Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Man/Gal-Functionalized P(MEO2MA-co-OEGMA) Microgels
2.2. Morphology and Temperature-Dependent Swelling
2.3. Elastic Modulus
2.4. ConA Uptake
2.5. E. coli Binding
3. Materials and Methods
3.1. Microgel Synthesis
3.2. Phenol Sulfuric Acid Method
3.3. Dynamic Light Scattering
3.4. Atomic Force Microscopy (AFM)
3.5. Quantitative ConA Binding Assay
3.6. Fluorescence Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Varki, A. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Suffolk County, NY, USA, 2017. [Google Scholar]
- Dwek, R.A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev. 1996, 96, 683–720. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Mirelman, D.; Sharon, N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 1977, 265, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol. 2008, 18, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Firon, N.; Ofek, I.; Sharon, N. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect. Immun. 1984, 43, 1088–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hanley, P.; Lark, D.; Normark, S.; Falkow, S.; Schoolnik, G.K. Mannose-sensitive and Gal-Gal binding Escherichia coli pili from recombinant strains. Chemical, functional, and serological properties. J. Exp. Med. 1983, 158, 1713–1719. [Google Scholar] [CrossRef] [Green Version]
- Pratt, L.A.; Kolter, R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 1998, 30, 285–293. [Google Scholar] [CrossRef]
- Scott, J.A.G.; Brooks, W.A.; Peiris, J.S.M.; Holtzman, D.; Mulholland, E.K. Pneumonia research to reduce childhood mortality in the developing world. J. Clin. Investig. 2008, 118, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Osrin, D.; Vergnano, S.; Costello, A. Serious bacterial infections in newborn infants in developing countries. Curr. Opin. Infect. Dis. 2004, 17, 217–224. [Google Scholar] [CrossRef]
- Ronald, A.R.; Nicolle, L.E.; Stamm, E.; Krieger, J.; Warren, J.; Schaeffer, A.; Naber, K.G.; Hooton, T.M.; Johnson, J.; Chambers, S.; et al. Urinary tract infection in adults: Research priorities and strategies. Int. J. Antimicrob. Agents 2001, 17, 343–348. [Google Scholar] [CrossRef]
- Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention, Ed. 2013. Available online: http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 17 October 2020).
- Gupta, K.; Hooton, T.M.; Stamm, W.E. Increasing Antimicrobial Resistance and the Management of Uncomplicated Community-Acquired Urinary Tract Infections. Ann. Intern. Med. 2001, 135, 41–50. [Google Scholar] [CrossRef]
- Sharpe, A.N.; Jackson, A.K. Stomaching: A New Concept in Bacteriological Sample Preparation. Appl. Microbiol. 1972, 24, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, D. Inhibitors of Protein Biosynthesis; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Cusumano, C.K.; Pinkner, J.S.; Han, Z.; Greene, S.E.; Ford, B.A.; Crowley, J.R.; Henderson, J.P.; Janetka, J.W.; Hultgren, S.J. Treatment and Prevention of Urinary Tract Infection with Orally Active FimH Inhibitors. Sci. Transl. Med. 2011, 3, 109ra115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavifar, L.V.G.; Charron, G.; Roy, R. Comparative Study of Aryl O-, C-, and S-Mannopyranosides as Potential Adhesion Inhibitors toward Uropathogenic E. coli FimH. Molecules 2019, 24, 3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranjčec, B.; Papeš, D.; Altarac, S. d-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial. World J. Urol. 2014, 32, 79–84. [Google Scholar] [CrossRef]
- Scribano, D.S.M.; Prezioso, C.; Lucarelli, M.; Angeloni, A.; Zagaglia, C.; Palamara, A.T.; Ambrosi, C. d-Mannose Treatment neither Affects Uropathogenic Escherichia coli Properties nor Induces Stable FimH Modifications. Molecules 2020, 25, 316. [Google Scholar] [CrossRef] [Green Version]
- Hauber, H.-P.; Schulz, M.; Pforte, A.; Mack, D.; Zabel, P.; Schumacher, U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 2008, 5, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, A.; Jiménez-Barbero, J.; Casnati, A.; De Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K.-E.; Lahmann, M.; et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013, 42, 4709–4727. [Google Scholar] [CrossRef]
- Bhatia, S.; Dimde, M.; Haag, R. Multivalent glycoconjugates as vaccines and potential drug candidates. MedChemComm 2014, 5, 862–878. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Despras, G.; Lindhorst, T.K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev. 2016, 45, 3275–3302. [Google Scholar] [CrossRef] [Green Version]
- Hudak, J.E.; Bertozzi, C.R. Glycotherapy: New advances inspire a reemergence of glycans in medicine. Chem. Biol. 2014, 21, 16–37. [Google Scholar] [CrossRef] [Green Version]
- Soria-Martinez, L.; Bauer, S.; Giesler, M.; Schelhaas, S.; Materlik, J.; Janus, K.; Pierzyna, P.; Becker, M.; Snyder, N.L.; Hartmann, L.; et al. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J. Am. Chem. Soc. 2020, 142, 5252–5265. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, F.; Wilms, D.; Seiler, T.; Queckborner, T.; Tabatabai, M.; Hartmann, L.; Schmidt, S. Effect of PEGylation on Receptor Anchoring and Steric Shielding at Interfaces: An Adhesion and Surface Plasmon Resonance Study with Precision Polymers. Biomacromolecules 2020, 21, 4850–4856. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Paul, T.J.; Strzelczyk, A.K. Interactive Polymer Gels as Biomimetic Sensors for Carbohydrate Interactions and Capture-Release Devices for Pathogens. Macromol. Chem. Phys. 2019, 220, 1900323. [Google Scholar] [CrossRef]
- Jacobi, F.; Camaleno de la Calle, A.; Boden, S.; Grafmuller, A.; Hartmann, L.; Schmidt, S. Multivalent Binding of Precision Glycooligomers on Soft Glycocalyx Mimicking Hydrogels. Biomacromolecules 2018, 19, 3479–3488. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.S.J.; Rosencrantz, S.; Tepper, L.; Chea, S.; Kloepzig, S.; Krueger-Genge, A.; Storsberg, J.; Rosencrantz, R.R. Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules 2019, 24, 1865. [Google Scholar] [CrossRef] [Green Version]
- Siirilä, J.; Hietala, S.; Ekholm, F.S.; Tenhu, H. Glucose and Maltose Surface-Functionalized Thermoresponsive Poly(N-Vinylcaprolactam) Nanogels. Biomacromolecules 2020, 21, 955–965. [Google Scholar] [CrossRef]
- Jans, A.; Rosencrantz, R.R.; Mandić, A.D.; Anwar, N.; Boesveld, S.; Trautwein, C.; Moeller, M.; Sellge, G.; Elling, L.; Kuehne, A.J.C. Glycan-Functionalized Microgels for Scavenging and Specific Binding of Lectins. Biomacromolecules 2017, 18, 1460–1465. [Google Scholar] [CrossRef]
- Schmidt, S.; Hellweg, T.; Klitzing, R. Packing Density Control in P(NIPAM-co-AAc) Microgel Monolayers: Effect of Surface Charge, pH, and Preparation Technique. Langmuir 2008, 24, 12595–12602. [Google Scholar] [CrossRef]
- Paul, T.J.; Rübel, S.; Hildebrandt, M.; Strzelczyk, A.K.; Spormann, C.; Lindhorst, T.K.; Schmidt, S. Thermosensitive Display of Carbohydrate Ligands on Microgels for Switchable Binding of Proteins and Bacteria. ACS Appl. Mater. Interfaces 2019, 11, 26674–26683. [Google Scholar] [CrossRef]
- Wilms, D.; Schröer, F.; Paul, T.J.; Schmidt, S. Switchable adhesion of E. coli to thermosensitive carbohydrate presenting microgel layers: A single cell force spectroscopy study. Langmuir 2020, 36, 12555–12562. [Google Scholar] [CrossRef]
- Paul, T.J.; Strzelczyk, A.K.; Feldhof, M.I.; Schmidt, S. Temperature-Switchable Glycopolymers and Their Conformation-Dependent Binding to Receptor Targets. Biomacromolecules 2020, 21, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, A.K.; Paul, T.J.; Schmidt, S. Quantifying Thermoswitchable Carbohydrate-Mediated Interactions via Soft Colloidal Probe Adhesion Studies. Macromol. Biosci. 2020, 20, 2000186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kotsuchibashi, Y.; Liu, Y.; Narain, R. Study of bacterial adhesion on biomimetic temperature responsive glycopolymer surfaces. ACS Appl. Mater. Interfaces 2015, 7, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Dalier, F.; Eghiaian, F.; Scheuring, S.; Marie, E.; Tribet, C. Temperature-Switchable Control of Ligand Display on Adlayers of Mixed Poly(lysine)-g-(PEO) and Poly(lysine)-g-(ligand-modified poly-N-isopropylacrylamide). Biomacromolecules 2016, 17, 1727–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasani, R.B.; Janardanan, N.; Prieto-Simon, B.; Cifuentes-Rius, A.; Bradley, S.J.; Moore, E.; Kraus, T.; Voelcker, N.H. Microwave Heating of Poly(N-isopropylacrylamide)-Conjugated Gold Nanoparticles for Temperature-Controlled Display of Concanavalin A. ACS Appl. Mater. Interfaces 2015, 7, 27755–27764. [Google Scholar] [CrossRef]
- Won, S.; Richards, S.J.; Walker, M.; Gibson, M.I. Externally controllable glycan presentation on nanoparticle surfaces to modulate lectin recognition. Nanoscale Horiz. 2017, 2, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Won, S.; Hindmarsh, S.; Gibson, M.I. Triggerable Multivalent Glyconanoparticles for Probing Carbohydrate-Carbohydrate Interactions. ACS Macro Lett. 2018, 7, 178–183. [Google Scholar] [CrossRef]
- Anaya, L.M.B.; Petitdemange, R.; Rosselin, M.; Ibarboure, E.; Garbay, B.; Garanger, E.; Deming, T.J.; Lecommandoux, S. Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules 2020. [Google Scholar] [CrossRef]
- Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 2000, 85, 1–33. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Andersen, F.A. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 2005, 24 (Suppl. 2), 21–50. [Google Scholar] [CrossRef]
- Cai, T.; Marquez, M.; Hu, Z. Monodisperse Thermoresponsive Microgels of Poly(ethylene glycol) Analogue-Based Biopolymers. Langmuir 2007, 23, 8663–8666. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.-F.; Hoth, A. Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules 2006, 39, 893–896. [Google Scholar] [CrossRef]
- Kessel, S.; Schmidt, S.; Muller, R.; Wischerhoff, E.; Laschewsky, A.; Lutz, J.F.; Uhlig, K.; Lankenau, A.; Duschl, C.; Fery, A. Thermoresponsive PEG-Based Polymer Layers: Surface Characterization with AFM Force Measurements. Langmuir 2010, 26, 3462–3467. [Google Scholar] [CrossRef] [PubMed]
- Scotti, A.; Bochenek, S.; Brugnoni, M.; Fernandez-Rodriguez, M.A.; Schulte, M.F.; Houston, J.E.; Gelissen, A.P.H.; Potemkin, I.I.; Isa, L.; Richtering, W. Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions. Nat. Commun. 2019, 10, 1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsch, N.; Lyon, L.A. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability. PLoS ONE 2017, 12, e0181369. [Google Scholar] [CrossRef] [Green Version]
- International Standard ISO 22412 (2017) Particle Size Analysis—Dynamic Light Scattering. International Organization for Standardization (ISO), Ed. 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:22412:ed-2:v1:en (accessed on 10 December 2020).
- Nolan, C.M.; Reyes, C.D.; Debord, J.D.; García, A.J.; Lyon, L.A. Phase Transition Behavior, Protein Adsorption, and Cell Adhesion Resistance of Poly(ethylene glycol) Cross-Linked Microgel Particles. Biomacromolecules 2005, 6, 2032–2039. [Google Scholar] [CrossRef]
- Schmidt, S.; Motschmann, H.; Hellweg, T.; von Klitzing, R. Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer 2008, 49, 749–756. [Google Scholar] [CrossRef]
- Burmistrova, A.; Richter, M.; Uzum, C.; von Klitzing, R. Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus. Colloid Polym. Sci. 2011, 289, 613–624. [Google Scholar] [CrossRef]
- Schmidt, S.; Zeiser, M.; Hellweg, T.; Duschl, C.; Fery, A.; Möhwald, H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Adv. Funct. Mater. 2010, 20, 3235–3243. [Google Scholar] [CrossRef]
- Mabilleau, G.; Stancu, I.C.; Honoré, T.; Legeay, G.; Cincu, C.; Baslé, M.F.; Chappard, D. Effects of the length of crosslink chain on poly(2-hydroxyethyl methacrylate) (pHEMA) swelling and biomechanical properties. J. Biomed. Mater. Res. Part A 2006, 77, 35–42. [Google Scholar] [CrossRef]
- Mandal, D.K.; Kishore, N.; Brewer, C.F. Thermodynamics of Lectin-Carbohydrate Interactions. Titration Microcalorimetry Measurements of the Binding of N-Linked Carbohydrates and Ovalbumin to Concanavalin A. Biochemistry 1994, 33, 1149–1156. [Google Scholar] [CrossRef]
- Gerke, C.; Ebbesen, M.F.; Jansen, D.; Boden, S.; Freichel, T.; Hartmann, L. Sequence-Controlled Glycopolymers via Step-Growth Polymerization of Precision Glycomacromolecules for Lectin Receptor Clustering. Biomacromolecules 2017, 18, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, V.; Pieters, R.J. Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 2013, 42, 4492–4503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelstein, A.D.; Tsuchida, M.A.; Amodaj, N.; Pinkard, H.; Vale, R.D.; Stuurman, N. Advanced methods of microscope control using μManager software. J. Biol. Methods 2014, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
Microgel Sample | Man/mmol | Gal/mmol | Crosslinker/mmol | Carbohydrate Reaction Ratio/% b | Functionalization Degree/µmol g−1 c |
---|---|---|---|---|---|
Man135-EGDMA | 3.2 | - | 0.093 | 35.5 | 135 |
Man40-EGDMA | 0.72 | - | 0.093 | 8 | 40 |
Man57-PEGDMA550 | 0.72 | - | 0.091 | 8 | 57 |
Man60-PEGDMA750 | 0.72 | - | 0.090 | 8 | 60 |
Gal26-EGDMA | - | 0.54 | 0.093 | 6 | 26 |
PEG-EGDMA | - | - | 0.093 | - | - |
Microgel Sample | Hydrodynamic Diameter Dh at 20 °C [nm] | PDI (DLS) at 20 °C | Swelling Ratio [Dh 20 °C/Dh 40 °C] |
---|---|---|---|
Man135-EGDMA | 278 ± 0.8 | 0.115 ± 0.011 | 1.6 |
Man40-EGDMA | 240 ± 2.6 | 0.069 ± 0.011 | 1.4 |
Man57-PEGDMA550 | 278 ± 1.1 | 0.092 ± 0.017 | 1.4 |
Man60-PEGDMA750 | 293 ± 1.8 | 0.149 ± 0.006 | 1.4 |
Gal26-EGDMA | 255 ± 1.7 | 0.072 ± 0.021 | 1.7 |
PEG-EGDMA | 220 ± 0.7 | 0.027 ± 0.012 | 1.6 |
Sample | Man Quantity [nmol] | Captured ConA [pmol] |
---|---|---|
Man135-EGDMA | 13.5 | 44 |
Man40-EGDMA | 4 | 20 |
Man57-PEGDMA | 5.7 | 28 |
Man60-PEGDMA | 6.0 | 38 |
PEG-EGDMA | 0 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schröer, F.; Paul, T.J.; Wilms, D.; Saatkamp, T.H.; Jäck, N.; Müller, J.; Strzelczyk, A.K.; Schmidt, S. Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules 2021, 26, 263. https://doi.org/10.3390/molecules26020263
Schröer F, Paul TJ, Wilms D, Saatkamp TH, Jäck N, Müller J, Strzelczyk AK, Schmidt S. Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules. 2021; 26(2):263. https://doi.org/10.3390/molecules26020263
Chicago/Turabian StyleSchröer, Fabian, Tanja J. Paul, Dimitri Wilms, Torben H. Saatkamp, Nicholas Jäck, Janita Müller, Alexander K. Strzelczyk, and Stephan Schmidt. 2021. "Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density" Molecules 26, no. 2: 263. https://doi.org/10.3390/molecules26020263
APA StyleSchröer, F., Paul, T. J., Wilms, D., Saatkamp, T. H., Jäck, N., Müller, J., Strzelczyk, A. K., & Schmidt, S. (2021). Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules, 26(2), 263. https://doi.org/10.3390/molecules26020263