Middle Eastern Plant Extracts: An Alternative to Modern Medicine Problems
Abstract
:1. Introduction
2. Traditional Herbal Medicines
3. Phytochemistry of Plant Extracts
4. Bioactivity of Plant Extracts from Middle East
4.1. Antimicrobial Activity
4.2. Anti-Cancer and Anti-Tumor Activity
4.3. Anti-Inflammation and Anti-Diabetic Activity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hajar, R. History of Medicine Timeline. Hear. Views 2015, 16, 43. [Google Scholar] [CrossRef]
- Isenberg, H.D. Clinical Microbiology: Past, Present, and Future. J. Clin. Microbiol. 2003, 41, 917–918. [Google Scholar] [CrossRef] [Green Version]
- Blevins, S.M.; Bronze, M.S. Robert Koch and the “golden Age” of Bacteriology. Int. J. Infect. Dis. 2010, 14, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Beall, A. Treating Cancer: Tackling Drug Resistance. Technol. Netw. 2018. [Google Scholar] [CrossRef]
- Carter, A. Chemotherapy: What It Is, What to Expect, Side Effects, and Outlook. Medical News Today. 20 August 2019. Available online: https://www.medicalnewstoday.com/articles/158401.php (accessed on 12 September 2019).
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Erin Lim, S.H.; Lai, K.S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Moo, C.L.; Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR. Curr. Drug Discov. Technol. 2019, 16. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Causes of Death. Available online: https://ourworldindata.org/causes-of-death (accessed on 12 September 2019).
- World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 12 September 2019).
- Walsh, F. Superbugs to Kill “More Than Cancer” by 2050. Available online: https://www.bbc.com/news/health-30416844 (accessed on 6 December 2019).
- Ringgaard, A. What Are the Major Challenges to Modern Medicine? Science Nordic. 20 July 2014, p. 1. Available online: https://sciencenordic.com/antibiotics-denmark-illness/what-are-the-major-challenges-to-modern-medicine/1404651 (accessed on 12 September 2019).
- Yang, S.K.; Low, L.Y.; Yap, P.S.X.; Yusoff, K.; Mai, C.-W.; Lai, K.S.; Lim, S.H.E. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance. Rec. Nat. Prod. 2018, 12, 295–316. [Google Scholar] [CrossRef]
- Moo, C.L.; Yang, S.K.; Osman, M.A.J.Y.L.; Lim, W.M.; Lim, S.H.E.; Lai, K.S. Antibacterial Activity and Mode of Action of β -Caryophyllene on Bacillus Cereus. Pol. J. Microbiol. 2019, in press. [Google Scholar]
- Yang, S.K.; Yusoff, K.; Warren, T.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Lavender Essential Oil Induces Oxidative Stress Which Modifies the Bacterial Membrane Permeability of Carbapenemase Producing Klebsiella Pneumoniae. Sci. Rep. 2019, in press. [Google Scholar]
- Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Akseer, R.; Lim, S.H.E.; Lai, K.S. Disruption of KPC-Producing Klebsiella pneumoniae Membrane via Induction of Oxidative Stress by Cinnamon Bark (Cinnamomum Verum J. Presl) Essential Oil. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Pariano, A. Which Are the Middle Eastern Countries? WorldAtlas.com. Available online: https://www.worldatlas.com/articles/which-are-the-middle-eastern-countries.html (accessed on 16 September 2019).
- Global Banking and Finance. List of Countries in the Middle East—Global Banking; Finance Review. Available online: https://www.globalbankingandfinance.com/list-of-countries- in-the-middle-east/ (accessed on 16 September 2019).
- Ghazanfar, S.A.; McDaniel, T. Floras of the Middle East: A Quantitative Analysis and Biogeography of the Flora of Iraq. Edinburgh J. Bot. 2016, 73, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sani, N.M.; Abdulkadir, F.; Mujahid, N.S. Antimicrobial Activity of Phoenix dactylifera (Date Palm) on Some Selected Members of Enterobacteriaceae. Bayero J. Pure Appl. Sci. 2018, 10, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Fabricant, D.S.; Farnsworth, N.R. The Vaue of Plants Used in Traditional Medicine for Drug Discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar]
- World Health Organization. Traditional and Modern Medicine; World Health Organization-Regional office for the Western Pacific: Manilla, Phillipines, 2000. [Google Scholar]
- Alves, R.R.N.; Rosa, I.M.L. Biodiversity, Traditional Medicine and Public Health: Where Do They Meet? J. Ethnobiol. Ethnomed. 2007, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.F.; Phillips, R.S.; Hamel, M.B.; Eisenberg, D.M. Alternative Medicine Use in Older Americans. J. Am. Geriatr. Soc. 2000, 48, 1560–1565. [Google Scholar] [CrossRef]
- Bodecker, G.; Ong, C.-K.; Grundy, C.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Bandaranayake, W.M. Quality Control, Screening, Toxicity, and Regulation of Herbal Drugs. In Modern Phytomedicine: Turning Medicinal Plants into Drugs; Ahmad, I., Aqil, F., Owais, M., Eds.; Wiley: Mörlenbach, Germany, 2006; pp. 25–57. [Google Scholar]
- Mukherjee Pulok, K.; Shiv, B.; Harwansh Ranjit, K.; Chaudhary Sushil, K. Shifting Paradigm for Validation of Medicinal Plants in Indian Traditional Medicine. Indian Drugs 2014, 51, 5–14. [Google Scholar]
- Bimonte, S.; Barbieri, A.; Palma, G.; Arra, C. The Role of Morphine in Animal Models of Human Cancer: Does Morphine Promote or Inhibit the Tumor Growth? Biomed. Res. Int. 2013, 2013, 258141. [Google Scholar] [CrossRef]
- Joo, Y.E. Natural Product-Derived Drugs for the Treatment of Inflammatory Bowel Diseases. Intest. Res. 2014, 12, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Dwarakanath, C. Use of Opium and Cannabis in the Traditional Systems of Medicine in India. Available online: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1965-01 -01_1_ page004.html (accessed on 5 November 2019).
- Krishnamurti, C.; Rao, S.S.C.C. The Isolation of Morphine by Serturner. Indian J. Anaesth. 2016, 60, 861–862. [Google Scholar] [CrossRef]
- Corson, T.W.; Crews, C.M. Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Crowden, C.J.; Paterson, I. Cancer Drugs Better than Taxol? Nature 1997, 8387, 36–39. [Google Scholar] [CrossRef]
- Varijakzhan, D.; Yang, S.K.; Chong, C.M.; Akseer, R.; Alhosani, M.S.; Thomas, W.; Lai, K.S.; Lim, S.H.E. Essential Oils as Potential Antimicrobial Agents; Springer: Berlin, Germany, 2020. [Google Scholar]
- Rassem, H.H.A.; Nour, A.H.; Yunus, R.M. Techniques for Extraction of Essential Oils from Plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Hassim, N.; Markom, M.; Anuar, N.; Baharum, S.N. Solvent Selectio in Extraction of Essential Oil and Bioactive Compounds from Polygonum minus. Appl. Sci. 2014, 14, 1440–1444. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef]
- Mendoza, N.; Silva, E.M.E. Introduction to Phytochemicals: Secondary Metabolites from Plants with Active Principles for Pharmacological Importance. In Phytochemicals: Source of Antioxidants and Role in Disease Prevention; Asao, T., Asaduzzaman, M., Eds.; InTechOpen: London, UK, 2018. [Google Scholar]
- Lahlou, M. Methods to Study the Phytochemistry and Bioactivity of Essential Oils. Phyther. Res. 2004, 18, 435–448. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Krishnan, T.; Chan, K.G.; Lim, S.H.E. Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, against a Multi-Drug-Resistant Escherichia coli Strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef]
- De Souza, A.V.V.; Dos Santos, U.S.; de Sá Carvalho, J.R.; Barbosa, B.D.R.; Canuto, K.M.; Rodrigues, T.H.S. Chemical Composition of Essential Oil of Leaves from Lippia Schaueriana Mart. Collected in the Caatinga Area. Molecules 2018, 23, 2480. [Google Scholar] [CrossRef] [Green Version]
- Yasin, B.R.; El-Fawal, H.A.N.; Mousa, S.A. Date (Phoenix dactylifera) Polyphenolics and Other Bioactive Compounds: A Traditional Islamic Remedy’s Potential in Prevention of Cell Damage, Cancer Therapeutics and Beyond. Int. J. Mol. Sci. 2015, 16, 30075–30090. [Google Scholar] [CrossRef] [Green Version]
- Bentrad, N.; Gaceb-Terrak, R.; Benmalek, Y.; Rahmania, F. Studies on Chemical Composition and Antimicrobial Activities of Bioactive Molecules from Date Palm (Phoenix dactylifera L.) Pollens and Seeds. African J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and Functional Characteristics of Dates, Syrups, and Their by-Products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Saddiq, A.A.; Bawazir, A.E. Antimicrobial Activity of Date Palm (Phoenix dactylifera) Pits Extracts and Its Role in Reducing the Side Effect of Methyl Prednisolone on Some Neurotransmitter Content in the Brain, Hormone Testosterone in Adulthood. Acta Hortic. 2010, 882, 665–690. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC-MS/MS and Thiolytic Degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ahmad, R.; Khan, M.A.; Upadhyay, S.; Husain, I.; Srivastava, A.N. Cytostatic and Anti-Tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Nikkhah, E.; Afshar, F.H.; Babaei, H.; Delazar, A.; Asgharian, P. Evaluation of Phytochemistry and Some Biological Activities of Aerial Parts and Seed of Scrophularia umbrosa Dumort. Jundishapur J. Nat. Pharm. Prod. 2018, 13. [Google Scholar] [CrossRef]
- Nikkhah, E.; Afshar, F.H.; Babaei, H.; Asgharian, P.; Delazar, A. Phytochemical Analysis and In-Vitro Bioactivity of Scrophularia umbrosa Rhizome (Scrophulariaceae). Iran. J. Pharm. Res. 2018, 17, 685–694. [Google Scholar] [CrossRef]
- Fernández, M.A.; García, M.D.; Sáenz, M.T. Antibacterial Activity of the Phenolic Acids Fractions of Scrophularia frutescens and Scrophularia sambucifolia. J. Ethnopharmacol. 1996, 53, 11–14. [Google Scholar] [CrossRef]
- Lajimi, A.A.; Rezaie-Tavirani, M.; Mortazavi, S.A.; Barzegar, M.; Moghadamnia, S.H.; Rezaee, M.B. Study of Anti Cancer Property of Scrophularia striata Extract on the Human Astrocytoma Cell Line (1321). Iran. J. Pharm. Res. 2010, 99, 403–410. [Google Scholar]
- Pasdaran, A.; Hamedi, A. The Genus Scrophularia: A Source of Iridoids and Terpenoids with a Diverse Biological Activity. Pharm. Biol. 2017, 5555, 2211–2233. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, Y.; Lu, H.W.; Wang, N.L.; Yang, B.F.; Yao, X.S. Iridoid and Aromatic Glycosides from Scrophularia ningpoensis Hemsl. and Their Inhibition of [Ca2+]i, Increase Induced by KCI. Chem. Biodivers. 2008, 5, 1723–1735. [Google Scholar] [CrossRef]
- Slimen, B. Opuntia ficus-indica as a Source of Bioactive and Nutritional Phytochemicals. J. Food Nutr. Sci. 2016, 4, 162. [Google Scholar] [CrossRef]
- Alimi, H.; Hfaiedh, N.; Bouoni, Z.; Hfaiedh, M.; Sakly, M.; Zourgui, L.; Rhouma, K. Ben. Antioxidant and Antiulcerogenic Activities of Opuntia ficus indica f. Inermis Root Extract in Rats. Phytomedicine 2010, 17, 1120–1126. [Google Scholar] [CrossRef]
- Weirong, C.A.I.; Xiaohong, G.U.; Tang, J. Extraction, Purification, and Characterisation of the Flavonoids from Opuntia milpa Alta Skin. Czech J. Food Sci. 2010, 28, 108–116. [Google Scholar]
- AbdELRahman, H.F.; Skaug, N.; Whyatt, A.M.; Francis, G.W. Volatile Compounds in Crude Salvadora persica Extracts. Pharm. Biol. 2003, 41, 399–404. [Google Scholar] [CrossRef] [Green Version]
- EL-Hefny, M.; Ali, H.M.; Ashmawy, N.A.; Salem, M.Z.M. Chemical Composition and Bioactivity of Salvadora persica Extracts against Some Potato Bacterial Pathogens. BioResources 2017, 12, 1835–1849. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Rajagopal, K. Biological Activities of Salvadora persica L. (Meswak). Med. Aromat. Plants 2012, 2, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.T. Benzylamides from Salvadora persica. Arch. Pharm. Res. 2006, 29, 952–956. [Google Scholar] [CrossRef]
- Iyer, D.; Patil, U.K. Evaluation of Antihyperlipidemic and Antitumor Activities of Isolated Coumarins from Salvadora indica. Pharm. Biol. 2014, 52, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Badakhasann, S.; Bhatnagar, S. Cichorium Intybus an Anti-Fungal Drug: A Prospective Study in Tertiary Care Hospital of Kashmir Valley. ACTA Sci. Microbiol. 2019, 2, 94–97. [Google Scholar]
- Eslami, H.; Babaei, H.; Falsafi, P.; Rahbar, M.; Najar-Karimi, F.; Pourzare-Mehrbani, S. Evaluation of the Antifungal Effect of Chicory Extracts on Candida glabrata and Candida krusei in a Laboratory Environment. J. Contemp. Dent. Pract. 2017, 18, 1014–1020. [Google Scholar] [CrossRef]
- Mehrandish, R.; Awsat Mellati, A.; Rahimipour, A.; Dehghan Nayeri, N. Anti-Cancer Activity of Methanol Extracts of Cichorium intybus on Human Breast Cancer SKBR3 Cell Line. Razavi Int. J. Med. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Bian, M.; Lin, Z.; Wang, Y.; Zhang, B.; Li, G.; Wang, H. Bioinformatic and Metabolomic Analysis Reveal Intervention Effects of Chicory in a Quail Model of Hyperuricemia. Evid. Based Complement. Altern. Med. 2018, 2018, 5730385. [Google Scholar] [CrossRef]
- Li, B.H.; Tian, W.X. Inhibitory Effects of Flavonoids on Animal Fatty Acid Synthase. J. Biochem. 2004, 135, 85–91. [Google Scholar] [CrossRef]
- Bahri, M.; Hance, P.; Grec, S.; Quillet, M.C.; Trotin, F.; Hilbert, J.L.; Hendriks, T. A “Novel” Protocol for the Analysis of Hydroxycinnamic Acids in Leaf Tissue of Chicory (Cichorium intybus L., Asteraceae). Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Tepe, B.; Cilkiz, M. A Pharmacological and Phytochemical Overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichimi, F.; Lampronti, D.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical Analysis and in Vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef]
- Mazid, M.; Khan, T.A.; Mohammad, F. Role of Secondary Metabolites in Defense Mechanisms of Plants. Biol. Med. 2011, 3, 232–249. [Google Scholar]
- Chassagne, F.; Cabanac, G.; Hubert, G.; David, B.; Marti, G. The Landscape of Natural Product Diversity and Their Pharmacological Relevance from a Focus on the Dictionary of Natural Products®. Phytochem. Rev. 2019, 18, 601–622. [Google Scholar] [CrossRef] [Green Version]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-ativity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Khan, G.A. Dates: A Middle Eastern Delicacy. Arab News. 12 May 2018. Available online: https://www.arabnews.com/node/1301551/saudi-arabia (accessed on 12 September 2019).
- Qadoos, H.A.; Dhafari, H.S.; Al Marzooqi, D.A.; Kumarappan, A.; Nazir, A. Phenolic Content and Antimicrobial Activities of Date Palm (Phoenix dactylifera L.) Fruits and Leaves. Food Biol. 2017, 6, 11–15. [Google Scholar] [CrossRef] [Green Version]
- ALrajhi, M.; AL-Rasheedi, M.; Eltom, S.E.M.; Alhazmi, Y.; Mustafa, M.M.; Ali, Al. M. Antibacterial Activity of Date Palm Cake Extracts (Phoenix dactylifera). Cogent Food Agric. 2019, 5, 8–15. [Google Scholar] [CrossRef]
- Abdallah, E.; Musa, K.; Qureshi, K.; Sadeek, A. Antimicrobial Activity and Antioxidant Potential of the Methanolic Leaf Extracts of Three Cultivars of Date Palm Trees (Phoenix dactylifera) from Saudi Arabia. Med. Sci. Int. Med. J. 2017, 6, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Hossain, M.T.; Hossen, F.; Mukharjee, S.K.; Sultana, N.; Paul, S.C. Evaluation of Antioxidant and Antibacterial Activities of Crotalaria pallida Stem Extract. Clin. Phytoscience 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Vahabi, S.; Najafi, E.; Alizadeh, S. In Vitro Antimicrobial Effects of Some Herbal Essences against Oral Pathogens. J. Med. Plant Res. 2011, 5, 4870–4878. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Fu, G.; Pang, H.; Wong, Y. Naturally Occurring Phenylethanoid Glycosides: Potential Leads for New Therapeutics. Curr. Med. Chem. 2008, 15, 2592–2613. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Lu, S. Biosynthesis and Regulation of Phenylpropanoids in Plants. CRC. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Doan, L.P.; Nguyen, T.T.; Pham, M.Q.; Tran, Q.T.; Pham, Q.L.; Tran, D.Q.; Than, V.T.; Bach, L.G. Extraction Process, Identification of Fatty Acids, Tocopherols, Sterols and Phenolic Constituents, and Antioxidant Evaluation of Seed Oils from Five Fabaceae Species. Processes 2019, 7, 1–11. [Google Scholar]
- Das, A.B.; Goud, V.V.; Das, C. Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 285–323. [Google Scholar] [CrossRef]
- Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty Acid Synthesis Is a Target for Antibacterial Activity of Unsaturated Fatty Acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, P.; Kamal, R.; Luthra, R.; Mishra, R.; Saini, G. Miswak: A Periodontist′s Perspective. J. Ayurveda Integr. Med. 2012, 3, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Rajagopal, K. Salvadora persica L. (Meswak) in Dental Hygiene. Saudi J. Dent. Res. 2014, 5, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Abubacker, M.N.; Kokila, K.; Sumathi, R. In Vitro Antimicrobial Effects of Crude Plant Chewing Sticks Extracts on Oral Pathogen. Biosci. Biotechnol. Res. Asia 2012, 9, 551–559. [Google Scholar] [CrossRef]
- Silva Junior, I.F.; Raimondi, M.; Zacchino, S.; Cechinel Filho, V.; Noldin, V.F.; Rao, V.S.; Lima, J.C.S.; Martins, D.T.O. Evaluation of the Antifungal Activity and Mode of Action of Lafoensia pacari A. St.-Hil., Lythraceae, Stem-Bark Extracts, Fractions and Ellagic Acid. Rev. Bras. Farmacogn. 2010, 20, 422–428. [Google Scholar] [CrossRef]
- Visintini Jaime, M.F.; Redko, F.; Muschietti, L.V.; Campos, R.H.; Martino, V.S.; Cavallaro, L.V. In Vitro Antiviral Activity of Plant Extracts from Asteraceae Medicinal Plants. Virol. J. 2013, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Taha, M.Y. Antiviral Effect of Ethanolic Extract of Salvadora Persica (Siwak) on Herpes Simplex Virus Infection. Al–Rafidain Dent. J. 2008, 8, 50–55. [Google Scholar]
- Saab, A.M.; Lampronti, I.; Finotti, A.; Borgatti, M.; Gambari, R.; Esseily, F.; Safi, S.; Diab-Assaf, M.; Rabenau, H.; Cinatl, J.; et al. In Vitro Evaluation of the Biological Activity of Lebanese Medicinal Plants Extracts against Herpes Simplex Virus Type 1. Minerva Biotecnol. 2012, 24, 117–121. [Google Scholar]
- Medini, F.; Megdiche, W.; Mshvildadze, V.; Pichette, A.; Legault, J.; St-Gelais, A.; Ksouri, R. Antiviral-Guided Fractionation and Isolation of Phenolic Compounds from Limonium densiflorum Hydroalcoholic Extract. Comptes Rendus Chim. 2016, 19, 726–732. [Google Scholar] [CrossRef]
- Astani, A.; Schnitzler, P. Antiviral Activity of Monoterpenes Beta-Pinene and Limonene against Herpes Simplex Virus in Vitro. Iran. J. Microbiol. 2014, 6, 149–155. [Google Scholar]
- Suurbaar, J.; Mosobil, R.; Donkor, A.M. Antibacterial and Antifungal Activities and Phytochemical Profile of Leaf Extract from Different Extractants of Ricinus communis against Selected Pathogens. BMC Res. Notes 2017, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ambikapathy, V.; Gomathi, S.; Panneerselvam, A. Effect of Antifungal Activity of Some Medicinal Plants against Pythium debaryanum (Hesse). Pelagia Res. Libr. Asian J. Plant Sci. Res. 2011, 1, 131–134. [Google Scholar]
- Mayer-Chissick, U.; Lev, E. Wild Edible Plants in Israel Tradition Versis Cultivation. In Medicinal and Aromatic Plants of the Middle-East; Yaniv, Z., Dudai, N., Eds.; Springer: London, UK, 2014; Volume 2, pp. 9–26. [Google Scholar] [CrossRef]
- Shaikh, T.; Mujum, A.; Wasimuzzama, K.; Rub, R. An Overview on Phytochemical and Pharmacological Profile of Cichorium intybus Linn. Pharmacol. Online 2010, 2, 298–307. [Google Scholar]
- Kubo, I. Antifungal Sesquiterpene Dialdehydes from the Warburgia Plants and Their Synergists. Stud. Nat. Prod. Chem. 1995, 17, 233–249. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive Oxygen Species in the Tumor. Cancers 2019, 11, 1191. [Google Scholar]
- Hussain, H.; Nazir, M.; Green, I.R.; Saleem, M.; Raza, M.L. Therapeutic Potential of Iridoid Derivatives: Patent Review. Inventions 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Orangi, M.; Pasdaran, A.; Shanehbandi, D.; Kazemi, T.; Yousefi, B.; Hosseini, B.A.; Baradaran, B. Cytotoxic and Apoptotic Activities of Methanolic Subfractions of Scrophularia Oxysepala against Human Breast Cancer Cell Line. Evid. Based Complement. Altern. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Bruno, M.; Balzano, M.; Giardinieri, A.; Pacetti, D.; Frega, N.G.; Sicari, V.; Leporini, M.; Tundis, R. Comparative Chemical Composition and Bioactivity of Opuntia ficus-indica sanguigna and Surfarina Seed Oils Obtained by Traditional and Ultrasound-Assisted Extraction Procedures. Eur. J. Lipid Sci. Technol. 2019, 121, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Basli, A.; Belkacem, N.; Amrani, I. Health Benefits of Phenolic Compounds against Cancers. In Phenolic Compounds-Biological Activity; InTechOpen: London, UK, 2017; pp. 193–210. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Jones, P.J.H.; Abumweis, S.S. Plant Sterols: Factors Affecting Their Efficacy and Safety as Functional Food Ingredients. Biomed Cent. 2004, 3, 1–19. [Google Scholar]
- Yildirim, I.; Kutlu, T. Anticancer Agents: Saponin and Tannin. Int. J. Biol. Chem. 2015, 9, 332–340. [Google Scholar] [CrossRef]
- Harvard’s Women Health Watch. Foods That Fight Inflammation—Harvard Health; Harvard Health Publishing: Boston, MA, USA, 2018. [Google Scholar]
- Zhen, J.; Guo, Y.; Villani, T.; Carr, S.; Brendler, T.; Mumbengegwi, D.R.; Kong, A.N.T.; Simon, J.E.; Wu, Q. Phytochemical Analysis and Anti-Inflammatory Activity of the Extracts of the African Medicinal Plant Ximenia caffra. J. Anal. Methods Chem. 2015, 2015, 948262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.R.; Aldosari, S.A.; Vidyasagar, P.S.P.V.; Shukla, P.; Nair, M.G. Health-Benefits of Date Fruits Produced in Saudi Arabia Based on In Vitro Antioxidant, Anti-Inflammatory and Human Tumor Cell Proliferation Inhibitory Assays. J. Saudi Soc. Agric. Sci. 2017, 16, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, F. Cyclooxygenase Enzymes: Regulation and Function. Curr. Pharm. Des. 2005, 10, 577–588. [Google Scholar] [CrossRef]
- Phan, K.; Xiong, C.; Daubs, M.D.; Tian, H.; Montgomery, S.R.; Aghdasi, B.; Suzuki, A.; Li, J.; Scott, T.; Wang, J.C. The Anti-Inflammatory Effects of Perioperative Methylprednisolone on the Soft Tissue Inflammation Induced by RhBMP-2. Spine J. 2013, 13, S72–S73. [Google Scholar] [CrossRef]
- Fisch, R.Z.; Bannett, J.; Belmaker, R.H. The Role of Norepinephrine in Schizophrenia. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 261–276. [Google Scholar]
- Shelp, B.J.; Bown, A.W.; Mclean, M.D. Metabolism and Functions of Gamma-Aminobutyric Acid. Trends Plant Sci. 1999, 4, 446–452. [Google Scholar]
- Juárez Olguín, H.; Calderón Guzmán, D.; Hernández García, E.; Barragán Mejía, G. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 9730467. [Google Scholar] [CrossRef] [Green Version]
- Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Sindic, M.; Aziz, M.; Bnouham, M. Evaluation of Antidiabetic Properties of Cactus Pear Seed Oil in Rats. Pharm. Biol. 2014, 52, 1286–1290. [Google Scholar] [CrossRef]
Chromatography | Thin-layer chromatography |
Gas chromatography | |
High-resolution liquid chromatography | |
Capillary-liquid chromatography | |
Electrophoresis | Thin-layered electrophoresis |
Isotachophoresis | |
Capillary electrophoresis | |
Spectroscopic | UV spectroscopy |
Infrared spectroscopy | |
Near infrared spectroscopy | |
Nuclear magnetic resonance spectroscopy | |
Mass spectroscopy |
Plants | Source of the Extract and The Compounds Extracted | Bioactivity | Extraction Method | Detection Method | Reference |
---|---|---|---|---|---|
Phoenix dactylifera (Date) |
|
|
|
| [48,49,50,51,52,53] |
Scrophularia umbrosa (Green figwort) |
|
|
|
| [54,55,56,57,58,59] |
Opuntia ficus-indica (Cactus) |
|
|
|
| [60,61,62] |
Salvadora persica (Meswak) |
|
|
|
| [63,64,65,66,67] |
Cichorium intybus (Chicory) |
|
|
|
| [68,69,70,71,72,73] |
Satureja thymbra (Savory of crete) |
|
|
|
| [74,75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varijakzhan, D.; Chong, C.-M.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. Middle Eastern Plant Extracts: An Alternative to Modern Medicine Problems. Molecules 2020, 25, 1126. https://doi.org/10.3390/molecules25051126
Varijakzhan D, Chong C-M, Abushelaibi A, Lai K-S, Lim S-HE. Middle Eastern Plant Extracts: An Alternative to Modern Medicine Problems. Molecules. 2020; 25(5):1126. https://doi.org/10.3390/molecules25051126
Chicago/Turabian StyleVarijakzhan, Disha, Chou-Min Chong, Aisha Abushelaibi, Kok-Song Lai, and Swee-Hua Erin Lim. 2020. "Middle Eastern Plant Extracts: An Alternative to Modern Medicine Problems" Molecules 25, no. 5: 1126. https://doi.org/10.3390/molecules25051126
APA StyleVarijakzhan, D., Chong, C. -M., Abushelaibi, A., Lai, K. -S., & Lim, S. -H. E. (2020). Middle Eastern Plant Extracts: An Alternative to Modern Medicine Problems. Molecules, 25(5), 1126. https://doi.org/10.3390/molecules25051126