Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactive Components in Six Pipeline Striga-Resistant Yellow-Orange Maize Hybrids
2.2. Antioxidant Activity of Six Pipeline Striga-Resistant Yellow-Orange Maize Hybrids
2.3. Starch-Hydrolyzing Enzymes Inhibitory Activities of the Six Pipeline Striga-Resistant Biofortified Yellow-Orange Maize Hybrids
2.4. Correlations between the Bioactive Components, Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Activities of the Six Pipeline Striga-Resistant Yellow-Orange Maize Hybrids
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Collection
3.3. Preparation of Samples’ Extract
3.4. Determination of Total Phenolics Content
3.5. Determination of Total Flavonoids Content
3.6. Determination of Tannin Content
3.7. Quantification of Carotenoid Content of the Sample
3.8. Determination of Phytic Acid Content
3.9. 2,2-Azinobis(3-ethyl-benzothiazoline-6-sulfonic Acid) Radical Cation (ABTS•+) Scavenging Assay
3.10. 2,2-Diphenyl-2-picrylhydrazyl Radical (DPPH•) Scavenging Assay
3.11. Reducing Power Assay
3.12. Alpha-Amylase Inhibition Assay
3.13. Alpha-Glucosidase Inhibition Assay
3.14. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Urban, M.O.; Planchon, S.; Hošticková, I.; Vanková, R.; Dobrev, P.; Renaut, J.; Klíma, M.; Vítámvás, P. The resistance of oilseed rape microspore-derived embryos to osmotic stress is associated with the accumulation of energy metabolism proteins, redox homeostasis, higher abscisic acid, and cytokinin contents. Front. Plant Sci. 2021, 12, 628167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Burucs, Z.; Schmidhalter, U. Effect of foliar fertilization application on the growth and mineral nutrient content of maize seedlings under drought and salinity. Soil Sci. Plant Nutr. 2008, 54, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Elemosho, A.O.; Irondi, E.A.; Alamu, E.O.; Ajani, E.O.; Maziya-Dixon, B.; Menkir, A. Characterization of Striga-resistant yellow-orange maize hybrids for bioactive, carbohydrate, and pasting properties. Front. Sustain. Food Syst. 2020, 4, 585865. [Google Scholar] [CrossRef]
- Zilić, S.; Serpen, A.; Akıllıoğlu, G.; Gökmen, V.; Vančetović, J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Hu, Q.P.; Xu, J.G. Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J. Agric. Food Chem. 2011, 59, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, K.E.; Juvik, J.A. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: Case study with carotenoids and tocopherols in sweet corn and broccoli. J. Agric. Food Chem. 2009, 57, 4636–4644. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Adewale, S.; Paterne, A.; Gedil, M.; Asiedu, R. Identification of QTLs controlling resistance/tolerance to Striga hermonthica in an extra-early maturing yellow maize population. Agronomy 2020, 10, 1168. [Google Scholar] [CrossRef]
- Zebire, D.; Menkir, A.; Adetimirin, V.; Mengesha, W.; Meseka, S.; Gedil, M. Effectiveness of yellow maize testers with varying resistance reactions to Striga hermonthica for evaluating the combining ability of maize inbred lines. Agronomy 2020, 10, 1276. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Gasura, E.; Setimela, P.; Mabasa, S.; Rwafa, R.; Kageler, S.; Nyakurwa, C. Response of IITA maize inbred lines bred for Striga hermonthica resistance to Striga asiatica and associated resistance mechanisms in southern Africa. Euphytica 2019, 215, 151. [Google Scholar] [CrossRef]
- Irondi, E.A.; Adegoke, B.M.; Effion, E.S.; Oyewo, S.O.; Alamu, E.O.; Boligon, A.A. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Sci. Hum. Wellness 2019, 8, 142–148. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High-serum carotenoids associated with lower risk for developing type 2 diabetes among Japanese subjects: Mikkabi cohort study. BMJ Open Diabetes Res. Care 2015, 3, e000147. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Salinas, P.A.; Zavala-Garcia, F.; Urias-Orona, V.; Muy-Rangel, D.; Heredia, J.B.; Nino-Medina, G. Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the Northeast of Mexico. Arabian J. Sci. Eng. 2020, 45, 95–112. [Google Scholar] [CrossRef]
- Beta, T.; Hwang, T. Influence of heat and moisture treatment on carotenoids, phenolic content, and antioxidant capacity of orange maize flour. Food Chem. 2018, 246, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Fabila-Garca, P.; Dublán-García, O.; Gómez-Oliván, L.M.; Baeza-Jiménez, R.; López-Martínez, L.X. In vitro antioxidant and bioactive properties of corn (Zea mays L.). Arch. Latinoam. De Nutr. 2017, 67, 300–308. [Google Scholar]
- Avila-Roman, J.; Soliz-Rueda, J.R.; Bravo, F.I.; Aragones, G.; Suarez, M.; Arola-Arnal, A.; Mulero, M.; Salvadó, M.-J.; Arola, L.; Torres-Fuentes, C.; et al. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci. Technol. 2021, 113, 77–85. [Google Scholar] [CrossRef]
- Irondi, E.A.; Ajani, E.O.; Aliyu, O.M.; Olatoye, K.K.; Abdulameed, H.T.; Ogbebor, O.F. Bioactive components, enzymes inhibitory and antioxidant activities of biofortified yellow maize (Zea mays L.) and cowpea (Vigna unguiculata L. Walp) composite biscuits. Ann. Univ. Dunarea De Jos Galati Fascicle VI-Food Technol. 2021, 45, 86–101. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, H.J.; Matusova, R.; Zhongkui, S.; Beale, M.H. Secondary metabolite signalling in host-parasitic plant interactions. Curr. Opin. Plant Biol. 2003, 6, 358–364. [Google Scholar] [CrossRef]
- Gowda, B.S.; Riopel, J.L.; Timko, M.P. NRSA-1: A resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed). Plant J. 1999, 20, 217–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.T.; Wu, J.H.; Wang, S.Y.; Kang, P.L.; Yang, N.S.; Shyur, L.F. Antioxidant activity of extracts from Acacia confuse bark and heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chang, S.K.C. Digestive enzyme inhibition activity of the phenolic substances in selected fruits, vegetables and tea as compared to black legumes. J. Funct. Food 2017, 38, 644–655. [Google Scholar] [CrossRef]
- Villiger, A.; Sala, F.; Suter, A.; Butterweck, V. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome. Phytomedicine 2015, 22, 138–144. [Google Scholar] [CrossRef]
- Dost, K.; Tokul, O. Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Biochem. 2006, 119, 413–417. [Google Scholar] [CrossRef]
- Vucenik, I.; Shamsuddin, A.M. Cancer inhibition by inositol hexaphosphate (ip6) and inositol: From laboratory to clinic. J. Nutr. 2003, 133, 3778S–3784S. [Google Scholar] [CrossRef] [PubMed]
- Alamu, E.O.; Maziya-Dixon, B.; Menkir, A.; Irondi, E.A.; Olaofe, O. Bioactive composition and free radical scavenging activity of fresh orange maize hybrids: Impacts of genotype, maturity stages and processing methods. Front. Nutr. 2021, 8, 640563. [Google Scholar] [CrossRef] [PubMed]
- Alamu, E.O.; Maziya-Dixon, B.; Menkir, A.; Olaofe, O. Bioactive compounds of freshly harvested open pollinated varieties (OPV) of orange maize (Zea mays): Varietal, maturity, and boiling methods effects. Cogent Chem. 2018, 4, 1507489. [Google Scholar] [CrossRef]
- Ortiz, D.; Rocheford, T.; Ferruzi, M.G. Influence of temperature and humidity on the stability of carotenoids in biofortified maize (Zea mays L.) genotypes during controlled post-harvest storage. J. Agric. Food Chem. 2016, 64, 2727–2736. [Google Scholar] [CrossRef] [PubMed]
- Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Rao, A.V. Carotenoids and chronic diseases. Drug Metab. Drug Interact. 2000, 17, 189–210. [Google Scholar] [CrossRef]
- Gammone, M.A.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; D’Orazio, N. Prevention of cardiovascular diseases with carotenoids. Front. Biosci. (Sch. Ed.) 2017, 9, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Nagashimada, M.; Zhan, L.; Nagata, N.; Kobori, M.; Sugiura, M.; Ogawa, K.; Kaneko, S.; Ota, T. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology 2015, 156, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Montonen, J.; Knekt, P.; Jarvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004, 27, 362–366. [Google Scholar] [CrossRef]
- Irondi, E.A.; Adebara, O.O.; Olateju, A.; Boligon, A.A. Phenolic constituents, anti-radicals, and enzymes inhibitory potentials of Brachystegia eurycoma seeds: Effects of processing methods. Int. J. Food Prop. 2018, 20, S3004–S3014. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, K.; Tanaka, M.; Iwata, H.; Nishihara, R.; Ishihara, K.; Wang, D.-H.; Ogino, K.; Taniuchi, K.; Masuoka, N. Low catalase activity in blood is associated with the diabetes caused by alloxan. Clin. Chim. Acta 2009, 407, 43–46. [Google Scholar] [CrossRef]
- Ward, J.L.; Poutanen, K.; Gebruers, K.; Piironen, V.; Lampi, A.M.; Nystrom, L.; Andersson, A.A.M.; Åman, P.; Boros, D.; Rakszegi, M.; et al. The HEALTHGRAIN cereal diversity screen: Concept, results and prospects. J. Agric. Food Chem. 2008, 56, 9699–9709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-L.; Wang, K.-J. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2019, 110, 510–517. [Google Scholar]
- Tucci, S.A.; Boyland, E.J.; Halford, J.C.G. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes. 2010, 3, 125–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.M.; Jeong, Y.K.; Wang, M.H.; Lee, Y.H.; Rhee, H.I. Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycaemia. Nutrition 2005, 21, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Gonzalez, M.; Grosso, C.; Valentao, P.; Andrade, P.B. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: A stronger alternative to acarbose? J. Pharm. Biomed. Anal. 2015, 118, 322–327. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. J. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau’s reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kale, A.; Gaikwad, S.; Mundhe, K.; Deshpande, N.; Salvekar, J. Quantification of Phenolics and Flavonoids by Spectrophotometer from—Juglans regia. Int. J. Pharm. Bio Sci. 2010, 1, 1–4. [Google Scholar]
- Joslyn, M.A. Tannins and related phenolics. In Methods in Food Analysis; Academic Press: New York, NY, USA, 1970; pp. 701–725. [Google Scholar]
- Howe, J.A.; Tanumihardjo, S.A. Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays Sp). J. Agric. Food Chem. 2006, 54, 7992–7997. [Google Scholar] [CrossRef]
- Wheeler, E.L.; Ferrel, R.E. A method for phytic acid determination in wheat fractions. Cereal Chem. 1971, 48, 312–316. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Cervato, G.; Carabelli, M.; Gervasio, S.; Cittera, A.; Cazzola, R.; Cestaro, B. Antioxidant properties of oregano (Origanum vulgare) leaf extracts. J. Food Biochem. 2000, 24, 453–465. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and a-glucosidase for management of hyperglycemia linked to type 2 diabetes. J. Food Biochem. 2008, 32, 15–31. [Google Scholar] [CrossRef]
Hybrid | Total Phenolics (mg GAE/g) | Flavonoids (mg QE/g) | Tannins (mg/g) | Phytate (%) |
---|---|---|---|---|
AS1828-1 | 13.25 ± 0.16 b | 4.59 ± 0.11 a | 3.64 ± 0.02 a | 4.47 ± 0.50 a |
ASI828-4 | 11.25 ± 0.25 a | 4.31 ± 0.13 a,b | 4.67 ± 0.01 b | 4.07 ± 0.40 a |
AS1828-6 | 14.07 ± 0.06 c | 4.67 ± 0.40 a | 4.29 ± 0.42 b | 3.66 ± 0.85 a |
AS1828-8 | 12.66 ± 0.13 b | 4.24 ± 0.09 a,b | 5.33 ± 0.16 c | 3.77 ± 0.50 a |
AS1828-9 | 14.14 ± 0.12 c | 4.17 ± 0.13 a,b | 6.29 ± 0.42 d | 4.18 ± 0.48 a |
AS1828-11 | 13.06 ± 0.28 b | 3.62 ± 0.22 a | 5.34 ± 0.16 c | 4.28 ± 1.72 a |
Hybrid | Total β-Carotene (µg/g) | Total Xanthophylls (µg/g) | Total provitamin A Carotenoids (µg/g) |
---|---|---|---|
AS1828-1 | 2.54 ± 0.80 a | 10.96 ± 4.17 a | 3.72 ± 1.35 a |
AS1828-4 | 2.59 ± 0.60 a | 12.10 ± 1.33 a | 3.40 ± 0.81 a |
AS1828-6 | 2.42 ± 0.88 a | 8.92 ± 2.90 a | 3.17 ± 1.18 a |
AS1828-8 | 2.46 ± 0.31 a | 10.36 ± 1.15 a | 3.20 ± 0.41 a |
AS1828-9 | 2.89 ± 0.94 a | 12.11 ± 2.67 a | 3.77 ± 1.24 a |
AS1828-11 | 2.79 ± 0.63 a | 11.50 ± 2.66 a | 3.72 ± 1.32 a |
Hybrid | DPPH• SC50 (mg/mL) | ABTS•+ Scavenging Ability (mmol TEAC/g) | Reducing Power (mg GAE/g) |
---|---|---|---|
AS1828-1 | 16.85 ± 0.50 c | 4.00 ± 0.50 a | 0.30 ± 0.06 a |
AS1828-4 | 26.35 ± 0.30 d | 2.65 ± 0.21 a | 0.25 ± 0.64 b |
AS1828-6 | 12.58 ± 0.17 b | 5.28 ± 0.21 b | 0.36 ± 0.23 b |
AS1828-8 | 12.95 ± 0.64 b | 4.41 ± 0.33 b | 0.43 ± 0.01 c |
AS1828-9 | 9.07 ± 0.27 a | 7.68 ± 1.50 d | 0.42 ± 0.02 c |
AS1828-11 | 12.56 ± 1.24 b | 6.08 ± 0.28 c | 0.39 ± 0.02 b |
Ascorbic acid | 4.63 ± 0.28 | - | - |
Hybrid | α-Amylase IC50 (mg/mL) | α-Glucosidase IC50 (mg/mL) |
---|---|---|
AS1828-1 | 39.90 ± 0.31 d | 61.97 ± 2.5 e |
AS1828-4 | 52.55 ± 0.64 e | 63.98 ± 0.68 e |
AS1828-6 | 35.66 ± 0.20 c | 58.05 ± 1.77 d |
AS1828-8 | 36.54 ± 0.42 c | 55.16 ± 0.37 d |
AS1828-9 | 26.28 ± 0.35 a | 47.72 ± 0.40 b |
AS1828-11 | 30.10 ± 1.27 b | 51.83 ± 2.79 c |
Acarbose | 24.45 ± 0.06 a | 32.88 ± 2.65 a |
Parameter | ABTS•+ Scavenging Ability (mmol TEAC/g) | DPPH• SC50 (mg/mL) | Reducing Power (mg GAE/g) | α-Amylase IC50 (mg/mL) | α–Glucosidase IC50 (mg/mL) |
---|---|---|---|---|---|
Total phenolics (mg GAE/g) | 0.757 ** | −0.867 ** | 0.633 * | −0.836 ** | − 0.582 * |
Tannins (mg TAE/g) | 0.641 * | −0.464 | 0.689 * | − 0.555 | −0.831 ** |
Total flavonoids (mg QE/g) | −0.291 | 0.195 | −0.193 | 0.362 | 0.460 |
Phytate (%) | 0.589 * | −0.334 | 0.195 | −0.430 | −0.314 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elemosho, A.O.; Irondi, E.A.; Alamu, E.O.; Ajani, E.O.; Menkir, A.; Maziya-Dixon, B. Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids. Molecules 2021, 26, 6874. https://doi.org/10.3390/molecules26226874
Elemosho AO, Irondi EA, Alamu EO, Ajani EO, Menkir A, Maziya-Dixon B. Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids. Molecules. 2021; 26(22):6874. https://doi.org/10.3390/molecules26226874
Chicago/Turabian StyleElemosho, Abdulazeez Olamilekan, Emmanuel Anyachukwu Irondi, Emmanuel Oladeji Alamu, Emmanuel Oladipo Ajani, Abebe Menkir, and Busie Maziya-Dixon. 2021. "Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids" Molecules 26, no. 22: 6874. https://doi.org/10.3390/molecules26226874
APA StyleElemosho, A. O., Irondi, E. A., Alamu, E. O., Ajani, E. O., Menkir, A., & Maziya-Dixon, B. (2021). Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids. Molecules, 26(22), 6874. https://doi.org/10.3390/molecules26226874