Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications
Abstract
:1. Introduction
1.1. Lanthanide Complexes as Anion Sensors
1.2. Sensor Design
2. Results and Discussion
2.1. Synthesis and Characterization of Ligand and its Lanthanide-Based Complexes
2.2. How Well Does Ligand 1 Bind Lanthanide(III) Ions?
2.3. Photophysical Studies of Ligand 1 and Complexes
2.4. Anion Binding Studies—Assay Developemt
2.5. Binding Studies of the Tb.1(OTf)3 with Dihydrogen Phosphate
2.6. The Nature of the Sensor Response Towards Anions
- (1)
- Binding of the anion leads to partial decomplexation of one or both terpyridine moieties from the metal center, thus inhibiting its ability to act as a sensitizer.
- (2)
- Anion is bound to the sensitizer and or metal center in such a way that it “interferes” with the energy transfer from the triplet state of the ligand to the Tb excited state.
2.7. How Does the Sensor Respond to Anions Other than Dihydrogen Phosphate?
3. Experimental Section
3.1. Material and Instruments
3.2. Synthesis of Ligand 1 and Lanthanide Complexes
3.3. Metal Binding Studies
3.4. Anion Binding Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sessler, J.L.; Gale, P.; Cho, W.; Stoddart, J.F.; Rowan, S.J.; Aida, T.; Rowan, A.E. Anion Receptor Chemistry; The Royal Society of Chemistry: London, UK, 2006; pp. 1–26. [Google Scholar]
- Begum, R.A.; Kang, S.O.; Day, V.W.; Bowman-James, K. Structural Aspects of Anion Coordination Chemistry. Anion Coord. Chem. 2011, 141–225. [Google Scholar] [CrossRef]
- Kubik, S. Receptors for Biologically Relevant Anions. Anion Coord. Chem. 2011, 363–464. [Google Scholar] [CrossRef]
- Gale, P.A.; Caltagirone, C. Anion Sensors. Chemosensors 2011, 395–427. [Google Scholar] [CrossRef]
- Wenzel, M.; Hiscock, J.R.; Gale, P.A. Anion Receptor Chemistry: Highlights from 2010. Chem. Soc. Rev. 2012, 41, 480–520. [Google Scholar] [CrossRef]
- Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei, W.; Ren, N.; Huang, L.; Huang, W. Recent Developments in Lanthanide-Based Luminescent Probes. Coord. Chem. Rev. 2014, 201–212. [Google Scholar] [CrossRef]
- Gunnlaugsson, T.; Pope, S.J. Lanthanide Ion Complexes as Chemosensors. In Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials; Wiley: Hoboken, NJ, USA, 2014; pp. 231–268. [Google Scholar]
- Spangler, C.; Schäferling, M. Luminescent Chemical and Physical Sensors Based on Lanthanide Complexes. In Lanthanide Luminescence Springer Series on Fluorescence (Methods and Applications); Hänninen, P., Härmä, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletti, A.B.; Gillen, D.M.; Gunnlaugsson, T. Luminescent/colorimetric Probes and (Chemo-) Sensors for Detecting Anions Based on Transition and Lanthanide Ion receptor/binding Complexes. Coord. Chem. Rev. 2018, 354, 98–120. [Google Scholar] [CrossRef]
- Shinoda, S.; Tsukube, H. Luminescent Lanthanide Complexes as Analytical Tools in Anion Sensing, pH Indication and Protein Recognition. Analyst 2011, 136, 431–435. [Google Scholar] [CrossRef]
- Hewitt, S.H.; Macey, G.; Mailhot, R.; Elsegood, M.R.J.; Duarte, F.; Kenwright, A.M.; Butler, S.J. Tuning the Anion Binding Properties of Lanthanide Receptors to Discriminate Nucleoside Phosphates in a Sensing Array. Chem. Sci. 2020, 11, 3619–3628. [Google Scholar] [CrossRef] [Green Version]
- Bünzli, J.C.G.; Eliseeva, S.V. Basics of Lanthanide Photophysics. In Lanthanide Luminescence. Springer Series on Fluorescence (Methods and Applications); Hänninen, P., Härmä, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, C.M.G.; Harte, A.J.; Quinn, S.J.; Gunnlaugsson, T. Recent Developments in the Field of Supramolecular Lanthanide Luminescent Sensors and Self-Assemblies. Coord. Chem. Rev. 2008, 252, 2512–2527. [Google Scholar] [CrossRef]
- Butler, S.J.; Parker, D. Anion Binding in Water at Lanthanide Centres: From Structure and Selectivity to Signalling and Sensing. Chem. Soc. Rev. 2013, 42, 1652–1666. [Google Scholar] [CrossRef] [PubMed]
- Shunmugam, R.; Tew, G.N. Terpyridine-Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates. Chem. Eur. J. 2008, 14, 5409–5412. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Patra, A.K. A Luminescent pH-Responsive Ternary Europium(III) Complex of β-Diketonates and Terpyridine Derivatives as Sensitizing Antennae—Photophysical Aspects, Anion Sensing, and Biological Interactions. Eur. J. Inorg. Chem. 2018, 2018, 1882–1890. [Google Scholar] [CrossRef]
- Ghosh, S.; Abbas, Z.; Dasari, S.; Patra, A.K. Luminescent Eu3+ and Tb3+ complexes of 4-aminophenyl terpyridine (ptpy): Photophysical aspects, DNA and serum protein binding properties. J. Lumin 2017, 187, 46–52. [Google Scholar] [CrossRef]
- Hau, F.K.; Lo, H.; Yam, V.W. Synthesis and Photophysical Studies of Calixarene-Based Alkynylplatinum(II) Terpyridine Complexes with various Receptor Sites for Colorimetric and Luminescence Sensing of Anions. Chem. Eur. J. 2016, 22, 3738–3749. [Google Scholar] [CrossRef]
- Li, L.; Du, L.; Sun, J.; Yan, C. Synthesis, Crystal Structure and Fluorescent Sensor Ability of Bis-Terpyridinyl-Calix[4]Arene Derivatives. Chem. Res. Chin. Univ. 2013, 29, 874–878. [Google Scholar] [CrossRef]
- Molard, Y.; Parrot-Lopez, H. Molecular Scaffolds for Di-Metallic Complexation: The Synthesis, Characterisation and Complexation Properties of Tetrakis-Terpyridinyl-Calix[4]Arene. Tetrahedron Lett. 2002, 43, 6355–6358. [Google Scholar] [CrossRef]
- Muravev, A.A.; Agarkov, A.S.; Galieva, F.B.; Yakupov, A.T.; Bazanova, O.B.; Rizvanov, I.K.; Shokurov, A.V.; Zaitseva, A.V.; Selektor, S.L.; Solovieva, S.E.; et al. New Terpyridine Derivatives of Thiacalix[4]Arenes in Solution and at the Water-Air Interface. Russ. Chem. Bull. 2020, 69, 339–350. [Google Scholar] [CrossRef]
- Baldini, L.; Sansone, F.; Casnati, A.; Ungaro, R. Calixarenes in Molecular Recognition. In Supramolecular Chemistry; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef]
- Jennings, L.B.; Shuvaev, S.; Fox, M.A.; Pal, R.; Parker, D. Selective Signalling of Glyphosate in Water using Europium Luminescence. Dalton Trans. 2018, 47, 16145–16154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffrey, D.F.; Gunnlaugsson, T. Displacement Assay Detection by a Dimeric Lanthanide Luminescent Ternary Tb(Iii)–cyclen Complex: High Selectivity for Phosphate and Nitrate Anions. Dalton Trans. 2014, 43, 17964–17970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, S.J. Quantitative Determination of Fluoride in Pure Water using Luminescent Europium Complexes. Chem. Commun. 2015, 51, 10879–10882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuvaev, S.; Starck, M.; Parker, D. Responsive, Water-Soluble Europium(III) Luminescent Probes. Chem. Eur. J. 2017, 23, 9974–9989. [Google Scholar] [CrossRef]
- Dickins, R.S.; Aime, S.; Batsanov, A.S.; Beeby, A.; Botta, M.; Bruce, J.I.; Howard, J.A.K.; Love, C.S.; Parker, D.; Peacock, R.D.; et al. Structural, Luminescence, and NMR Studies of the Reversible Binding of Acetate, Lactate, Citrate, and Selected Amino Acids to Chiral Diaqua Ytterbium, Gadolinium, and Europium Complexes. J. Am. Chem. Soc. 2002, 124, 12697–12705. [Google Scholar] [CrossRef]
- Edwards, N.Y.; Liu, F.; Chen, G. Experimental and Computational Studies of Anion Recognition by Pyridine-Functionalized Calixarenes. Supramol. Chem. 2013, 25, 481–489. [Google Scholar] [CrossRef]
- dos Santos, C.M.G.; Gunnlaugsson, T. The Recognition of Anions using Delayed Lanthanide Luminescence: The use of Tb(Iii) Based Urea Functionalised Cyclen Complexes. Dalton Trans. 2009, 4712–4721. [Google Scholar] [CrossRef]
- dos Santos, C.M.G.; Fernandez, P.B.; Plush, S.E.; Leonard, J.P.; Gunnlaugsson, T. Lanthanide Luminescent Anion Sensing: Evidence of Multiple Anion Recognition through Hydrogen Bonding and Metal Ion Coordination. Chem. Commun. 2007, 3389–3391. [Google Scholar] [CrossRef]
- Umali, A.P.; Anslyn, E.V. A general approach to differential sensing using synthetic molecular receptors. Curr. Opin. Chem. Biol. 2010, 14, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Kotova, O.; Daly, R.; dos Santos, C.M.G.; Boese, M.; Kruger, P.E.; Boland, J.J.; Gunnlaugsson, T. Europium-Directed Self-Assembly of a Luminescent Supramolecular Gel from a Tripodal Terpyridine-Based Ligand. Angew. Chem. Int. Ed. 2012, 51, 7208–7212. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Determination of Equilibrium Constants from Spectrophotometric [Sic] Data obtained from Solutions of Known pH: The Program pHab. Ann. Chim. 1999, 89, 45–49. [Google Scholar]
- Marie, C.; Miguirditchian, M.; Guillaumont, D.; Tosseng, A.; Berthon, C.; Guilbaud, P.; Duvail, M.; Bisson, J.; Guillaneux, D.; Pipelier, M.; et al. Complexation of Lanthanides(III), Americium(III), and Uranium(VI) with Bitopic N,O Ligands: An Experimental and Theoretical Study. Inorg. Chem. 2011, 50, 6557–6566. [Google Scholar] [CrossRef] [PubMed]
- Canard, G.; Koeller, S.; Bernardinelli, G.; Piguet, C. Effective Concentration as a Tool for Quantitatively Addressing Preorganization in Multicomponent Assemblies: Application to the Selective Complexation of Lanthanide Cations. J. Am. Chem. Soc. 2008, 130, 1025–1040. [Google Scholar] [CrossRef] [PubMed]
- Montalti, M.; Prodi, L.; Zaccheroni, N.; Charbonniere, L.; Douce, L.; Ziessel, R. A Luminescent Anion Sensor Based on a Europium Hybrid Complex. J. Am. Chem. Soc. 2001, 123, 12694–12695. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Ultraviolet Spectra and Structures of 2,2′-Bipyridine and 2,2′,2″-Terpyridine in Aqueous Solution. J. Phys. Chem. 1960, 64, 1420–1425. [Google Scholar] [CrossRef]
- Crosby, G.A.; Demas, J.N. Measurement of Photoluminescence Quantum Yields. Review. J. Phys. Chem. 1971, 75, 991–1024. [Google Scholar] [CrossRef]
- Recording Fluorescence Quantum Yields. Available online: http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Fluorescence/quantumyieldstrad.pdf (accessed on 15 September 2020).
- Dissanayake, P.; Mei, Y.; Allen, M.J. Luminescence-Decay as an Easy-to-use Tool for the Study of Lanthanide-Containing Catalysts in Aqueous Solutions. ACS Catal. 2011, 1, 1203–1212. [Google Scholar] [CrossRef]
- Bordwell pKa Table. Available online: https://organicchemistrydata.org/hansreich/resources/pka/#pka_dmso_compilation (accessed on 15 September 2020).
- Muckerman, J.T.; Skone, J.H.; Ning, M.; Wasada-Tsutsui, Y. Toward the accurate calculation of pKa values in water and acetonitrile. Biochim. Biophys. Acta (BBA) Bioenerg. 2013, 1827, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, I.P.; Di Bella, S. Lewis Basicity of Relevant Monoanions in a Non-Protogenic Organic Solvent using a Zinc(II) Schiff-Base Complex as a Reference Lewis Acid. Dalton Trans. 2017, 46, 11608–11614. [Google Scholar] [CrossRef]
- Lo, W.; Wong, W.; Law, G. Friend Or Foe? the Role of Solvents in Non-Triplet, Intraligand Charge Transfer Sensitization of Lanthanide(III) Luminescence. RSC Adv. 2016, 6, 74100–74109. [Google Scholar] [CrossRef] [Green Version]
- Anslyn, E.V.; Dougherty, D.A. Modern Physical Organic Chemistry; University Science: Sausalito, CA, USA, 2006; pp. 216–218. [Google Scholar]
Species | Absorption | Emission | ||
---|---|---|---|---|
λmax (nm) (log ε) a | λmax (nm) | Φ (%) | τ (ms) | |
Ligand 1 | 282 (4.70) | 394 | b | b |
[Tb.1]3+ | 289 (4.17), 314 (4.00) | 543 | 4.5(0.2) c 4.7(0.2) d | 0.95(0.02) e |
[Eu.1]3+ | 288 (4.60), 310 (4.48) | 613 | 0.24(0.05) c 0.26(0.04) d | 1.00(0.04) f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, N.Y.; Schnable, D.M.; Gearba-Dolocan, I.R.; Strubhar, J.L. Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications. Molecules 2021, 26, 87. https://doi.org/10.3390/molecules26010087
Edwards NY, Schnable DM, Gearba-Dolocan IR, Strubhar JL. Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications. Molecules. 2021; 26(1):87. https://doi.org/10.3390/molecules26010087
Chicago/Turabian StyleEdwards, Nicola Y., David M. Schnable, Ioana R. Gearba-Dolocan, and Jenna L. Strubhar. 2021. "Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications" Molecules 26, no. 1: 87. https://doi.org/10.3390/molecules26010087
APA StyleEdwards, N. Y., Schnable, D. M., Gearba-Dolocan, I. R., & Strubhar, J. L. (2021). Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications. Molecules, 26(1), 87. https://doi.org/10.3390/molecules26010087