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Abstract: Lanthanide complexes have been developed and are reported herein. These complexes were
derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis
of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of
a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate
salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis
spectroscopy as well as MS. The photophysical properties of these complexes were studied; high
molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale
were obtained. Anion binding results in a change in the photophysical properties of the complexes.
The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and
fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large
binding constants were obtained for the coordination of anions to the sensor.

Keywords: calix[4]arene; anion; sensors; lanthanides; fluorescence studies; UV–vis studies; quantum
yields; lifetime measurements

1. Introduction
1.1. Lanthanide Complexes as Anion Sensors

Developing sensors for the detection and quantification of anions is a major area of
interest in supramolecular chemistry. This is due to the pivotal roles that these sensors
play in many arenas including environmental, biological and medicinal arenas [1–6].
Lanthanide-based complexes have been developed and used extensively as sensors for
a variety of analytes; many of these sensors are now used in commercial settings [7–10].
These complexes are standouts in this arena; anion sensing is no exception to this [11–13].
For a lanthanide complex—or any compound—to act as an anion sensor, two criteria
must be met: (1) There must be binding of the sensor to anion, and (2) The sensor must
display a readout (color, luminescence, etc.), and this readout must be modulated upon
anion binding. Anions readily coordinate to lanthanide centers due to their potent Lewis
acidity [14–16]. Lanthanide complexes boast excellent photophysical properties such as
relatively long-lived luminescence (on the ms timescale). Furthermore, there are changes
in the photophysical properties of these complexes that occur upon anion coordination
which can be harnessed in a sensing scheme.

The terpyridine moiety is an effective sensitizer of lanthanide luminescence, and hence
this moiety has been incorporated into several lanthanide-based anion sensors [17–19];
none of these sensors utilize the calixarene scaffold [20–23]. The calixarene scaffold has
been frequently used in the construction of anion (and other) sensors as it imparts a
high degree of pre-organization of the recognition groups leading to enhanced binding
affinities of target molecules or ions [24,25]. The current work details the development
of calixarene-based sensors for anions that have been synthesized in two steps from a
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calixarene derivative. A calix[4]arene scaffold with carboxylic acid functionalities at the
lower rim was coupled to an amine derivative bearing a terpyridine moiety. The resulting
compound was metallated by stirring it overnight with the appropriate lanthanide(III)
triflate salt to form either the Eu(III) or Tb(III) complex. These lanthanide complexes have
large molar absorptivity values, long luminescent lifetimes and modest quantum yields.
Furthermore, these complexes were shown by visual detection, fluorescence and UV-vis
studies to sense a variety of anions.

1.2. Sensor Design

Parker, Gunnlaugsson and others have pioneered the development of anion sensors
based on antenna-sensitized lanthanide luminescence [26–30]. Two sensing paradigms
that were developed and used for the basis of our study are described as follows: (1)
Coordinatively-unsaturated metal complexes are used, in which anion binding leads to
a change in the photophysical properties of the metal complex, due to the displacement
of solvent molecules from the metal center. (2) The sensitizer is designed so that it is
equipped with anion binding moieties; anion coordination leads to a change in the readout
of the luminescence of the sensor due to changes that occur to the sensitizer upon anion
binding [14].

Anion receptors that were constructed using the calix[4]arene scaffold, containing
linkers with amide functionalities and pyridine moieties, were previously reported by
our group [31]. We showed by 1H NMR studies that these receptors were responsive
to carboxylates and H2PO4

− with binding constants that ranged from 14 to 275 M−1

(in DMSO). Building on this earlier model system, we set our sights on developing sensors
in which the linkers appended from the calix[4]arene scaffold terminated in terpyridine
moieties. These terpyridine serve the dual purpose of binding lanthanide salts and acting
as the sensitizing antenna (Scheme 1).
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Scheme 1. Sensor Design of [Tb.1]3+: Antenna-sensitized lanthanide luminescence is effected when
the terpyridine moiety is excited with UV light. There is a change in the photophysical properties
of the metal center upon binding due to (a) displacement of the solvent molecules with the anion
and/or (b) anion binding to the linkers (through amide and amine moieties) of the calix[4]arene.

In our sensor design, we postulated that binding of the anions would change the
photophysical properties of the complex due to: (1) The coordinatively unsaturated nature
of the complexes; anions should bind directly to the metal center leading to displacement
of solvent molecules and/or ligands. (2) The linkers of the metal complexes themselves
are rich in anion binding moieties (specifically amide and amine moieties); binding to
such moieties (via hydrogen bonding) is predicted to change the sensitizing ability of the
ligand [32,33]. Either or both changes could form the basis of an appropriate signaling
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mechanism for our system. This sensor is also ripe with opportunities for diversification
(via the antenna, metal center and linkers) for future pattern-based sensing applications [34].
In the following paragraphs, an investigation of this sensor is presented. The investigation
begins with the synthesis and characterization of the complexes and is followed by the
metal binding and photophysical studies. Finally, insights into the capabilities of the sensor
are detailed.

2. Results and Discussion
2.1. Synthesis and Characterization of Ligand and its Lanthanide-Based Complexes

With sensing applications in mind, it was necessary that the synthetic route be
facile, amenable to scale-up and with the potential to create a library of ligands from
available precursor compounds; amide coupling was chosen. The synthetic route to
ligand 1 is shown in Scheme 2 and is summarized as follows. Ligand 1 was obtained
by coupling the calix[4]arene dicarboxylic acid 3 [22] and N-[2,2′;6′,2”]terpyridin-4′-yl-
propane-1,3-diamine [35] using N-Ethyl-N′-(3-dimethylaminopropyl)carbodiimide hy-
drochloride (EDCI), 1-Hydroxybenzotriazole hydrate (HOBt) in the presence of N,N-
Diisopropylethylamine (DIPEA) in CH2Cl2. Subsequent work-up and purification via
column-chromatography afforded 1 in 48% percent yield. The structure of ligand 1 was
confirmed using 1H and 13C NMR spectroscopy and MS. Key resonances in the 1H NMR
spectrum were found in the region of 7–9 ppm due to the terpyridine moieties and the
aromatic moieties of the calixarene scaffold. There were also singlets at 4.65 ppm due to the
methylene linker as well as at 1.09 and 1.06 ppm due to the tert-butyl groups. Of particular
importance are the doublet of doublets found at 4.18 and 3.30 ppm due to the methylene
bridges indicating that ligand 1 has C2v symmetry and is locked in the cone conformation;
this was also supported by 13C NMR data that showed a set of overlapping resonances at
31.3 ppm. The presence of a peak due to the doubly-charged ion [M+2H]2+ in the HRMS
also supported formation of ligand 1. Metallation of ligand 1 with a lanthanide(III) triflate
salt was effected by stirring equimolar quantities of the salt and the ligand overnight at
room temperature in CH3CN. Precipitation via hexanes of a concentrated solution of 1 in
CH2Cl2 was used to obtain the lanthanide-based complexes of 1. The Eu(III) and Tb(III)
complexes were isolated in 53% and 46% yield, respectively.
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2.2. How Well Does Ligand 1 Bind Lanthanide(III) Ions?

The investigation began with ligand 1 as it was our entry point to the sensors and
because of its own potential in future sensing applications. Specifically, there was interest
in determining how easily metal complexation could be monitored in situ and the strength
of the binding of this ligand with lanthanides. We, thus, investigated the binding of ligand
1 to Tb(III) and Eu(III) using UV-vis and fluorescence spectroscopy. For these studies,
solutions of ligand 1 (9.7 µM) were titrated with 0–7 equivalents of lanthanide ions (as
triflate salts) in CH3CN.

Fluorescence spectra representing the titration of ligand 1 with Tb(OTf)3 are shown in
Figure 1. Prior to the addition of any equivalents of Tb(OTf)3, there is a peak centered at
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410 nm due to the ligand. As the titration progresses, this peak decreases in intensity and is
slightly red-shifted. There is the concomitant appearance of line spectra in the 450–700 nm
region, signaling that the [Tb.1](OTf)3 had been formed in situ (see Section 2.3).
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Excitation at 280 nm; excitation and emission slit widths are 2 and 1 nm, respectively. Integration time = 0.2 s.

The same titration was repeated and monitored using UV–vis spectroscopy. Shown
in Figure 2 is a series of absorption spectra resulting from the titration of ligand 1 with
Tb(OTf)3. There is a decrease in the intensity of the peak at 279 nm (slightly red-shifted
by ca. 6 nm) and the growth of a shoulder at 325 nm, indicating the complexation of the
terpyridine moieties with the metal center. The absorption spectrum at the end of the
titration matched that of the Tb.1(OTf)3 (see Section 2.3). Binding isotherms obtaining by
plotting absorbance vs. Tb(OTf)3 concentration at 279 and 320 nm revealed the presence
of an inflection point at 1 equivalent Tb(OTf)3 added, indicated 1:1 ligand: metal binding
stoichiometry. These isotherms were subsequently analyzed using a 1:1 ligand: metal model
in the nonlinear regression curve-fitting program Hypspec [36] and yielded formation
constants of log K = 7.3 (±0.2) for Tb(III) and log K = 6.6 (±0.1) for Eu(III), respectively
(see supplementary information). These binding constants are within the range of other
Eu(III) and Tb(III) complexes based on terpyridine and other pyridine-based ligands [37,38].
For example, the log K for a 1:1 Eu(III) complex based on a tripodal terpyridine ligand
was determined to be 7.2 (±0.3) in methanol [35]. The log K of a 1:1 Eu(III) complex
based on a bis-bipyridinehenylphosphine oxide ligand was determined to be 5.8 (±0.5) in
acetonitrile [39].
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Figure 2. Absorption spectra resulting from the titration of ligand 1 (9.7 µM, acetonitrile) with 0 to 7 equivalents of Tb(OTf)3.

2.3. Photophysical Studies of Ligand 1 and Complexes

Next, the photophysical properties of ligand 1 and its complexes were examined;
these data are summarized in Table 1. We begin our discussion of this section by firstly
highlighting the absorption, excitation and emission spectra of ligand 1 and its complexes
(Figure 3) and the information that was gleaned from these spectra. The spectra of the
ligand and its Ln(III) Complexes (9.8 µM) were measured in CH3CN. The absorption
spectrum of the ligand (top panel) is dominated by a peak centered at 282 nm (log ε = 4.70
in acetonitrile) due to the π→ π* transition of the terpyridine moieties and the calixarene
scaffold; a broad shoulder centered at ca. 296 nm is also present. The emission spectrum of
the ligand resulting from excitation at 280 nm shows a single peak centered at 394 nm.

Table 1. Photophysical properties of ligand 1 and lanthanide complexes in CH3CN at room temperature.

Species
Absorption Emission

λmax (nm) (log ε) a λmax (nm) Φ (%) τ (ms)

Ligand 1 282 (4.70) 394 b b
[Tb.1]3+ 289 (4.17), 314 (4.00) 543 4.5(0.2) c 4.7(0.2) d 0.95(0.02) e

[Eu.1]3+ 288 (4.60), 310 (4.48) 613 0.24(0.05) c 0.26(0.04) d 1.00(0.04) f

a log of the extinction coefficient, b not measured, c measured relative to cesium tris(6-carboxypyridine-
2-carboxylato) lanthanide(III), d measured relative to tris(bipyridine)ruthenium(II) chloride, e 5D4 →
7F5 transition, f 5D0 → 7F2 transition.

The dominant peaks in the absorption spectra of the lanthanide complexes
(Figure 3—middle and bottom panels) show a 5 nm bathochromic shift with respect to
ligand, indicating that the terpyridine moiety is responsible for complexation of the ligand;
the shift is the result of a change in conformation from the trans, trans or cis, trans form to
the cis, cis form [40]. We note that absorption for the ligand and complexes is considered to
be a highly efficient process as indicated by the high values for molar absorptivity (logε:
4.17–4.70) that were obtained.
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The emission spectra of the lanthanide complexes (Figure 3—middle and bottom
panels), produced by exciting the complexes in the absorption band of the ligand, resulted
in an intense metal-centered luminescence. This luminescence is displayed in the form
of line spectra, ranging from 591 to 698 nm for Eu(III), and ranging from 488 to 677 nm
for Tb(III). These line spectra serve as spectroscopic signatures of successful lanthanide
complexation resulting from terpyridine-based ligand sensitization and hence energy
transfer from ligand to metal. In the case of the Eu(III) complexes, energy is transferred
from the ligand to the 5D0 excitation state of Eu(III), and there is subsequent deactivation
to the ground state multiplets 7FJ (J = 0–4)). For the Tb(III) complexes, the 5D4 excited
state and the ground state multiplets are 7FJ (J = 6–0). Similarities in the absorption and
excitation spectra of the ligand and complexes are indicative of good “energy matches”
between ligand and metal ion that resulted in this successful energy transfer. Blue (for
ligand), green (for Tb) and red emission (for Eu) can be detected with the naked eye upon
exposure of the ligand and complexes (in the solid state) to UV light (Scheme 2).

The complexes were then defined in terms of the requisite benchmarks of lumines-
cence, i.e., the lifetime and quantum yield of the luminescence of the complexes. Lifetimes
(Table 1) were obtained by measuring the luminescence decay at the maximum of the most
dominant transitions (5D4 → 7F5 transition at 543 nm for Tb(III) and 5D0→ 7F2 transition
at 613 nm for Eu(III)). In all cases, the decays were single exponential in nature indicating
that the luminescence arose from one excited state. Rate constants were extracted from
the single exponential fits and subsequently converted to lifetimes. For both lanthanide
complexes, the lifetime measurements were ca. 1 ms—the typical timescale for lifetimes of
lanthanide complexes.

The fluorescence quantum yields for the lanthanide complexes were measured in
acetonitrile using the relative method [41,42]. In short, this method involves measuring the
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quantum yield of an analyte relative to a compound with a known fluorescence quantum
yield. This is performed by recording the fluorescent emission spectrum of both compounds
in solution, integrating this spectrum over the emission range and plotting this value
against the absorbance of the solution at the excitation wavelength for multiple solutions
at varying, but dilute, concentrations (A < 0.1). A linear trendline is fit to this plot, the
gradient of which can be used to calculate the quantum yield of the analyte relative to the
standard. This is performed according to the following equation:

φx = φst

(
gradx

gradst

)(
η2

x

η2
st

)
ϕx, ηx and gradx represent the fluorescence quantum yield, refractive index and gradient of
the linear trendline, respectively. The quantum yields were modest: 4.5% for the Tb(III)
complex and 0.24% for the Eu(III) complex.

2.4. Anion Binding Studies—Assay Developemt

The Tb complex, [Tb.1](OTf)3, was the metal complex chosen to probe anion binding
due to its higher quantum yield—a factor of 20 higher than its Eu counterpart. We selected
anions (NO3

−, H2PO4
−, Cl− and CH3CO2

−-as tetrabutylammonium (TBA) salts) to de-
termine if there were changes in the luminescence of [Tb.1](OTf)3. Luminescence changes
were observed upon the addition of these anions when acetonitrile and methanol were
used as solvents, but acetonitrile was ultimately chosen as it is easier to carry out studies
over a longer period of time due to its slower rate of evaporation compared to methanol.
We explored changes in the ground state of the complex (using absorption spectra) and its
excited state (using fluorescence spectra). Two regions of the fluorescence spectrum were
explored: (1) the π* to π transition centered at about 400 nm and (2) the Tb excited state to
ground state transition (ca. 450–720 nm).

2.5. Binding Studies of the Tb.1(OTf)3 with Dihydrogen Phosphate

To determine the response of our sensor towards anions, [Tb.1](OTf)3 was titrated
with solutions of anions as their TBA salts in CH3CN. We first determined if our sensor
would exhibit a response towards triflate, the counter anion in our complex. Titration of up
to 100 equivalents of TBA triflate did not change the overall response of the sensor by any
appreciable amount.

Shown in Figure 4 (top panel—left) is an example of the visual detection of an anion,
H2PO4

−, by [Tb.1](OTf)3. The complex changes from fluorescent green to blue in the
presence of the anion indicating that the sensor exhibits a “turn-off” response towards
H2PO4

−. Fluorescence spectra (Figure 4—top panel) obtained upon the titration of H2PO4
−

with the Tb.1(OTf)3 complex showed a concomitant increase in the π* to π transition and a
decrease in the Tb-centered transition, indicating that the spectra tend towards one that
resembles ligand 1. The binding isotherm that was obtained by plotting the changes at the
hypersensitive peak for Tb(III) emission, 545 nm versus equivalents of H2PO4

−, is also
shown. No discernable changes were seen in the shapes of the emission spectra from this
titration indicating that perhaps the anion was not binding to the metal center or that the
probe that was chosen was not one that could effectively monitor the interaction between
anion and the first coordination sphere of the metal.
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Figure 4. Top panel: 0.9 mM of [Tb.1](OTf)3 in the absence (left) and presence (right) of H2PO4
− (10 equivalents). Spectra
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−. Fluorescence (top panel)

and UV-vis (bottom panel). The binding isotherm for the emission intensity at 545 nm in the fluorescence spectrum is shown
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Shown in the bottom panel of Figure 4 is the series of absorption spectra obtained upon
titration of [Tb.1](OTf)3 with H2PO4

−. The disappearance of the shoulder at approximately
313 nm and a blue-shift of the peak at about 282 nm were observed—a spectrum at the end
that resembled that of ligand 1.

2.6. The Nature of the Sensor Response Towards Anions

Titration of anions resulted in quenching of the fluorescence of the [Tb.1](OTf)3 giving
this Tb(III) complex a “turn-off” designation. This “turn-off” response, in our opinion, is
due to the following:

(1) Binding of the anion leads to partial decomplexation of one or both terpyridine
moieties from the metal center, thus inhibiting its ability to act as a sensitizer.

(2) Anion is bound to the sensitizer and or metal center in such a way that it “interferes”
with the energy transfer from the triplet state of the ligand to the Tb excited state.

The anions displaced CH3CN molecules which had limited quenching ability in the
first place. Allen and co-workers determined that the luminescence decay rate per inner
sphere solvent molecule for Eu(III) complexes was 0 for acetonitrile compared to 0.83 s−1

for water and 0.41 s−1 for methanol [43]. Depending on the position in the course of the
titration, either factor (1) or (2) or a combination thereof could be at play. These factors
coupled with the limited quenching ability of CH3CN could explain the “turn-off” response.

2.7. How Does the Sensor Respond to Anions Other than Dihydrogen Phosphate?

To determine how the sensor would respond towards a variety of anions, we chose:
HSO4

−, NO3
−, the phosphate derivatives (H2PO4

−, HP2O7
3−), the halides (Cl− and F−)

and the carboxylate, CH3CO2
−—a diverse enough set of anions which allowed us to gain

an understanding of how the sensor responds to factors such as charge, basicity, size, shape
and the presence of rotamers that could lead to luminescence quenching (Figure 5).
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Figure 5. Anions targeted in this study.

Figure 6 shows steady state emission spectra representative of [Tb.1](OTf)3 (9.9 µM)
in the presence of 1 equivalent of each anion. These spectra were then translated to relative
intensity and percent quenching ability (at 545 nm) (Figure 7) by comparing the spectrum
in the presence of each anion to a solution of the [Tb.1](OTf)3 in the absence of anion.
One equivalent was chosen as the readout point as we felt that this point struck a balance
between being far enough along in the titration where there was a fair amount of quenching
yet, a differential sensor response towards anions could be observed. A series of vials
representing the [Tb.1](OTf)3 (50 µM) in the presence of 1 equivalent of each anion when
exposed to UV light is also shown in Figure 6.
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Figure 7. Relative intensity values at 545 nm and the corresponding percent quenching for Tb.1(OTf3)
in the presence of 1 equivalent of anions.

Two key factors appear to be at work when one examines the overall sensor response:
(1) the Lewis (and Bronsted) basicities of the anions [44–46] and (2) the number of OH bonds
that the anion possesses. The anions HSO4

− and HP2O7
3− each contain one OH bond,

whereas H2PO4
− contains two OH bonds. These OH bonds are high energy oscillators

(3600 cm−1) with the ability to quench the luminescence of the lanthanide sensor via non-
radiative decay. This decay is proportional to the number of O-H bonds present and the
distance from the metal center [47].

The quenching ability runs parallel to the basicity of the anions, generally, with two
exceptions. Anions HSO4

− and HP2O7
3− present with greater quenching ability that one

would expect if basicity were the only factor at play. We assert that this greater quenching
ability is due to an OH bond. The sensor response that was obtained is best considered
in three cohorts. The weakest responses were obtained for the weakest bases (NO3

− and
Cl−), good responses were obtained for CH3CO2

− and H2PO4
− and the best responses

for F−, HSO4
− and HP2O7

3−. The best responses are due to basicity (in the case of F−),
“luminescent quenchable” OH bonds (HSO4

− and HP2O7
3−) and the−3 charge (HP2O7

3−).
Quantitative information regarding the anion binding event was obtained from the

titration of [Tb.1](OTf)3 (9.9 µM) with anions (0 to 5 equivalents). Binding isotherms
(Figure 8) (normalized fluorescence intensity vs. anion concentration plots) were obtained
by monitoring changes at the 545 nm peak analyzed using a 1:1 sensor: anion binding
model in HypSpec. We, for comparison, show the binding isotherms with all anions at
the same concentration but note that for some anions, higher (example: NO3

−) and lower
(example: HP2O7

3−) concentrations were used in experiments so as to obtain the appro-
priate curvature, a necessity for accurate fitting of the isotherms to nonlinear regression
models [48].
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lents of anion.

The binging constants of [Tb.1](OTf)3 with the anions NO3
−, Cl− and H2PO4

− were
determined to be log K = 5.60 (±0.16), 6.23 (±0.33) and 6.50 (±0.33), respectively (See
Figures S13–S15 in the Supplementary Information). Concerning HSO4

−, F−, HP2O7
3−

and CH3CO2
− anions, their log K values were higher than 7, and hence exceeded the

value that can be reliably measured with the program. We note that for CH3CO2
−, the

fit was better to a 1:2 sensor: anion complex, but the log β also exceeded the value that
can be reliably measured with the program. For this proof-of-principle study, the goals of
which were to construct a lanthanide-based sensor, determine what types of anions that the
sensor could respond to and the nature of the sensor response, the aim was to determine
not the range but the lower limit of the binding constants of anions. These goals were all
successfully achieved.

3. Experimental Section
3.1. Material and Instruments

NMR spectra were recorded on Bruker 400 and 500 MHz spectrophotometers (Bruker,
Billerica, MA, USA). Chemicals shifts are referenced to the residual solvent peaks and given
in parts per million (ppm) for 1H and 13C NMR Spectra. HRMS were acquired on an Agilent
6530 Q-TOF using electrospray ionization (Agilent, Santa Clara, CA, USA). UV-vis spectra
were acquired on a Cary 100-Bio UV-vis spectrophotometer that was purchased from
Agilent (Santa Clara, CA, USA) and a PerkinElmer Lambda 35 (PerkinElmer, Waltham, MA,
USA). Fluorescence excitation and emission spectra were acquired on a Horiba FluoroMax-
4 and a PTI-QM4 steady-state fluorimeter with a 75 W Xenon arc-lamp and a R928 photo
multiplier tube. Both fluorimeters were purchased from HORIBA Scientific (Piscataway,
NJ, USA). All pH measurements were taken with a Denver Instruments UltraBASIC
electronic pH meter (Denver Instruments, Bohemiam, TX, USA). Chemicals were purchased
from Sigma-Aldrich, Alfa Aesar or Strem Chemicals Inc. and, unless stated otherwise,
were used as received. Deuterated solvents for NMR analysis were purchased from
Cambridge Isotope Laboratories Inc. or Sigma-Aldrich. The following solvents were
used for chromatography or other analysis and used as received: methanol GR ACS
Special Anhydrous (EMD), Dichloromethane ≥ 99.9%, ChromAR® for HPLC, for UV
spectrophotometry (Macron) and Acetonitrile ≥ 99.8% for HPLC-GC (Sigma Aldrich).
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Solvents that were used in reactions were treated with a Vacuum Atmospheres Company
Solvent Purification System (SPS) (Hawthorne, CA, USA) for drying prior to use or were of
the special anhydrous kind and used as received.

3.2. Synthesis of Ligand 1 and Lanthanide Complexes

Ligand 1. DIPEA (22.8 µL, 1.3 × 10−4 mol) was added to a suspension of compound
3 [6c] (50 mg, 6.6 × 10−5 mol), N-[2,2′;6′,2”]Terpyridin-4′-yl-propane-1,3-diamine [11]
(40 mg, 1.3 × 10−4 mol), EDCI (25 mg, 1.3 × 10−4 mol) and HOBt (20 mg, 1.3 × 10−4 mol)
in CH2Cl2 (30 mL). The reaction mixture was stirred under Ar until TLC analysis showed
reaction completion (ca. 8 h). Reaction work-up was effected by diluting the reaction
mixture to twice its volume and then washing with DI water and brine (3 times each). The
CH2CL2 layer was then dried with anhydrous MgSO4.The solvent was removed in vacuo
to yield a white residue which was purified via column chromatography (neutral alumina,
5% MeOH in CH2Cl2). The product was obtained as a white to cream-colored solid (43 mg,
48.2% yield).1H NMR (400 MHz, CD3CN, 300 K) δ (in ppm): 8.95 (t, J = 5.67 Hz, 2H), 8.57 (d,
J = 4.56 Hz, 4H), 8.37 (broad s, 4H), 8.18 (s, 2H), 7.87 (t, J = 7.51Hz, 4H), 7.60 (broad s, 2H),
7.37 (m, 4H), 7.13 (s, 4H) 6.93 (s, 4H), 4.65 (s, 4H), 4.18–3.30 (dd, J = 13.9 Hz, J = 354.12 Hz,
8H), 3.68 (m, 4H), 3.43 (m, 4H), 2.07 (m, 4H), 1.09 (s, 18H), 1.06 (s, 18H) 13C NMR (214 MHz,
CD3CN, 300 K) δ (in ppm): 169.44, 150.27, 150.06, 149.72, 144.2, 138.3, 138.7, 134.74, 128.31,
127.09, 126.41, 121.99, 75.72, 41.12, 37.45, 35.05, 34.54, 32.69, 32.04, 31.67, 31.37, 30.40, 30.10,
23.45, 14.44. HRMS (ESI-TOF) m/z: [M + 2H]2+ Calcd for C84H95N10O6 670.37520; Found
670.37740. UV-vis (acetonitrile) λmax [nm (× 104 cm−1M−1)]: 282 (5.03), 254 (3.67) (sh).
Fluorescence (acetonitrile) λmax nm: 400.

[Eu.1](OTf)3: Ligand 1 (26.3 mg, 2.0 × 10−5 mol) and Eu(OTf)3 (11.8 mg, 2.0 × 10−5 mol)
were added to a round bottom flask in 4 mL of dry CH3CN. The resulting solution was
stirred at room temperature overnight under Ar. The solvent was removed in vacuo,
and the resulting residue was dissolved in the minimum amount of CH2Cl2. The target
complex was precipitated via the addition of hexanes as a cream-colored (20.0 mg isolated,
53%). HRMS (ESI-TOF) m/z: [M-H-3OTf−]2+ Calcd for C84H93EuN10O6 744.32610; Found
744.32340. (UV-vis (acetonitrile) λmax [nm (× 104 cm−1 M−1)]: 288 (4.0), 310 (3.0) (sh).
Fluorescence (acetonitrile) nm: 407, 594, 614, 655, 691, 698.

[Tb.1](OTf)3: Ligand 1 (19 mg, 2.0 × 10−5 mol) and Tb(OTf)3 (8.6 mg) were added to a
round bottom flask in 4 mL of dry CH3CN. The resulting solution was stirred at room tem-
perature overnight under Ar. The solvent was removed in vacuo and the resulting residue
was dissolved in the minimum amount of CH2Cl2. The target complex was precipitated
via the addition of hexanes as a white solid (12.7 mg isolated, 46%), respectively. HRMS
(ESI-TOF) m/z: [M-3OTf-H]2+ Calcd for C84H93N10O6Tb 748.32860; Found 748.32610.
UV-vis (acetonitrile) λmax [nm (× 104 cm−1 M−1)]: 289 (1.5), 314 (01.0) (sh). Fluorescence
(acetonitrile) nm: 489, 544, 580, 619, 648, 671, 678.

3.3. Metal Binding Studies

Protocol for UV-Vis and Fluorescence Studies: All solutions were prepared in dry
degassed CH3CN. Solutions of Ligand 1 (9.7 µM) and Ln(OTf)3 (5.8 and 0.58 mM) were
prepared. This was carried out so that 5 µL of a solution of Ln(OTf)3 delivered either 0.1
equivalent (0.58 mM) or 1 equivalent (5.8 mM) to the ligand during the titration. After each
addition of Ln(OTf)3 to ligand 1, the cuvette was inverted 2–3 times. After a three-minute
equilibration period, the spectrum was taken.

3.4. Anion Binding Studies

Protocol for UV-vis and Fluorescence Studies: Anions (as their TBA salts), except
TBAF, were dried under vacuum at 70 ◦C overnight prior to each titration. TBAF was dried
under vacuum at 40 ◦C for about 4 h. Transferal of solvent for solution preparation was
performed under an Ar atmosphere. All solutions were prepared in dry degassed CH3CN.
Solutions of [Tb.1](OTf)3 (9.9 µM) and anions (as TBA salts) (6.0 mM and 0.6 mM) were
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prepared. This was carried out so that 2 µL of a solution of an anion delivered either 0.1
equivalent (0.6 mM) or 1 equivalent (6.6 mM) to [Tb.1](OTf)3 during the titration. After
each addition of anion solution to [Tb.1](OTf)3, the cuvette was inverted 2–3 times. After a
three-minute equilibration period, the spectrum was taken.

Protocol for Visual Detection Studies: All solutions were prepared in dry degassed
CH3CN. A solution of [Tb.1](OTf)3 (500 µM) was prepared and added to vials. Solutions
of anions (9 mM) were prepared. This was carried out so that 5 µL of a solution of an anion
delivered 1 equivalent with respect to [Tb.1](OTf)3.

4. Conclusions

The development of lanthanide complexes based on a terpyridine-functionalized
calix[4]arene ligand chelated with Eu(III) or Tb(III) has been reported. These complexes
were synthesized in two steps and characterized using 1H NMR, 13C NMR and MS. The
photophysical properties were also studied; high molar absorptivity values, modest quan-
tum yields and luminescence lifetimes on the ms timescale were obtained. The anion
sensing ability of the Tb complex was evaluated due to its higher quantum yield (in acetoni-
trile solution), and it was found via visual detection, UV-vis and fluorescence studies to be
responsive towards a range of anions. Large binding constants (ranging from log K = 5.6
to >7) were obtained from fluorescence titrations and were indicative of strong binding
between the sensor and anions. Developing a sensor array based on the diversification of
this system is currently being investigated in our laboratory.

Supplementary Materials: The following material is available online: Experimental details of quan-
tum yield and lifetime measurements; NMR spectra (1H, 13C, COSY, HMQC, HMBC) of ligand 1;
UV-Vis and Fluorescence spectra of titrations of ligand 1 with Eu(OTf)3; UV-Vis and Fluorescence
spectra of the titrations of [Tb.1](OTf)3 with anions and data fits from HypSpec 2014 models (PDF).
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