Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Bead Formulation
3.3. Swelling Degree
3.4. SEM
3.5. Specific Surface Area
3.6. Low-Field 1H NMR Relaxometry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hu, J.; Davies, J.; Mok, Y.K.; Arato, C.; Saddler, J. The Potential of Using Immobilized Xylanases to Enhance the Hydrolysis of Soluble, Biomass Derived Xylooligomers. Materials 2018, 11, 2005. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.K.-L.; Reuveny, S.; Oh, S.K.W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol. Adv. 2013, 31, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, Q.A.; Coopman, K.; Nienow, A.W.; Hewitt, C.J. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol. J. 2016, 11, 473–486. [Google Scholar] [CrossRef]
- Derakhti, S.; Safiabadi-Tali, S.H.; Amoabediny, G.; Sheikhpour, M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. Mater. Sci. Eng. C 2019, 103, 109782. [Google Scholar] [CrossRef]
- Shukla, S.K. Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing. Int. J. Biol. Macromol. 2013, 62, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Tolba, M.; Minikh, O.; Brovko, L.Y.; Evoy, S.; Griffiths, M.W. Oriented Immobilization of Bacteriophages for Biosensor Applications. Appl. Environ. Microbiol. 2009, 76, 528–535. [Google Scholar] [CrossRef]
- Gericke, M.; Trygg, J.; Fardim, P. Functional Cellulose Beads: Preparation, Characterization, and Applications. Chem. Rev. 2013, 113, 4812–4836. [Google Scholar] [CrossRef]
- Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11, 2144. [Google Scholar] [CrossRef]
- Fan, Z.; Xie, C.; Chen, J.; Sun, S.; Zhou, Q. Interesting core-shell structure and "V-shape" shift: The property and formation mechanism of structural heterogeneity in cellulose hydrogel. Carbohydr. Polym. 2019, 217, 110–115. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef]
- Xia, Z.; Patchan, M.; Maranchi, J.; Trexler, M.M. Structure and relaxation in cellulose hydrogels. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Lindh, E.L.; Bergenstråhle-Wohlert, M.; Terenzi, C.; Salmén, L.; Furó, I. Non-exchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water. Carbohydr. Res. 2016, 434, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Khazraji, A.C.; Robert, S. Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. J. Nanomater. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Lindh, E.L.; Salmén, L. Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 2016, 24, 21–33. [Google Scholar] [CrossRef]
- Caulfield, D.F. Interactions at the Cellulose-water Interface. Pap. Sci. Technol. Cut. Edge 1980, 70–88. Available online: https://www.fpl.fs.fed.us/documnts/pdf1980/caulf80a.pdf (accessed on 9 July 2019).
- Trygg, J.; Fardim, P.; Gericke, M.; Mäkilä, E.; Salonen, J. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr. Polym. 2013, 93, 291–299. [Google Scholar] [CrossRef]
- Olsson, C.; Westman, C.O.A.G. Direct Dissolution of Cellulose: Background, Means and Applications. In Cellulose-Fundamental Aspects; Van De Ven, T., Ed.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Ibbett, R.; Wortmann, F.; Varga, K.; Schuster, K.C. A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose 2013, 21, 139–152. [Google Scholar] [CrossRef]
- Gun’Ko, V.M.; Savina, I.N.; Mikhalovsky, S. Properties of Water Bound in Hydrogels. Gels 2017, 3, 37. [Google Scholar] [CrossRef]
- Hoarau, M.; Badieyan, S.; Marsh, E.N.G. Immobilized enzymes: Understanding enzyme–surface interactions at the molecular level. Org. Biomol. Chem. 2017, 15, 9539–9551. [Google Scholar] [CrossRef]
- Chao, W.-C.; Shen, J.-Y.; Lu, J.-F.; Wang, J.-S.; Yang, H.-C.; Wee, K.; Lin, L.-J.; Kuo, Y.-C.; Yang, C.-H.; Weng, S.-H.; et al. Probing Water Environment of Trp59 in Ribonuclease T1: Insight of the Structure–Water Network Relationship. J. Phys. Chem. B 2014, 119, 2157–2167. [Google Scholar] [CrossRef]
- Foston, M.; Ragauskas, A.J. Changes in the Structure of the Cellulose Fiber Wall during Dilute Acid Pretreatment in Populus Studied by 1H and 2H NMR. Energy Fuels 2010, 24, 5677–5685. [Google Scholar] [CrossRef]
- Tsuchida, J.E.; Rezende, C.A.; De Oliveira-Silva, R.; De Lima, M.A.; D’Eurydice, M.N.; Polikarpov, I.; Bonagamba, T.J. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol. Biofuels 2014, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.A.; Bernardes, A.; De Azevêdo, E.R.; Guimarães, F.E.G.; Lowe, J.P.; Gale, E.; Polikarpov, I.; Scott, J.L.; I Sharma, R. On the subtle tuneability of cellulose hydrogels: Implications for binding of biomolecules demonstrated for CBM 1. J. Mater. Chem. B 2017, 5, 3879–3887. [Google Scholar] [CrossRef]
- Barros, J.W. Solvent self-diffusion dependence on the swelling degree of a hydrogel. Phys. Rev. E 2019, 99, 052501. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Zeng, X.; Li, H.; Sun, D. Enhancing the inter-fiber bonding properties of cellulosic fibers by increasing different fiber charges. Cellulose 2016, 23, 1617–1628. [Google Scholar] [CrossRef]
- Kargl, R.; Mohan, T.; Bračič, M.; Kulterer, M.; Doliška, A.; Stana-Kleinschek, K.; Ribitsch, V. Adsorption of Carboxymethyl Cellulose on Polymer Surfaces: Evidence of a Specific Interaction with Cellulose. Langmuir 2012, 28, 11440–11447. [Google Scholar] [CrossRef]
- Fras, L.; Stenius, P.; Laine, J.; Stana-Kleinschek, K. Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose 2007, 15, 315–321. [Google Scholar] [CrossRef]
- Aarne, N.; Kontturi, E.; Laine, J. Carboxymethyl cellulose on a fiber substrate: The interactions with cationic polyelectrolytes. Cellulose 2012, 19, 2217–2231. [Google Scholar] [CrossRef]
- Capanema, N.S.; Mansur, A.A.; De Jesus, A.C.; Carvalho, S.M.; De Oliveira, L.C.; Mansur, H.S. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 2018, 106, 1218–1234. [Google Scholar] [CrossRef]
- Jeong, D.; Joo, S.-W.; Hu, Y.; Shinde, V.V.; Cho, E.; Jung, S.; Cho, E. Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur. Polym. J. 2018, 105, 17–25. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Ranjbar, J.; Garmaroody, E.R. Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr. Polym. 2018, 197, 565–575. [Google Scholar] [CrossRef]
- Salleh, K.M.; Zakaria, S.; Gan, S.; Baharin, K.W.; Ibrahim, N.A.; Zamzamin, R. Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose. Int. J. Biol. Macromol. 2020, 148, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Hofmann, K.; Hatakeyama, H. 1H n.m.r. relaxation studies and lineshape analysis of aqueous sodium carboxymethylcellulose. Polymer 1994, 35, 2749–2758. [Google Scholar] [CrossRef]
- Baumgartner, S.; Lahajnar, G.; Sepe, A.; Kristl, J. Investigation of the state and dynamics of water in hydrogels of cellulose ethers by1H NMR spectroscopy. AAPS PharmSciTech 2002, 3, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, J.C.; Ramalhete, S.M.; Skuze, W.J.; Soni, R.; Khimyak, Y.Z.; Edler, K.J.; Scott, J.L. Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. Soft Matter 2018, 14, 255–263. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Zhang, Y.; Lu, F.; Li, W.; Kang, H.; Xiang, J.-F.; Huang, Y.; Liu, R. Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer 2016, 98, 237–243. [Google Scholar] [CrossRef]
- Kharbanda, Y.; Urbańczyk, M.; Laitinen, O.; Kling, K.I.; Pallaspuro, S.; Komulainen, S.; Liimatainen, H.; Telkki, V.-V. Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels. J. Phys. Chem. C 2019, 123, 30986–30995. [Google Scholar] [CrossRef]
- Nakamura, K.; Hatakeyama, T.; Hatakeyama, H. Studies on Bound Water of Cellulose by Differential Scanning Calorimetry. Text. Res. J. 1981, 51, 607–613. [Google Scholar] [CrossRef]
- O’Neill, H.; Pingali, S.V.; Petridis, L.; He, J.; Mamontov, E.; Hong, L.; Urban, V.; Evans, B.; Langan, P.; Smith, R.; et al. Dynamics of water bound to crystalline cellulose. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Z.; Du, X.; Chen, L. Contribution of different state of adsorbed water to the sub-Tg dynamics of cellulose. Carbohydr. Polym. 2019, 210, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Strätz, J.; Liedmann, A.; Trutschel, M.-L.; Mäder, K.; Groth, T.; Fischer, S. Development of hydrogels based on oxidized cellulose sulfates and carboxymethyl chitosan. Cellulose 2019, 26, 7371–7382. [Google Scholar] [CrossRef]
- Agarwal, D.; Macnaughtan, W.; Foster, T. Interactions between microfibrillar cellulose and carboxymethyl cellulose in an aqueous suspension. Carbohydr. Polym. 2018, 185, 112–119. [Google Scholar] [CrossRef]
- Prakobna, K.; Terenzi, C.; Zhou, Q.; Furó, I.; Berglund, L.A. Core–shell cellulose nanofibers for biocomposites – Nanostructural effects in hydrated state. Carbohydr. Polym. 2015, 125, 92–102. [Google Scholar] [CrossRef]
- Terenzi, C.; Prakobna, K.; Berglund, L.A.; Furó, I. Nanostructural Effects on Polymer and Water Dynamics in Cellulose Biocomposites: 2H and 13C NMR Relaxometry. Biomacromolecules 2015, 16, 1506–1515. [Google Scholar] [CrossRef]
- D’Agostino, C.; Mitchell, J.; Mantle, M.D.; Gladden, L.F. Interpretation of NMR Relaxation as a Tool for Characterising the Adsorption Strength of Liquids inside Porous Materials. Chem. - A Eur. J. 2014, 20, 13009–13015. [Google Scholar] [CrossRef]
- Trygg, J.; Trivedi, P.; Fardim, P. Controlled depolymerization of cellulose to a given degree of polymerization. Cellul. Chem. Technol. 2016, 50, 557–567. Available online: http://www.cellulosechemtechnol.ro/pdf/CCT5-6(2016)/p.557-567.pdf (accessed on 15 April 2019).
- Trygg, J.; Fardim, P. Enhancement of cellulose dissolution in water-based solvent via ethanol–hydrochloric acid pretreatment. Cellulose 2011, 18, 987–994. [Google Scholar] [CrossRef]
- Ettenauer, M.; Loth, F.; Thümmler, K.; Fischer, S.; Weber, V.; Falkenhagen, D. Characterization and functionalization of cellulose microbeads for extracorporeal blood purification. Cellulose 2011, 18, 1257–1263. [Google Scholar] [CrossRef]
- Tayler, M.C.D.; Sakellariou, D. Low-cost, pseudo-Halbach dipole magnets for NMR. J. Magn. Reson. 2017, 277, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Li, X.; Li, Y.; Chen, C.; Zhao, D.; Wang, X.; Zhao, L.; Shi, H.; Ma, G.; Su, Z. Pore size analysis from low field NMR spin–spin relaxation measurements of porous microspheres. J. Porous Mater. 2014, 22, 11–20. [Google Scholar] [CrossRef]
- Butler, J.P.; Reeds, J.A.; Dawson, S.V. Estimating Solutions of First Kind Integral Equations with Nonnegative Constraints and Optimal Smoothing. SIAM J. Numer. Anal. 1981, 18, 381–397. [Google Scholar] [CrossRef]
Sample | CMC (% w/w) | S Water | εp (%) | BET Area (m2/g) |
---|---|---|---|---|
Cel0 | 0 | 1.99 ± 0.50 | 74.23 ± 0.04 | 419 ± 17 |
Cel5 | 5 | 3.14 ± 0.51 | 82.18 ± 0.02 | 396 ± 24 |
Cel10 | 10 | 4.92 ± 0.60 | 87.92 ± 0.01 | 387 ± 20 |
Cel30 | 30 | 17.49 ± 4.18 | 96.16 ± 0.01 | 311 ± 3 |
Sample | Cellulose (g) | CMC (g) |
---|---|---|
Cel0 | 2.500 | 0.000 |
Cel5 | 2.375 | 0.125 |
Cel10 | 2.250 | 0.250 |
Cel15 1 | 2.125 | 0.375 |
Cel20 1 | 2.000 | 0.500 |
Cel25 1 | 1.875 | 0.625 |
Cel30 | 1.750 | 0.750 |
CMC (%) | A | log10B | C | R2 | Err |
---|---|---|---|---|---|
0 | 1270.0 | 1007.4 | 0.202 | 0.99734 | 203.5 |
5 | 1507.5 | 1091.2 | 0.202 | 0.99723 | 220.4 |
10 | 1879.2 | 1187.3 | 0.196 | 0.99123 | 232.7 |
15 | 1557.1 | 1321.0 | 0.165 | 0.99724 | 218.0 |
20 | 2232.8 | 1289.8 | 0.193 | 0.99729 | 248.9 |
25 | 2317.6 | 1483.8 | 0.189 | 0.99729 | 280.4 |
30 | 2730.6 | 1497.2 | 0.201 | 0.99736 | 300.9 |
CMC (%) | A | log10B | C | R2 | Err |
---|---|---|---|---|---|
0 | 1837.9 | 110.6 | 0.151 | 0.99659 | 16.7 |
5 | 2132.2 | 35.3 | 0.175 | 0.99718 | 6.2 |
10 | 2725.0 | 38.3 | 0.181 | 0.99737 | 6.9 |
15 | 1250.7 | 31.9 | 0.105 | 0.99670 | 3.3 |
20 | 1790.7 | 38.7 | 0.150 | 0.99688 | 5.8 |
25 | 1848.9 | 43.3 | 0.149 | 0.99713 | 6.5 |
30 | 4577.3 | 56.5 | 0.219 | 0.99723 | 12.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Wever, P.; de Oliveira-Silva, R.; Marreiros, J.; Ameloot, R.; Sakellariou, D.; Fardim, P. Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. Molecules 2021, 26, 14. https://doi.org/10.3390/molecules26010014
De Wever P, de Oliveira-Silva R, Marreiros J, Ameloot R, Sakellariou D, Fardim P. Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. Molecules. 2021; 26(1):14. https://doi.org/10.3390/molecules26010014
Chicago/Turabian StyleDe Wever, Pieter, Rodrigo de Oliveira-Silva, João Marreiros, Rob Ameloot, Dimitrios Sakellariou, and Pedro Fardim. 2021. "Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study" Molecules 26, no. 1: 14. https://doi.org/10.3390/molecules26010014
APA StyleDe Wever, P., de Oliveira-Silva, R., Marreiros, J., Ameloot, R., Sakellariou, D., & Fardim, P. (2021). Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. Molecules, 26(1), 14. https://doi.org/10.3390/molecules26010014