/10.3390/molecules26226911
APA StyleLi, X., Dorman, F. L., Helm, P. A., Kleywegt, S., Simpson, A., Simpson, M. J., & Jobst, K. J. (2021). Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules, 26(22), 6911. https://doi.org/10.3390/molecules26226911