Health Benefits and Chemical Composition of Matcha Green Tea: A Review
Abstract
:1. Introduction
2. Chemical Composition of Japanese Matcha Green Tea
2.1. Content of Catechins
2.2. Content of Caffeine
2.3. Content of Phenolic Acids
2.4. Content of Rutin
2.5. Content of Quercetin
2.6. Content of Vitamin C
2.7. Content of Chlorophyll
2.8. Content of Theanine
3. Parameters Affecting Chemical Composition
4. Health-Promoting Properties
4.1. Anticarcinogenic Effects
4.2. Anti-Inflammatory Effects
4.3. Cardioprotective Effects
4.4. Antiviral Properties
4.5. Potential for Regulating Carbohydrate Metabolism
4.6. Improvement of Cognitive Function, Prevention of Neurodegenerative Disorders
4.7. Prospects
5. Conclusions
Funding
Conflicts of Interest
References
- Pastoriza, S.; Mesías, M.; Cabrera, C.; Rufián-Henares, J.A. Healthy Properties of Green and White Teas: An Update. Food Funct. 2017, 8, 2650–2662. [Google Scholar] [CrossRef] [Green Version]
- Komes, D.; Horžić, D.; Belščak, A.; Ganić, K.K.; Vulić, I. Green Tea Preparation and Its Influence on the Content of Bioactive Compounds. Food Res. Int. 2010, 43, 167–176. [Google Scholar] [CrossRef]
- Patel, S.H. Camellia Sinensis: Historical Perspectives and Future Prospects. J Agromedicine 2005, 10, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Sehgal, A. Antioxidant Activity of Different Forms of Green Tea: Loose Leaf, Bagged and Matcha. Curr. Res. Nutr. Food Sci. J. 2018, 6, 35–40. [Google Scholar] [CrossRef]
- Horie, H.; Kaori Ema, K.; Sumikawa, O. Chemical Components of Matcha and Powdered Green Tea. J. Cook. Sci. Jpn. 2017, 50, 182–188. [Google Scholar]
- Schröder, L.; Marahrens, P.; Koch, J.G.; Heidegger, H.; Vilsmeier, T.; Phan-Brehm, T.; Hofmann, S.; Mahner, S.; Jeschke, U.; Richter, D.U. Effects of Green Tea, Matcha Tea and Their Components Epigallocatechin Gallate and Quercetin on MCF-7 and MDA-MB-231 Breast Carcinoma Cells. Oncol. Rep. 2019, 41, 387–396. [Google Scholar] [PubMed]
- Sano, T.; Horie, H.; Matsunaga, A.; Hirono, Y. Effect of Shading Intensity on Morphological and Color Traits and on Chemical Components of New Tea (Camellia Sinensis L.) Shoots under Direct Covering Cultivation. J. Sci. Food Agric. 2018, 98, 5666–5676. [Google Scholar] [CrossRef] [PubMed]
- Sharangi, A.B. Medicinal and Therapeutic Potentialities of Tea (Camellia Sinensis L.) —A Review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Hamamoto, S.; Iguchi, K.; Yamada, H.; Morita, A.; Horie, H.; Nakamura, Y. Stress-Reducing Function of Matcha Green Tea in Animal Experiments and Clinical Trials. Nutrients 2018, 10, 1468. [Google Scholar] [CrossRef] [Green Version]
- Kurleto, K.; Kurowski, G.; Laskowska, B.; Malinowska, M.; Sikora, E.; Vogt, O. Wpływ Warunków Parzenia Na Zawartość Antyoksydantow w Naparach Różnych Rodzajów Herbat. Wiadomości Chem. 2013, 67, 11–12. [Google Scholar]
- Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Modulation of Cell Survival Genes, Iron-Dependent Oxidative Stress and PKC Signaling Pathway. Neurosignals 2005, 14, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, C.J.; Farnworth, E.R. A Review of Latest Research Findings on the Health Promotion Properties of Tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef]
- Lutomski, J. The effect of herbal remedies on the vitality of body. Postępy Fitoterapii 2002, 1–2, 5–6. [Google Scholar]
- Vinson, J.A.; Dabbagh, Y.A. Tea Phenols: Antioxidant Effectiveness of Teas, Tea Components, Tea Fractions and Their Binding with Lipoproteins. Nutr. Res. 1998, 18, 1067–1075. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Głowniak, K. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time. J. Aoac. Int. 2017, 100, 1694–1699. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Bhutia Pemba; Sharangi Baran; Lepcha; Tamang Bioactive Compounds and Antioxidant Properties of Tea: Status, Global Research and Potentialities. J. Tea Sci. Res. 2015. [CrossRef] [Green Version]
- Jun, X.; Deji, S.; Ye, L.; Rui, Z. Micromechanism of Ultrahigh Pressure Extraction of Active Ingredients from Green Tea Leaves. Food Control 2011, 22, 1473–1476. [Google Scholar] [CrossRef]
- Jun, X.; Shuo, Z.; Bingbing, L.; Rui, Z.; Ye, L.; Deji, S.; Guofeng, Z. Separation of Major Catechins from Green Tea by Ultrahigh Pressure Extraction. Int. J. Pharm. 2010, 386, 229–231. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and Its Metabolites. Int. J. Mol. Sci. 2019, 20, 3630. [Google Scholar] [CrossRef] [Green Version]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia Sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-Inflammatory Action of Green Tea. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2016, 15, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef] [PubMed]
- Du, G.-J.; Zhang, Z.; Wen, X.-D.; Yu, C.; Calway, T.; Yuan, C.-S.; Wang, C.-Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 2012, 4, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Chiba, T.; Tomita, I.; Koizumi, H.; Miura, S.; Umegaki, K.; Hara, Y.; Ikeda, M. Tea Catechins Prevent the Development of Atherosclerosis in Apoprotein E–Deficient Mice. J. Nutr. 2001, 131, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Koláčková, T.; Kolofiková, K.; Sytařová, I.; Snopek, L.; Sumczynski, D.; Orsavová, J. Matcha Tea: Analysis of Nutritional Composition, Phenolics and Antioxidant Activity. Plant Foods Hum. Nutr. 2020, 75, 48–53. [Google Scholar] [CrossRef]
- Nishitani, E.; Sagesaka, Y.M. Simultaneous Determination of Catechins, Caffeine and Other Phenolic Compounds in Tea Using New HPLC Method. J. Food Compos. Anal. 2004, 17, 675–685. [Google Scholar] [CrossRef]
- Adnan, M.; Ahmad, A.; Ahmed, D.A.; Khalid, N.; Hayat, I.; Ahmed, I. Chemical Composition and Sensory Evaluation of Tea (Camellia Sinensis) Commercialized in Pakistan. Pak. J. Bot. 2013, 45, 901–907. [Google Scholar]
- Stefanello, N.; Spanevello, R.M.; Passamonti, S.; Porciúncula, L.; Bonan, C.D.; Olabiyi, A.A.; Teixeira da Rocha, J.B.; Assmann, C.E.; Morsch, V.M.; Schetinger, M.R.C. Coffee, Caffeine, Chlorogenic Acid, and the Purinergic System. Food Chem. Toxicol. 2019, 123, 298–313. [Google Scholar] [CrossRef]
- Mitani, T.; Nagano, T.; Harada, K.; Yamashita, Y.; Ashida, H. Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes. J. Nutr. Sci. Vitam. (Tokyo) 2017, 63, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čížková, H.; Voldřich, M.; Mlejnecká, J.; Kvasnička, F. Authenticity Evaluation of Tea-Based Products. Czech. J. Food Sci. 2008, 26, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Białecka-Florjańczyk, E.; Fabiszewska, A.; Zieniuk, B. Phenolic Acids Derivatives—Biotechnological Methods of Synthesis and Bioactivity. Curr. Pharm. Biotechnol. 2018, 19, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.-J.; Yen, G.-C. Chemopreventive Effects of Dietary Phytochemicals against Cancer Invasion and Metastasis: Phenolic Acids, Monophenol, Polyphenol, and Their Derivatives. Cancer Treat. Rev. 2012, 38, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.F.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharm. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kochman, J.; Kwiatkowska, A.; Kałduńska, J.; Dec, K.; Kawczuga, D.; Janda, K. Antioxidant Properties and Nutritional Composition of Matcha Green Tea. Foods 2020, 9, 483. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Protective Effects of Rutin on the Metabolic Function as an Important Dietary Flavonoid. J. Endocrinol. Investig. 2014, 37, 783–788. [Google Scholar] [CrossRef]
- Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharm. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Habtemariam, S. Rutin as a Natural Therapy for Alzheimer’s Disease: Insights into Its Mechanisms of Action. Curr Med. Chem 2016, 23, 860–873. [Google Scholar] [CrossRef]
- Senggunprai, L.; Kukongviriyapan, V.; Prawan, A.; Kukongviriyapan, U. Quercetin and EGCG Exhibit Chemopreventive Effects in Cholangiocarcinoma Cells via Suppression of JAK/STAT Signaling Pathway. Phytother. Res. 2014, 28, 841–848. [Google Scholar] [CrossRef]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid Med. Cell Longev 2016, 2016, 2986796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in Food: Possible Mechanisms of Its Effect on Memory. J. Food Sci 2018, 83, 2280–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, H.M.; Haddad, P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr Med. Chem 2017, 24, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, K.; Kałduńska, J.; Dec, K.; Kawczuga, D.; Janda, K. Antioxidant Properties of Small-Molecule Non-Enzymatic Compounds. Pol. Merkur. Lek. 2020, 48, 128–132. [Google Scholar]
- Suzuki, Y.; Shioi, Y. Identification of Chlorophylls and Carotenoids in Major Teas by High-Performance Liquid Chromatography with Photodiode Array Detection. J. Agric. Food Chem. 2003, 51, 5307–5314. [Google Scholar] [CrossRef]
- Kang, Y.-R.; Park, J.; Jung, S.K.; Chang, Y.H. Synthesis, Characterization, and Functional Properties of Chlorophylls, Pheophytins, and Zn-Pheophytins. Food Chem. 2018, 245, 943–950. [Google Scholar] [CrossRef]
- Ku, K.M.; Choi, J.N.; Kim, J.; Kim, J.K.; Yoo, L.G.; Lee, S.J.; Hong, Y.-S.; Lee, C.H. Metabolomics Analysis Reveals the Compositional Differences of Shade Grown Tea (Camellia Sinensis L.). J. Agric. Food Chem. 2010, 58, 418–426. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Hamamoto, S.; Iguchi, K.; Yamada, H.; Morita, A.; Pervin, M.; Nakamura, Y. Stress-Reducing Effect of Cookies Containing Matcha Green Tea: Essential Ratio among Theanine, Arginine, Caffeine and Epigallocatechin Gallate. Heliyon 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
- Dietz, C.; Dekker, M. Effect of Green Tea Phytochemicals on Mood and Cognition. Curr. Pharm. Des. 2017, 23, 2876–2905. [Google Scholar] [CrossRef]
- Fujioka, K.; Iwamoto, T.; Shima, H.; Tomaru, K.; Saito, H.; Ohtsuka, M.; Yoshidome, A.; Kawamura, Y.; Manome, Y. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect. Molecules 2016, 21, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shishikura, Y.; Khokhar, S. Factors Affecting the Levels of Catechins and Caffeine in Tea Beverage: Estimated Daily Intakes and Antioxidant Activity. J. Sci. Food Agric. 2005, 85, 2125–2133. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Krawczyk, M.; Zgoła-Grześkowiak, A. Determination of Antioxidant Activity, Rutin, Quercetin, Phenolic Acids and Trace Elements in Tea Infusions: Influence of Citric Acid Addition on Extraction of Metals. J. Food Compos. Anal. 2015, 40, 70–77. [Google Scholar] [CrossRef]
- Donejko, M.; Niczyporuk, M.; Galicka, E.; Przylipiak, A. Anti-Cancer Properties Epigallocatechin-Gallate Contained in Green Tea. Postępy Hig. I Med. Doświadczalnej 2013, 67, 26–34. [Google Scholar] [CrossRef]
- Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: From Early Investigations to Current Focus on Human Cancer Stem Cells. Mol. Cells 2018, 41, 73–82. [Google Scholar] [CrossRef]
- Makiuchi, T.; Sobue, T.; Kitamura, T.; Ishihara, J.; Sawada, N.; Iwasaki, M.; Sasazuki, S.; Yamaji, T.; Shimazu, T.; Tsugane, S. Association between Green Tea/Coffee Consumption and Biliary Tract Cancer: A Population-Based Cohort Study in Japan. Cancer Sci. 2016, 107, 76–83. [Google Scholar] [CrossRef]
- Shimizu, M.; Fukutomi, Y.; Ninomiya, M.; Nagura, K.; Kato, T.; Araki, H.; Suganuma, M.; Fujiki, H.; Moriwaki, H. Green Tea Extracts for the Prevention of Metachronous Colorectal Adenomas: A Pilot Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3020–3025. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Andreasson, A.; Hagström, H.; Sköldberg, F.; Önnerhag, K.; Carlsson, A.C.; Schmidt, P.T.; Forsberg, A.M. The Prediction of Colorectal Cancer Using Anthropometric Measures: A Swedish Population-Based Cohort Study with 22 Years of Follow-Up. United Eur. Gastroenterol. J. 2019, 7, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Synergistic Enhancement of Anticancer Effects on Numerous Human Cancer Cell Lines Treated with the Combination of EGCG, Other Green Tea Catechins, and Anticancer Compounds. J. Cancer Res. Clin. Oncol. 2015, 141, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Sharma, A.; Shukla, N.K.; Jaiswal, R.; Dwivedi, S.; Raina, V.; Mohanti, B.K.; Deo, S.V.; Patra, S. Gall Bladder Cancer and the Role of Dietary and Lifestyle Factors: A Case-Control Study in a North Indian Population. Eur. J. Cancer Prev. 2013, 22, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-Gallate for Different Treatments. BioMed Res. Int. 2017, 2017, 5615647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salameh, A.; Dhein, S.; Mewes, M.; Sigusch, S.; Kiefer, P.; Vollroth, M.; Seeger, J.; Dähnert, I. Anti-Oxidative or Anti-Inflammatory Additives Reduce Ischemia/Reperfusions Injury in an Animal Model of Cardiopulmonary Bypass. Saudi J. Biol. Sci. 2020, 27, 18–29. [Google Scholar] [CrossRef]
- Kasper, B.; Salameh, A.; Krausch, M.; Kiefer, P.; Kostelka, M.; Mohr, F.W.; Dhein, S. Epigallocatechin Gallate Attenuates Cardiopulmonary Bypass-Associated Lung Injury. J. Surg. Res. 2016, 201, 313–325. [Google Scholar] [CrossRef]
- Shan, D.; Fang, Y.; Ye, Y.; Liu, J. EGCG Reducing the Susceptibility to Cholesterol Gallstone Formation through the Regulation of Inflammation. Biomed. Pharm. 2008, 62, 677–683. [Google Scholar] [CrossRef]
- Mahajan, N.; Dhawan, V.; Sharma, G.; Jain, S.; Kaul, D. ‘Induction of Inflammatory Gene Expression by THP-1 Macrophages Cultured in Normocholesterolaemic Hypertensive Sera and Modulatory Effects of Green Tea Polyphenols’. J. Hum. Hypertens. 2008, 22, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Ezzati, M.; Lopez, A.D. Estimates of Global Mortality Attributable to Smoking in 2000. Lancet 2003, 362, 847–852. [Google Scholar] [CrossRef]
- Gokulakrisnan, A.; Jayachandran Dare, B.; Thirunavukkarasu, C. Attenuation of the Cardiac Inflammatory Changes and Lipid Anomalies by (-)-Epigallocatechin-Gallate in Cigarette Smoke-Exposed Rats. Mol. Cell. Biochem. 2011, 354, 1–10. [Google Scholar] [CrossRef]
- Kim, S.J.; Li, M.; Jeong, C.W.; Bae, H.B.; Kwak, S.H.; Lee, S.H.; Lee, H.J.; Heo, B.H.; Yook, K.B.; Yoo, K.Y. Epigallocatechin-3-Gallate, a Green Tea Catechin, Protects the Heart against Regional Ischemia–Reperfusion Injuries through Activation of RISK Survival Pathways in Rats. Arch. Pharm. Res. 2014, 37, 1079–1085. [Google Scholar] [CrossRef]
- Bryk, D.; Olejarz, W.; Zapolska-Downar, D. Mitogen-Activated Protein Kinases in Atherosclerosis. Postȩpy Hig. I Med. Doświadczalnej (Online) 2014, 68, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, Y.; Tariq, A.; Jiang, X.; Ahamd, Z.; Zhihao, Z.; Idrees, M.; Azizullah, A.; Adnan, M.; Bussmann, R.W. Food as Medicine: A Possible Preventive Measure against Coronavirus Disease (COVID-19). Phytother. Res. 2020. [Google Scholar] [CrossRef]
- Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints 2020. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-M.; Lee, K.-H.; Seong, B.-L. Antiviral Effect of Catechins in Green Tea on Influenza Virus. Antivir. Res. 2005, 68, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The Green Tea Molecule EGCG Inhibits Zika Virus Entry. Virology 2016, 496, 215–218. [Google Scholar] [CrossRef]
- Mahmood, M.S.; Mártinez, J.L.; Aslam, A.; Rafique, A.; Vinet, R.; Laurido, C.; Hussain, I.; Abbas, R.Z.; Khan, A.; Ali, S. Antiviral Effects of Green Tea (Camellia Sinensis) against Pathogenic Viruses in Human and Animals (a Mini-Review). Afr. J. Trad. Compl. Alt. Med. 2016, 13, 176. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xu, Z.; Zheng, W. A Review of the Antiviral Role of Green Tea Catechins. Molecules 2017, 22, 1337. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral Activity of Green Tea and Black Tea Polyphenols in Prophylaxis and Treatment of COVID-19: A Review. Phytomedicine 2020, 153286. [Google Scholar] [CrossRef]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Significant Inactivation of SARS-CoV-2 by a Green Tea Catechin, a Catechin-Derivative and Galloylated Theaflavins in Vitro. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sodagari, H.R.; Bahramsoltani, R.; Farzaei, M.H.; Abdolghaffari, A.H.; Rezaei, N.; Taylor-Robinson, A.W. Tea Polyphenols as Natural Products for Potential Future Management of HIV Infection - an Overview. J. Nat. Remedies 2016, 16, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Levy, E.; Delvin, E.; Marcil, V.; Spahis, S. Can Phytotherapy with Polyphenols Serve as a Powerful Approach for the Prevention and Therapy Tool of Novel Coronavirus Disease 2019 (COVID-19)? Am. J. Physiol. -Endocrinol. Metab. 2020, 319, E689–E708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xie, D.-Y. Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Front. Plant. Sci. 2020, 11. [Google Scholar] [CrossRef]
- Jang, M.; Park, Y.-I.; Cha, Y.-E.; Park, R.; Namkoong, S.; Lee, J.I.; Park, J. Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARS-CoV-2 3CL-Protease In Vitro. Available online: https://www.hindawi.com/journals/ecam/2020/5630838/ (accessed on 21 December 2020).
- Menegazzi, M.; Campagnari, R.; Bertoldi, M.; Crupi, R.; Di Paola, R.; Cuzzocrea, S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int. J. Mol. Sci. 2020, 21, 5171. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of Catechins and Their Applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-T.; Wu, Y.-H.; Tseng, C.-K.; Lin, C.-K.; Chen, W.-C.; Hsu, Y.-C.; Lee, J.-C. Green Tea Phenolic Epicatechins Inhibit Hepatitis C Virus Replication via Cycloxygenase-2 and Attenuate Virus-Induced Inflammation. PLoS ONE 2013, 8, e54466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of Green Tea Polyphenols as Novel Corona Virus (SARS CoV-2) Main Protease (Mpro) Inhibitors – an in Silico Docking and Molecular Dynamics Simulation Study. J. Biomol. Struct. Dyn. 2020, 1–13. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Woo, H.-J.; Kang, H.-K.; Nguyen, V.D.; Kim, Y.-M.; Kim, D.-W.; Ahn, S.-A.; Xia, Y.; Kim, D. Flavonoid-Mediated Inhibition of SARS Coronavirus 3C-like Protease Expressed in Pichia Pastoris. Biotechnol. Lett. 2012, 34, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, J.; Lv, Y.; Jiang, Y.; Pan, J.; Zhu, Y.; Huang, M.; Zhang, S. Changes in Intestinal Microbiota of Type 2 Diabetes in Mice in Response to Dietary Supplementation With Instant Tea or Matcha. Can. J. Diabetes 2020, 44, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Yamabe, N.; Kang, K.S.; Hur, J.M.; Yokozawa, T. Matcha, a Powdered Green Tea, Ameliorates the Progression of Renal and Hepatic Damage in Type 2 Diabetic OLETF Rats. J. Med. Food 2009, 12, 714–721. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Pan, J.; Lv, Y.; Liu, J.; Zhang, S.; Zhu, Y. Effect of Tea Products on the in Vitro Enzymatic Digestibility of Starch. Food Chem. 2018, 243, 345–350. [Google Scholar] [CrossRef]
- Kim, J.; Funayama, S.; Izuo, N.; Shimizu, T. Dietary Supplementation of a High-Temperature-Processed Green Tea Extract Attenuates Cognitive Impairment in PS2 and Tg2576 Mice. Biosci. Biotechnol. Biochem. 2019, 83, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Kolahdouzan, M.; Hamadeh, M.J. The Neuroprotective Effects of Caffeine in Neurodegenerative Diseases. Cns Neurosci 2017, 23, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.; Carrière, I.; de Mendonca, A.; Portet, F.; Dartigues, J.F.; Rouaud, O.; Barberger-Gateau, P.; Ancelin, M.L. The Neuroprotective Effects of Caffeine: A Prospective Population Study (the Three City Study). Neurology 2007, 69, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Ali, T.; Ullah, N.; Kim, M.O. Caffeine Prevents D-Galactose-Induced Cognitive Deficits, Oxidative Stress, Neuroinflammation and Neurodegeneration in the Adult Rat Brain. Neurochem. Int. 2015, 90, 114–124. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Mhaidat, N.M.; Obaid, E.A.; Khabour, O.F. Caffeine Prevents Memory Impairment Induced by Hyperhomocysteinemia. J. Mol. Neurosci. 2018, 66, 222–228. [Google Scholar] [CrossRef]
- Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tane, J.; Citron, B.A.; Lin, X.; et al. Caffeine Reverses Cognitive Impairment and Decreases Brain Amyloid-Beta Levels in Aged Alzheimer’s Disease Mice. J. Alzheimers Dis. 2009, 17, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-B.; Zhou, L.; Wang, Y.-Z.; Wang, X.; Zhou, Y.; Ho, W.-Z.; Li, J.-L. Neuroprotective Activity of ( - )-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity. J. Immunol. Res. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Ettcheto, M.; Cano, A.; Manzine, P.R.; Busquets, O.; Verdaguer, E.; Castro-Torres, R.D.; García, M.L.; Beas-Zarate, C.; Olloquequi, J.; Auladell, C.; et al. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol. Neurobiol. 2019. [Google Scholar] [CrossRef]
Compound Related to the Effect | Potential Mechanism and Properties | References |
---|---|---|
EGCG | Antiviral effect depends on virus type e.g. inhibiting replication of HIV-1, inhibiting viral (HBV) entry to the cell, inhibiting first stages of infection, inactivate SARS-CoV-2, inhibiting SARS-Cov-2 main protease and SARS-CoV-2 3C-like protease, binding to viral surface proteins | [78], [80], [77], [81], [79], [82], [83], [84] |
Catechins | Inhibiting adherention and cell penetration, disruption of the viral replication cycle, inhibiting HCV replication, anti-inflammatory, inhibiting SARS-Cov-2 main protease | [85], [76], [86], [87] |
Quercetin | Inhibiting SARS-Cov replication by inhibition of SARS-Cov-3C-like protease | [88] |
Catechins, quercetin | Inhibiting COVID-19 main protease and structural proteins | [73] |
Health-Promoting Properties | The Component Associated with the Effect | Mechanism of Action | Reference |
---|---|---|---|
Anticarcinogenic effects | Catechins | support therapy as well as in cancer prevention, inhibiting tumour growth factors and inducing apoptosis of cancer cells | [58], [61] |
Vitamin C | protective effects against cancer | [62] | |
Phenolic acids | inhibiting cancer cell growth and prevent metastasis | [34] | |
EGCG | inhibiting tumour angiogenesis, antioxidant effects and suppressing the inflammatory processes contributing to transformation, hyperproliferation and initiation of carcinogenesis, improving tissue sensitivity to insulin and leptin, and reducing blood lipid parameters; | [57], [58], [59], [61] | |
Anti-inflammatory effects | EGCG | scavenging ROS, regulating the inflammatory condition and response | [22], [66] |
Cardioprotective | EGCG | reducing oxidative stress, inhibiting the activation of stress-activated protein kinase and signalling pathways inducing the inflammatory response | [69], [70] |
Rutin | strengthening blood vessels | [36] | |
Improvement of cognitive function and prevention of neurodegenerative disorders | EGCG | promote clarity of mind and cognitive function, inhibits LPS-induced production of reactive oxygen species, improves insulin sensitivity and decreases amyloid-β production in the brain | [92], [98], [99] |
Caffeine | reduce the risk of cognitive decline, reversing oxidative processes and reducing neuroinflammation, inhibit ageing of the brain, anti-inflammatory effects, decreased deposition of amyloid-β in the brain | [94], [95], [96], [97] | |
Regulation of carbohydrate metabolism | EGCG | inhibiting starch digestion, inhibiting gluconeogenesis and the absorption of lipids and glucose, improving insulin sensitivity | [89], [91] |
Quercetin | inhibiting glucose absorption, regulating insulin secretion, improving insulin sensitivity | [43] | |
Phenolic acids | modulating lipid and carbohydrate metabolism | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules 2021, 26, 85. https://doi.org/10.3390/molecules26010085
Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules. 2021; 26(1):85. https://doi.org/10.3390/molecules26010085
Chicago/Turabian StyleKochman, Joanna, Karolina Jakubczyk, Justyna Antoniewicz, Honorata Mruk, and Katarzyna Janda. 2021. "Health Benefits and Chemical Composition of Matcha Green Tea: A Review" Molecules 26, no. 1: 85. https://doi.org/10.3390/molecules26010085
APA StyleKochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., & Janda, K. (2021). Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules, 26(1), 85. https://doi.org/10.3390/molecules26010085