Bioactives from Agri-Food Wastes: Present Insights and Future Challenges
Abstract
:1. Introduction
2. Bioactive Compounds from Fruit Processing Wastes and By-Products
2.1. Popular Fruits
2.1.1. Apple
2.1.2. Banana
2.1.3. Berries
2.1.4. Citrus fruits
2.1.5. Mango
2.1.6. Plum
2.2. Exotic Fruits
3. Bioactive Compounds from Vegetable Processing Wastes and By-Products
3.1. Vegetable Sources
3.1.1. Potato
3.1.2. Carrot
3.1.3. Beetroot
3.1.4. Broccoli and Cauliflower
3.1.5. Underexplored Vegetable Wastes
4. Bioactive Compounds from Seeds
5. Bioactive Compounds from Animal Products Processing Waste
5.1. Dairy By-Products
5.2. Meat Processing By-Products
6. Bioactive Compounds from Marine Product Processing Wastes
6.1. Fish and Shellfish Waste
6.2. Seaweeds
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bhat, R. Sustainability Challenges in Agro-Food Sector; Wiley Blackwell Publishers: West Sussex, UK, 2017; p. 720. [Google Scholar]
- FAO (Food and Agriculture Organisation of the United Nations). Food Wastage Footprint Impacts on Natural Resources. Available online: http://www.fao.org/3/i3347e/i3347e.pdf (accessed on 6 December 2019).
- FAO (Food and Agriculture Organisation of the United Nations). Global Initiative on Food Loss and Waste Reduction. Available online: http://www.fao.org/3/a-i4068e.pdf (accessed on 25 September 2019).
- Kachel-Jakubowska, M.; Matwijczuk, A.; Gagoś, M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys. 2017, 31, 175–182. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Zając, G.; Kowalski, R.; Kachel-Jakubowska, M.; Gagoś, M. Spectroscopic studies of the quality of fatty acid methyl esters derived from waste cooking oil. Pol. J. Environ. Stud. 2017, 26, 2643–2650. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valoriz. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; Garcia, I.L.; Leiva-Candia, D.; Dorado, M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018, 14, 67–79. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Martin-Belloso, O.; Park, Y.S.; Haruenkit, R.; Lojek, A.; Cız, M.; Caspi, A.; Libman, I.; Trakhtenberg, S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001, 74, 309–315. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; Trakhtenberg, S.; Màrtín-Belloso, O. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef]
- Barrosa, R.G.C.; Andradea, J.K.S.; Denadaia, M.; Nunesb, M.L.; Naraina, N. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 2017, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Cristian Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Luo, H.; Meng, K.; Wang, Y.; Liu, M.; Bai, Y.; Yao, B.; Tu, T. Production pectin oligosaccharides using Humicola insolens Y1-derived unusual pectate lyase. J. Biosci. Bioeng. 2019. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Arraibi, A.A.; Ferreira, I.C.F.R. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Diñeiro García, Y.; Valles, B.S.; Picinelli Lobo, A. Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Lavelli, V.; Corti, S. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chem. 2011, 129, 1578–1583. [Google Scholar] [CrossRef]
- Shin, S.K.; Cho, S.J.; Jung, U.J.; Ryu, R.; Choi, M.S. Phlorizin supplementation attenuates obesity, inflammation, and hyperglycemia in diet-induced obese mice fed a high-fat diet. Nutrients 2016, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wu, Y.; Liang, J.; Yuan, H.; Zhao, X.; Zhu, D.; Liu, H.; Lin, J.; Huang, S.; Lai, X.; et al. Phlorizin treatment attenuates obesity and related disorders through improving BAT thermogenesis. J. Funct. Foods 2016, 27, 429–438. [Google Scholar] [CrossRef]
- Antika, L.D.; Lee, E.J.; Kim, Y.H.; Kang, M.K.; Park, S.H.; Kim, D.Y.; Oh, H.; Choi, Y.J.; Kang, Y.H. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017, 49, 42–52. [Google Scholar] [CrossRef]
- Huang, L.; Luo, H.; Li, Q.; Wang, D.; Zhang, J.; Hao, X.; Yang, X. Pentacyclic triterpene derivatives possessing polyhydroxyl ring A inhibit Gram-positive bacteria growth by regulating metabolism and virulence genes expression. Eur. J. Med. Chem. 2015, 95, 64–75. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Naqash, F.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gani, A. Emerging concepts in the nutraceutical and functional properties of pectin-A Review. Carbohyd. Polym. 2017, 168, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Ishisono, K.; Yabe, T.; Kitaguchi, K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer’s patch myeloid cells. J. Nutr. Biochem. 2017, 50, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.J.; Belshaw, N.J.; Waldron, K.W.; Maxwell, E.G. The bioactivity of modified pectin fragments. Bioact. Carbohydr. Diet. Fibre 2013, 1, 21–37. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Saro, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fiber: Availability in lemon’s by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Inferrera, V.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fiber: Availability in orange’s by-products. J. Funct. Foods 2015, 12, 150–157. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Lv, X.; Lu, J.; Ren, C.; Zeng, Z.; Zheng, L.; Zhou, X.; Fu, H.; Zhou, D.; et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int. Immunopharmacol. 2019, 75, 105768. [Google Scholar] [CrossRef]
- Sójka, M.; Kołodziejczyk, K.; Milala, J.; Abadias, M.; Viñas, I.; Guyot, S.; Baron, A. Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J. Funct. Foods 2015, 12, 168–178. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- González-García, E.; Marina, M.L.; García, M.C. Plum (Prunus Domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Álvarez-Rivera, G.; Morantes, S.J.; Sánchez-Camargo, A.P.; Ibáñez, E.; Parada-Alfonso, F.; Cifuentes, A. An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment. Food Res. Int. 2019, 126, 108616. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, L.; Lin, H.; Song, J.; Wang, J.; Yin, Y.; Zhao, J.; Xu, X.; Li, Z.; Li, L. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur. J. Pharmacol. 2018, 824, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F.; Sidhu, M.A.I.; Rehman, H.U.; Aftab, S. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci. Technol. 2016, 53, 102–112. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Gutiérrez, L.F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluid 2019, 152, 104574. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Nakurte, I.; Klavins, M. Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. LWT 2018, 93, 583–591. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crop Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Yang, B.; Ahotupa, M.; Määttä, P.; Kallio, H. Composition and antioxidative activities of supercritical CO 2 -extracted oils from seeds and soft parts of northern berries. Food Res. Int. 2011, 44, 2009–2017. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Różańska, M.; Siger, A.; Kowalczewski, P.Ł.; Rudzińska, M. Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds. LWT 2019, 111, 541–547. [Google Scholar] [CrossRef]
- Pereira Freire, J.A.; Barros, K.B.N.T.; Lima, L.K.F.; Martins, J.M.; Araújo, Y.C.; da Silva Oliveira, G.L.; de Souza Aquino, J.; Pinheiro Ferreira, P.M. Phytochemistry profile, nutritional properties and pharmacological activities of Mauritia flexuosa. J. Food Sci. 2016, 81, R2611–R2622. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Pastore, G.M. Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: A comprehensive review. Food Res. Int. 2019, 123, 450–480. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; Gutierrez-Orozco, F.; Leon, C. Phytochemical and antioxidant characterization of the fruit of black sapote (Diospyros digyna Jacq.). Food Res. Int. 2011, 44, 2210–2216. [Google Scholar] [CrossRef]
- Can-Cauicha, C.A.; Sauri-Duch, E.; Betancur-Ancon, D.; Chel-Guerrero, L.; González-Aguilar, G.A.; Cuevas-Glory, L.F.; Pérez-Pacheco, E.; Moo-Huchin, V.M. Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. J. Funct. Foods 2017, 37, 501–506. [Google Scholar] [CrossRef]
- Ma, C.Y.; Chen, Y.; Chen, J.; Li, X.; Chen, Y. A Review on Annona squamosa L.: Phytochemicals and biological activities. Am. J. Chin. Med. 2017, 45, 1–32. [Google Scholar] [CrossRef]
- Wangteeraprasert, R.; Lipipun, V.; Gunaratnam, M.; Neidle, S.; Gibbons, S.; Likhitwitayawuid, K. Bioactive compounds from Carissa spinarum. Phytother. Res. 2012, 26, 1496–1499. [Google Scholar] [CrossRef]
- Ansari, I.; Patil, D.T. A brief review on phytochemical and pharmacological profile of Carissa spinarum L. Asian J. Pharm. Clin. Res. 2018, 11, 12–18. [Google Scholar] [CrossRef]
- Herraiz, F.J.; Raigón, M.D.; Vilanova, S.; García-Martínez, M.D.; Gramazio, P.; Plazas, M.; Rodríguez-Burruezo, A.; Prohens, J. Fruit composition diversity in land races and modern pepino (Solanum muricatum) varieties and wild related species. Food Chem. 2016, 203, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, F.J.; Villaño, D.; Plazas, M.; Vilanova, S.; Ferreres, F.; Prohens, J.; Moreno, D.A. Phenolic profile and biological activities of the Pepino (Solanum muricatum) fruit and its wild relative S. caripense. Int. J. Mol. Sci. 2016, 17, 394. [Google Scholar] [CrossRef] [Green Version]
- Hernández, C.; Ascacio-Valdés, J.; De la Garza, H.; Wong-Paz, J.; Aguilar, C.N.; Martínez-Ávila, G.C.; Castro-López, C.; Aguilera-Carbó, A. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk. Asian Pac. J. Trop. Med. 2017, 10, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.N.A.; Md Jalil, A.M. Bioactive compounds, nutritional value, and potential health benefits of indigenous Durian (Durio Zibethinus Murr.): A Review. Foods 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, L.H.; Bhat, R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)-an exotic tropical fruit. Food Chem. 2015, 168, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Edward, J.D.; Gatehouse, A.G. Plant scientific support for the use of Cucumis metuliferus. Plant Syst. Evol. 1997, 275, 209–218. [Google Scholar]
- Nouri, A.; Shafaghatlonbar, A. Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb. (kumquat) from Iran. Nat. Prod. Res. 2016, 30, 1093–1097. [Google Scholar] [CrossRef]
- Carrillo-Hormaza, L.; Ramírez, A.M.; Osorio, E. Chemometric classification of Garcinia madruno raw material: Impact of the regional origin and ripeness stage of a neotropical exotic species. Food Chem. 2019, 293, 291–298. [Google Scholar] [CrossRef]
- García-Cayuelaa, T.; Gómez-Maqueob, A.; Guajardo-Floresb, D.; Welti-Chanesb, J.; Canob, P.M. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Pugliese, A.G.; Tomas-Barberan, F.A.; Truchado, P.; Genovese, M.I. Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of Theobroma grandiflorum (Cupuassu) pulp and seeds. J. Agric. Food Chem. 2013, 61, 2720–2728. [Google Scholar] [CrossRef]
- Du, L.; Shen, Y.; Zhang, X.; Prinyawiwatkul, W.; Xu, Z. Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts. Food Chem. 2014, 153, 279–284. [Google Scholar] [CrossRef]
- Nkwocha Chinelo, C.; Njoku Obi, U.; Ekwueme Florence, N. Phytochemical, antinutrient and amino acid composition of Synsepalum dulcificum pulp. IOSR J. Pharm. Biol. Sci. 2014, 9, 25–29. [Google Scholar]
- Annegowda, H.V.; Bhat, R.; Karim, A.A.; Min-Tze, L.; Mansor, S.M. Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. J. Food Sci. Technol. 2012, 49, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zainudin, M.A.; Abdul Hamid, A.; Anwar, F.; Azizah Osman, A.; Saari, N. Variation of bioactive compounds and antioxidant activity of carambola (Averrhoa carambola L.) fruit at different ripening stages. Sci. Hortic. 2014, 172, 325–331. [Google Scholar] [CrossRef]
- Foong, J.H.; Hon, W.M.; Ho, C.W. Bioactive compounds determination in fermented liquid dragon fruit (Hylocereus polyrhizus). Borneo Sci. 2012, 31, 37–56. [Google Scholar]
- Choo, K.Y.; Kho, C.; Ong, Y.Y.; Thoo, Y.Y.; Lim, L.H.; Tan, C.P.; Ho, C.W. Fermentation of red dragon fruit (Hylocereus polyrhizus) for betalains concentration. Int. Food Res. J. 2018, 25, 2539–2546. [Google Scholar]
- Santos, P.H.; Baggio Ribeiro, D.H.; Micke, G.A.; Vitali, L.; Hense, H. Extraction of bioactive compounds from feijoa (Acca sellowiana (O. Berg) Burret) peel by low and high-pressure techniques. J. Supercrit. Fluids 2019, 145, 219–227. [Google Scholar] [CrossRef]
- Fernández-Barbero, G.; Pinedo, C.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; García-Barroso, C. Optimization of ultrasound-assisted extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) fruit through a Box-Behnken experimental design. Food Sci. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.S.; Souza, R.O.S.; Boleti, A.P.D.A.; Bruginski, E.R.D.; Lima, E.S.; Campos, F.R.; Machado, M.B. Chemical characterization and antioxidant capacity of the araçá-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res. Int. 2015, 75, 315–327. [Google Scholar] [CrossRef]
- Dong, S.H.; Zhang, C.R.; Dong, L.; Wu, Y.; Yue, J.M. Onoceranoid-Type Triterpenoids from Lansium Domesticum. J. Nat. Prod. 2011, 74, 1042–1048. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.; Shi, J.; Chen, F.; Ashraf, M. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit- A review. Food Res. Int. 2011, 44, 1837–1842. [Google Scholar] [CrossRef]
- Vergara, M.F.; Vargas, J.; Acuna, J.F. Physicochemical characteristics of blackberry (Rubus glaucus Benth.) fruits from four production zones of Cundinamarca, Colombia. Agron. Colomb. 2016, 34, 336–345. [Google Scholar] [CrossRef]
- Mertz, C.; Cheynier, V.; Günata, Z.; Brat, P. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007, 55, 8616–8624. [Google Scholar] [CrossRef] [PubMed]
- Raluca, B.; Sofia, T.; Ioana, D.; Oana, S.; Rodica-Mariana, I. Antioxidant activity and phytochemical compounds of snake fruit (Salacca Zalacca). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; p. 133. [Google Scholar]
- Chhikara, N.; Kour, R.; Jaglan, S.; Gupta, P.; Gat, Y.; Panghal, A. Citrus medica: Nutritional, phytochemical composition and health benefits - a review. Food Funct. 2018, 25, 1978–1992. [Google Scholar] [CrossRef] [PubMed]
- Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 2015, 16, 15625–15658. [Google Scholar] [CrossRef] [PubMed]
- Elkady, W.M.; Ibrahim, E.A.; Gonaid, M.H.; El Baz, F.K. Chemical profile and biological activity of Casimiroa edulis non-edible fruit’s parts. Adv. Pharm. Bull. 2017, 7, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Rukeya, J.; Tao, W.; Sun, P.; Ye, X. Bioactive compounds and antioxidant activity of wolfberry infusion. Sci. Rep. 2017, 7, 40605. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT (Food and Agriculture Organisation of the United Nations). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 September 2019).
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Ilharco, L.M.; Pagliaro, M. Pectin production and global market. Agro Food Ind. Hi Tech 2016, 27, 17–20. [Google Scholar]
- Rana, S.; Gupta, S.; Rana, A.; Bhushan, S. Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Sci. Hum. Well. 2015, 4, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Rebello, L.P.G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res. Int. 2014, 55, 397–403. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Changes of phytochemicals and antioxidant capacity of banana peel during the ripening process; with and without ethylene treatment. Sci. Hortic. 2019, 253, 255–262. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Supriatno Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Comp. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Gurumallesh, P.; Ramakrishnan, B.; Dhurai, B. A novel metalloprotease from banana peel and its biochemical characterization. Int. J. Biol. Macromol. 2019, 134, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem. 2019, 295, 289–299. [Google Scholar] [CrossRef]
- Chen, C.H.; Sheu, M.T.; Chen, T.F.; Wang, Y.C.; Hou, W.C.; Liu, D.Z.; Chung, T.C.; Liang, Y.C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol. 2006, 72, 1001–1009. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin - An emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 2012, 24, 64–73. [Google Scholar] [CrossRef]
- Zhang, T.; Lan, Y.; Zheng, Y.; Liu, F.; Zhao, D.; Mayo, K.H.; Zhou, Y.; Tai, G. Identification of the bioactive components from pH-modified citrus pectin and their inhibitory effects on galectin-3 function. Food Hydrocoll. 2016, 58, 113–119. [Google Scholar] [CrossRef]
- Dandekar, D.V.; Jayaprakasha, G.K.; Patil, B.S. Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds. Food Chem. 2008, 109, 515–520. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Gordon, M.H. Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem. 2009, 117, 332–341. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Soliven, A. Industrial by-products of plum Prunus domestica L. and Prunus cerasifera Ehrh. as potential biodiesel feedstock: Impact of variety. Ind. Crops Prod. 2017, 100, 77–84. [Google Scholar] [CrossRef]
- Genovese, M.I.; Da Silva Pinto, M.; De Souza Schmidt Gonçalves, A.E.; Lajolo, F.M. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- Bobrich, A.; Fanning, K.J.; Rychlik, M.; Netzel, G.; Diczbalis, Y. Bioactive phytochemicals and their bioaccessibility in four unexploited tropical fruits grown in Queensland, Australia (Conference Paper). Acta Hortic. 2018, 1205, 259–266. [Google Scholar] [CrossRef]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- Devalaraja, S.; Jain, S.; Yadav, H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res. Int. 2011, 44, 1856–1865. [Google Scholar] [CrossRef] [Green Version]
- Sultana, B.; Hussain, Z.; Asif, M.; Munir, A. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.). J. Food Sci. 2012, 77, C849–C853. [Google Scholar] [CrossRef]
- Moriwaki, Y.; Okuda, C.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T.; Kitadate, K.; Wakame, K. Effects of Oligonol, an oligomerized polyphenol formulated from lychee fruit, on serum concentration and urinary excretion of uric acid. J. Funct. Foods 2011, 3, 13–16. [Google Scholar] [CrossRef]
- Ngadze, R.T.; Linnemann, A.R.; Nyanga, L.K.; Fogliano, V.; Verkerk, R. Local processing and nutritional composition of indigenous fruits: The case of monkey orange (Strychnos spp.) from southern Africa. Food Rev. Int. 2017, 33, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Calderón, L.A.; Iglesias, L.; Laca, A.; Herrero, M.; Díaz, M. The utility of Life Cycle Assessment in the ready meal food industry. Resour. Conserv. Recycl. 2010, 54, 1196–1207. [Google Scholar] [CrossRef]
- Ogutu, F.O.; Mu, T.H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultrason. Sonochem. 2017, 38, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.G.; Xu, H.Y.; Ma, Q.; Cao, Y.; Ma, J.N.; Ma, C.M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Kozukue, N.; Kim, H.J.; Choi, S.H.; Mizuno, M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Comp. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids. 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Idrovo Encalada, A.M.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- Vulić, J.J.; Cebović, T.N.; Canadanović-Brunet, J.M.; Cetković, G.S.; Čanadanović, V.M.; Djilas, S.M.; Tumbas Šaponjac, V.T. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J. Funct. Foods 2014, 6, 168–175. [Google Scholar] [CrossRef]
- Lasta, H.F.B.; Lentz, L.; Mezzomo, N.; Ferreira, S.R.S. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocat. Agric. Biotechnol. 2019, 19, 101169. [Google Scholar] [CrossRef]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018, 245, 4–1211. [Google Scholar] [CrossRef]
- Ares, A.M.; Bernal, J.; Nozal, M.J.; Turner, C.; Plaza, M. Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 2015, 76, 498–505. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Raes, K.; Coelus, S.; Struijs, K.; Smagghe, G.; Van Camp, J. Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J. Chromatogr. A 2014, 1323, 39–48. [Google Scholar] [CrossRef]
- Amofa-Diatuo, T.; Anang, D.M.; Barba, F.J.; Tiwari, B.K. Development of new apple beverages rich in isothiocyanates by using extracts obtained from ultrasound-treated cauliflower by-products: Evaluation of physical properties and consumer acceptance. J. Food Comp. Anal. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, T.; Han, W.; Chen, W.; Zheng, X.; Wang, J. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from cauliflower by-products protein hydrolysate. Process Biochem. 2016, 51, 1299–1305. [Google Scholar] [CrossRef]
- Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Bhandarkar, N.S.; Brown, L.; Panchal, S.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res. 2019, 62, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 2015, 63, 3323–3337. [Google Scholar] [CrossRef]
- Idrovo Encalada, A.M.; Pérez, C.D.; Calderón, P.A.; Zukowski, E.; Gerschenson, L.N.; Rojas, A.M.; Fissore, E.N. High-power ultrasound pretreatment for efficient extraction of fractions enriched in pectins and antioxidants from discarded carrots (Daucus carota L.). J. Food Eng. 2019, 256, 28–36. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef]
- Shi, M.; Ying, D.Y.; Hlaing, M.M.; Ye, J.H.; Sanguansri, L.; Augustin, M.A. Development of broccoli by-products as carriers for delivering EGCG. Food Chem. 2019, 301, 125301. [Google Scholar] [CrossRef]
- Formica-Oliveira, A.C.; Martínez-Hernández, G.B.; Díaz-López, V.; Artés, F.; Artés-Hernández, F. Use of postharvest UV-B and UV-C radiation treatments to revalorize broccoli byproducts and edible florets. Innov. Food Sci. Emerg. Technol. 2017, 43, 77–83. [Google Scholar] [CrossRef]
- Huynh, N.T.; Smagghe, G.; Gonzales, G.B.; Van Camp, J.; Raes, K. Extraction and bioconversion of kaempferol metabolites from cauliflower outer leaves through fungal fermentation. Biochem. Eng. J. 2016, 116, 27–33. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol-A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods 2017, 30, 203–219. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of industrial onion wastes (Allium cepa L.): Dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.A.; Kim, K.T.; Kim, H.J.; Chung, M.S.; Chang, P.S.; Park, H.; Pai, H.D. Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water and subcritical water extraction. Food Sci. Biotechnol. 2014, 23, 615–621. [Google Scholar] [CrossRef]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules 2019, 24, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Ellouz Chaabouni, S. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Leong, L.P.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Chandrika, U.G.; Jansz, E.R.; Warnasuriya, N. Analysis of carotenoids in ripe jackfruit (Artocarpus heterophyllus) kernel and study of their bioconversion in rats. J. Sci. Food Agric. 2005, 85, 186–190. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Berardini, N.; Carle, R.; Schieber, A. Characterization of gallotannins and benzophenonederivates from mango (Mangifera indica L. cv. ‘Tommy Atkins’) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2208–2216. [Google Scholar] [CrossRef]
- Berardini, N.; Schieber, A.; Klaiber, I.; Beifuss, U.; Carle, R.; Conrad, J. 7-Omethylcyanidin 3-O-b-D-galactopyranoside, a novel anthocyanin from mango (Mangifera indica L.) cv. ‘Tommy Atkins’ peels. Chem. Sci. 2005, 60, 801–804. [Google Scholar]
- Soong, Y.Y.; Barlow, P.J. Quantification of gallic acid and ellagic (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem. 2006, 97, 524–530. [Google Scholar] [CrossRef]
- Bermejo, A.; Figadere, B.; Zafra-Polo, M.C.; Barrachina, I.; Estornell, E.; Cortes, D. Acetogenins from Annonaceae: Recent progress in isolation, synthesis and mechanisms of action. Nat. Prod. Rep. 2005, 22, 269–303. [Google Scholar] [CrossRef] [PubMed]
- Talekar, S.; Patti, A.F.; Singh, R.; Vijayraghavan, R.; Arora, A. From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Ind. Crops Prod. 2018, 112, 790–802. [Google Scholar] [CrossRef]
- Dabas, D.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr. Pharm. Des. 2013, 19, 6133–6140. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borras-Linares, I.; Lozano-Sanchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESIQTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef]
- Bhat, R. Bioactive Compounds of Rambutan (Nephelium Lappaceum L.). Reference Series in Phytochemistry. In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer Nature Cham: Basel, Switzerland, 2019. [Google Scholar] [CrossRef]
- Adnan, L.; Osman, A.; Abdul Hamid, A. Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop. 2011, 14, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Clifton, P.M. Effect of grape seed extract and quercetin on cardiovascular and endothelial parameters in high-risk subjects. J. Biomed. Biotechnol. 2004, 2004, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Cho, H.; Jung, H.; Lee, H.; Hwang, K.T. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. J. Food Biochem. 2014, 38, 259–270. [Google Scholar] [CrossRef]
- Ismail, A.; Salem, A.; Eassawy, M. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of gamma-irradiated rat. J. Photochem. Photobiol. 2016, 160, 1–10. [Google Scholar] [CrossRef]
- Iannone, M.; Mare, R.; Paolino, D.; Gagliardi, A.; Froiio, F.; Cosco, D.; Fresta, M. Characterization and in vitro anticancer properties of chitosan-microencapsulated flavan-3-ols-rich grape seed extracts. Int. J. Biol. Macromol. 2017, 104, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Djaoudene, O.; López, V.; Cásedas, G.; Les, F.; Schisano, C.; Bachir Bey, M.; Tenore, G.C. Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food Funct. 2019, 10, 4953–4965. [Google Scholar] [CrossRef] [PubMed]
- SzydłOwska-Czerniak, A. Rapeseed and its products—Sources of bioactive compounds: A review of their characteristics and analysis. Crit. Rev. Food Sci. Nutr. 2013, 53, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K. The phytochemical quality of Camelina sativa seed and oil. Acta Agric. Scand. B–Soil Plant Sci. 2019. [Google Scholar] [CrossRef]
- Bhat, R.; Sridhar, K.R.; Yokotani, K.T. Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chem. 2007, 103, 860–866. [Google Scholar] [CrossRef]
- Bhat, R.; Sridhar, K.R. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds. Food Chem. 2008, 107, 174–184. [Google Scholar] [CrossRef]
- Bhat, R. The disease preventive potential of some popular and underutilized seeds. In Functional Foods, Nutraceuticals, and Degenerative Disease Prevention; Paliyath, G., Bakovic, M., Shetty, K., Eds.; Wiley Blackwell Publishers: West Sussex, UK, 2011; pp. 171–193. [Google Scholar]
- Gautam, B.; Vadivel, V.; Stuetz, W.; Biesalski, H.K. Bioactive compounds extracted from Indian wild legume seeds: Antioxidant and type II diabetes–related enzyme inhibition properties. Int. J. Food Sci. Nutr. 2012, 63, 242–245. [Google Scholar] [CrossRef]
- Yang, H.; Protiva, P.; Cui, B.; Ma, C.; Baggett, S.; Hequet, V.; Mori, S.; Weinstein, I.B.; Kennelly, E.J. New bioactive polyphenols from Theobroma grandiflorum (“cupuaçu”). J. Nat. Prod. 2003, 66, 1501–1504. [Google Scholar] [CrossRef]
- León, M.; Marcilla, A.F.; García, Á.N. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions. Waste Manag. 2019, 99, 49–59. [Google Scholar] [CrossRef]
- Corrêa, A.P.F.; Bertolini, D.; Lopes, N.A.; Veras, F.F.; Gregory, G.; Brandelli, A. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT Food Sci. Technol. 2019, 101, 107–112. [Google Scholar] [CrossRef]
- Sousa, Y.R.F.; Medeiros, L.B.; Pintado, M.M.E.; Queiroga, R.C.R.E. Goat milk oligosaccharides: Composition, analytical methods and bioactive and nutritional properties. Trends Food Sci. Technol. 2019, 92, 152–161. [Google Scholar] [CrossRef]
- Mano, M.C.R.; Paulino, B.N.; Pastore, G.M. Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Res. Int. 2018, 124, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.G.; Moon, J.H.; Park, S.Y. Lactoferrin from bovine colostrum regulates prolyl hydroxylase 2 activity and prevents prion protein-mediated neuronal cell damage via cellular prion protein. Neuroscience 2014, 274, 187–197. [Google Scholar] [CrossRef] [PubMed]
- De Moura Bell, J.M.L.N.; Cohen, J.L.; de Aquino, L.F.M.C.; Lee, H.; de Melo Silva, V.L.; Liu, Y.; Domizo, P.; Barile, D. An integrated bioprocess to recover bovine milk oligosaccharides from colostrum whey permeate. J. Food Eng. 2018, 216, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive peptides generated from meat industry by-products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Ismail, S.A. Microbial valorization of shrimp byproducts via the production of thermostable chitosanase and antioxidant chitooligosaccharides. Biocat. Agric. Biotechnol. 2019, 20, 101269. [Google Scholar] [CrossRef]
- Hu, J.; Lu, W.; Lv, M.; Wang, Y.; Ding, R.; Wang, L. Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content. Rev. Bras. Farmacogn. 2019, 29, 24–29. [Google Scholar] [CrossRef]
- Treyvaud Amiguet, V.; Kramp, K.L.; Mao, J.; McRae, C.; Goulah, A.; Kimpe, L.E.; Blais, J.M.; Arnason, J.T. Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chem. 2012, 130, 853–858. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kakizaki, I.; Nozaka, H.; Nakamura, T. Chondroitin sulfate proteoglycans from salmon nasal cartilage inhibit angiogenesis. Biochem. Biophys. Rep. 2017, 9, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Tomonaga, A.; Takahashi, T.; Tanaka, Y.T.; Tsuboi, M.; Ito, K.; Nagaoka, I. Evaluation of the effect of salmon nasal proteoglycan on biomarkers for cartilage metabolism in individuals with knee joint discomfort: A randomized double-blind placebo-controlled clinical study. Exp. Ther. Med. 2017, 14, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, S.; Narita, K.; Asano, K.; Nakane, A. Salmon cartilage proteoglycan promotes the healing process of Staphylococcus aureus-infected wound. Heliyon 2018, 4, e00587. [Google Scholar] [CrossRef] [PubMed]
- Harnedy, P.A.; Parthsarathy, V.; McLaughlin, C.M.; O’Keeffe, M.B.; Allsopp, P.J.; McSorley, E.M.; O’Harte, F.P.M.; FitzGerald, R.J. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Res. Int. 2018, 106, 598–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem. 2017, 218, 396–405. [Google Scholar] [CrossRef]
- Pei, X.; Yang, R.; Zhang, Z.; Gao, L.; Wang, J.; Xu, Y.; Zhao, M.; Han, X.; Liu, Z.; Li, Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 2010, 118, 333–340. [Google Scholar] [CrossRef]
- Corrochano, A.R.; Buckin, V.; Kelly, P.M.; Giblin, L. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J. Dairy Sci. 2018, 101, 4747–4761. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, S.; Guo, M.; Kjelden, D. Chemical composition and nutrient profile of low molecular weight fraction of bovine colostrum. Int. Dairy J. 2010, 20, 630–636. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organisation of the United Nations). The State of World Fisheries and Aquaculture–Meeting the Sustainable Development Goals. Available online: http://www.fao.org/3/i9540en/i9540en.pdf (accessed on 3 December 2019).
- Terzioğlu, P.; Öğüt, H.; Kalemtaş, A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mat. Sci. Eng. C 2018, 91, 899–911. [Google Scholar] [CrossRef]
- Ito, G.; Kobayashi, T.; Takeda, Y.; Sokabe, M. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor. Biochem. Biophys. Res. Commun. 2015, 456, 792–798. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Muhammad, K.; Mustapha, N.M. Comparison of cardiovascular protective effects of tropical seaweeds, kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food 2010, 13, 792–800. [Google Scholar] [CrossRef]
- Abirami, R.G.; Kowsalya, S. Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J. Herbs Spices Med. Plants 2017, 23, 9–17. [Google Scholar] [CrossRef]
- Nagappan, H.; Pee, P.P.; Kee, S.H.Y.; Ow, J.T.; Yan, S.W.; Chew, L.Y.; Kong, K.W. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Res. Int. 2017, 99, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Othman, R.; Amin, N.; Sani, M.; Fadzillah, N. Carotenoid and chlorophyll profiles in five species of Malaysian seaweed as potential halal active pharmaceutical ingredient (API). Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1610–1616. [Google Scholar]
Fruit | Type of Waste | Bioactive Compounds | Bioactivity | Reference | ||
---|---|---|---|---|---|---|
Class | Concentration (mg/kg *) | Major Compounds | ||||
Apple | Pomace | Carbohydrates | n.a. ** | Pectin and pectin oligosaccha-rides | Dietary fibre, prebiotic, Hypo-cholesterolemic | [16] |
Phenolic acids | 523–1542 | Chlorogenic acid Caffeic acid Ferulic acid p-coumaric acid Sinapic acid p-coumaroyl-quinic acid | Antioxidant, anti-microbial, anti-inflammatory, anti-tumour, cardio-protective | [17,18,19] | ||
Flavonoids | 2153–3734 | Isorhamnetin Kaempferol Quercetin Rhamnetin glycoconju-gates Procyanidin B2 (−)-Epicatechin | ||||
Anthocyanins | 50–130 | Cyanidin-3-O-galactoside | ||||
Dihydro-chalcones | 688–2535 | Phlorizin Phloretein | Anti-diabetic. Potential in treating obesity. Promoting bone-forming blastogenesis. | [20,21,22] | ||
Triterpenoids | n.a. | Ursolic acid, Oleanolic acid | Anti-microbial, anti-inflammatory | [17,23] | ||
Citrus fruits | Peel | Carbohydrates | Pectin | Dietary fibre, lowering blood pressure, improving blood glucose control, prebiotic effect. Immuno-modulatory. | [24,25,26,27] | |
Modified citrus pectin | Anti-cancer agent | |||||
Peel and pulp | Phenolic acids | 276 (Lemon) 560 (Orange) | Hydroxybenzoic acid Caffeic acid | Antioxidant, anti-inflammatory, anti-cancer properties. | [28,29,30] | |
Flavones | 1659 (Lemon) 55 (Orange) | Apigenin-glucoside Diosmetin-glucoside | ||||
Flavanones | 10646 (Lemon) 22298 (Orange) | Eriocitrin Hesperidin Narirutin | ||||
Seeds | Limonoids | 375 (Lemon) 114 (Orange) | Limonin Nomilin Obacunone Ichangin | Anti-inflammatory, anti-cancer, anti-bacteria, antioxidant activities. | [31] | |
Plum | Pomace | Phenolic acids | 95.7 | Neochlorogenic acid Chlorogenic acid | Antioxidants, anti-microbial, prevention of chronic diseases. | [32] |
Flavonols | 40.3 | Quercetin glycosides Kaempferol Rutinoside | ||||
Anthocyanins | 6.5 | Cyanidin glycosides Peonidin glycosides | ||||
Seeds | Lipids | 53% *** | Oil rich in sterol esters and n-3 PUFA | [33] | ||
Peptides | n.a. | Bioactive peptides from protein hydrolysate | antioxidant activity, ACE inhibitory activity | [34] | ||
Mango | Kernel seed | Phenolic acids | n.a. | Gallic acid and its derivatives | Antioxidant anti-tumour, anti-bacterial, anti-viral, immune-modulatory effect. | [35,36,37] |
Flavonoids | 7200–13000 | Quercetin Isoquercetin Fisetin | ||||
Catechins | n.a. | Epicatechin Epigallocatechin Epicatechin gallate | ||||
Hydrolysable tannins | n.a. | |||||
Xanthanoids | 13600 | Mangiferin | ||||
Carotenoids | 7.9 | |||||
Peel | Carotenoids | 1900 | β-cryptoxanthin Lutein β-carotene | Antioxidant, prevention of age-related macular eye disease, regulation of bone homeostasis. | [38,39] | |
Banana | Peel | Phenolic acids | 99.5 | Ferulic acid p-Coumaric acid Caffeic acid Sinapic acids | Antioxidant, anti-bacterial, anti-fungal activity, reducing blood sugar, lowering cholesterol, anti-angiogenic activity, neuroprotective effect. | [40] |
Flavonols | 1019.6 | Rutin, Quercetin Kaempferol Myricitin Laricitrin | ||||
Catechins | n.a. | Catechin Epicatechin Gallocatechin | ||||
Catecholamines | 4720 | Dopamine, L-dopa | ||||
Berries | ||||||
Vaccinum genus berries (bilberries, blueberries, lingon-berries, cranberries) | Berries press residue | Anthocyanins | 284,950 (bilberries) 84,120 (blueberries) 43,530 (cranberries) 27,890 (lingon-berries) | Glycoconjugates of delphinidin cyaniding petunidin malvidin | Prevention of various chronic diseases such as artherosclerosis, cancer, and cardiovascular disease. | [41] |
Elderberry | Branche waste | Phenolic acids | 45,600 | Chlorogenic acid | antioxidant, anti-inflammatory, anti-cancer properties. | [42] |
Flavonols | 468,200 | Quercetin and its glycoconjugates | ||||
Anthocyanins | 2530 | Cyanidin and its glycoconjugates | ||||
Wild and cultivated berries | Seeds | Lipids | 14.61–18.19% | Oil rich in α-linoleic acid with a high content of α- and γ-tocopherols | Balancing diet fatty acid composition, Antioxidant, skin regeneration. | [43,44] |
Fruits/English Name | Scientific Name | Bioactive Compounds | Origin/ Countries Encountered | Reference | |
---|---|---|---|---|---|
Class | Compound | ||||
Aguaje fruit or Moriche palm tree fruit | Mauritia flexuosa L.f. | Phenolic compounds Carotenoids Tocopherols Vitamin C Dietary fibre Phytosterols Mono- and poly-unsaturated fatty acids | Native of Peru, Amazon regions of Brazil | [45] | |
Araticum | Annona crassiflora Mart. | Phenolic compounds Alkaloids Annonaceous acetogenins Tocols Carotenoids Phytosterols Dietary fibre Vitamins Minerals Essential oils | Native of Brazil | [46] | |
Black Sapote or Zapote Blanco or Mamey Sapote | Diospyros digyna Jacq. | Polyphenolics Flavonoids Anthocyanins | Native of central Mexico | [47,48] | |
Carotenoids | β-carotene Lutein | ||||
Tocopherols Vitamin C | |||||
Cherimoya or custard apple | Annona squamosa L. | Annonaceous Acetogenins Diterpenes Alkaloids Cyclopeptides | Native of South America, but grown in Southern parts of Asia and Europe, and Africa | [49] | |
Conkerberry or Bush currant | Carissa spinarum L. | Coumarin Cardiac glycosides | Native of Australia | [50,51] | |
Lignans | (−)-Carinol, (−)-Carissanol (−)-Nortra-chelogenin, | ||||
Terpenoids Alkaloids Tannins Saponins | |||||
Pepino Fruit or sweet cucumber | Solanum muricatum Ait. | Phenolic acids | Hydroxy-cinnamic acid derivatives Chlorogenic acids and derivatives | Native of Peru and Chile, but widely grown in South and Central American countries and in New Zealand | [52,53] |
Pigments | β-Carotene, Chlorophyll | ||||
Rambutan | Nephelium lappaceum L. | Polyphenolic compounds | Geraniin Corilagin Gallic acids Ellagic acid Ellagitannins | Native of Indonesian but widely grown in Southeast Asia | [54] |
Durian | Durio zibethinus L. | Polyphenols Flavonoids Flavanols Anthocyanins Vitamin C Carotenoids | Native to Malaysia and Indonesia. Grown in Thailand, Indian and other South East Asian countries | [55,56] | |
Kiwano or horned melon | Cucumis metuliferus E.Mey. | Triterpenoids Alkaloids Lutein myristol, palmitol and dipalmitol phenylpropanoids, flavonoids and terpenoids | Native of south and central Africa | [57] | |
Kumquats (or cumquat) | Citrus japonica Thunb. | Essential oils Volatile compounds Limonene Germacrene D | Native to South Asia and Asia-Pacific region. | [58] | |
Madroño | Garcinia madruno (Kunth) Hammel. | Phenolic hydroxyl Groups β-Diketone bioflavonoids Polyisoprenylated benzophenones | Native to Central and South America | [59] | |
Prickly pear | Opuntia ficusindica L. Mill. | Betalain Phenolic compounds | Native of the New world, grown widely in Mexico, South Africa, Southern and Central America, Egypt, Tunisia, Algeria, Morocco, Turkey, Spain and Greece | [60] | |
Flavonoids | Isorhamnetin Quercetin Kaempferol | ||||
Glycosides Piscidic acid | |||||
Cupuaçu | Theobroma grandiflorum (Wild. ex Spring) Schumann | Dietary fibre Polyphenols Flavonoids Methyl-xanthines Proanthocyanidins Vitamin C | Native to South America countries, Colombia, Bolivia, Brazil, Pará, Peru | [61] | |
Miracle Fruit | Synsepalum dulcificum (Schumach. & Thonn.) Daniell | Epicatechin Lutein α-Tocopherol Saponin Flavonoids Tannin Alkaloids Cyanogenic glycosides | Kaempferol | Native of West Africa | [62,63] |
Starfruit | Averrhoa carambola L. | Vitamin C Polyphenolics Flavonoids Carotenoids | Native to Asia, widely cultivated in Malaysia, Indonesia, Singapore and Hong Kong | [64,65] | |
Dragon fruit or pitaya fruit | Hylocereus undatus (Haworth) Britton & Rose | Phytosterols | Native to Central America but widely grown in Southeast Asia | [66,67] | |
Betacyanins | Betanin Isobetanin Phyllocactin Hylocerenin | ||||
Acetic acid Polyphenols Flavonoids | |||||
Feijoa or the pineapple guava or guavasteen | Acca sellowiana (O. Berg) Burret | Polyphenols Carotenoids Fatty acids | Native to South America. Also cultivated in New Zealand | [68] | |
Jaboticaba | Myrciaria cauliflora (Mart.) O.Berg or Plinia cauliflora (Mart.) Kausel (Branca, Sabara, Paulista, rajada var.) | Anthocyanins Polyphenols | Native to South-eastern Brazil | [69] | |
Araçá-pera | Psidium acutangulum DC. | Trihydroxy-cinnamic acid glucopyranosyl Tannin digalloyl glucopyranosyl Triterpenoid acids Vitamin C | Native of Brazilian Amazon region | [70] | |
Langsat | Lansium domesticum and Lansium parasiticum (Osbeck) Sahni & Bennet | Polyephenols | Native to South East Asia, widely grown in Malaysia, Thailand and Indonesia | [71] | |
Onoceranoid-type triterpenoids | Lamesticumin A LamesticuminsLAnsic acid 3-ethyl ester Ethyl-lansiolate | ||||
Longan or dragon’s eye | Dimocarpus longan Lour. | Phenolic acids | Ellagic acid 4-O-methyl-Gallic acid. | Native of Myanmar and Southern China, widely grown in Thailand, Cambodia and Vietnam | [72] |
Flavonoids | Quercetin glycosides, Kaempferol glycosides | ||||
Ellagitannin | Corilagin | ||||
Mora de Castilla | Rubus glaucus Benth. | Anthocyanins Phenolic acids Ellagitannins | Sanguiin H-6 Lambertianin C | Native of Latin and South America | [73,74] |
Snake fruit | Salacca zalacca (Gaertn.) Voss | Phenolics Flavonoids Tannins Monoterpenoids | Native to Indonesia (Java and Sumatra) | [75] | |
Buddha’s hand or fingered citron | Citrus medica L. var. sarcodactylis | Phenolic Acids Flavonones | Native of India. Cultivated and popular in China, Korea, Vietnam | [76] | |
Terpenoids | Iso-limonene Citral limonene linalool, decanal nonanal | ||||
Vitamin C Pectin | |||||
Soursop or graviola | Annona muricata L. | Acetogenins | Native of tropical forests in America, but widely grown in Southeast Asia and Asia Pacific regions | [77] | |
White sapote | Casimiroa edulis Llave | Phenolic acids Flavonoids Tannins | Native of central Mexico, but widely grown in El Salvador, Guatemala, Costa Rica, Bahamas, South Africa New Zealand, West Indies and India | [78] | |
Wolfberry fruit | Symphoricarpos occidentalis Hook. | Phenolic acids Flavonoids Carotenoids | Native of South China | [79] |
Vegetable | Type of Waste | Bioactive Compounds | Bioactivity | Reference | ||
---|---|---|---|---|---|---|
Class | Concentration (mg/kg *) | Major Compounds | ||||
Potato | Pulp and peel | Carbohydrate | n.a. ** | Pectin | Dietary fibre, anti-obesity, hypo-cholesterolemic. | [106] |
Peel | Phenolic acids | 1839–9130 | Chlorogenic acid Caffeic acid | Antioxidant, anti-microbial, Anti-inflammatory. | [107,108] | |
Glycoalkaloid | 639–3580 | α-Chaconine α-Solanine | Anti-carcinogenic (induced apoptosis in cancer cells) | |||
Peel | Carotenoids | 205.6 | β-Carotene α-Carotene Lycopene Lutein | Antioxidant, prevention of age-related macular eye disease, pro-vitamin A. | [109,110] | |
Carrot | Discarded carrots | Carotenoids | 1384 | β-Carotene α-Carotene Lutein | ||
Tocopherol | 71 | γ-Tocopherol | ||||
Carbohydrate | n.a. | Pectin | Dietary fibre Anti-obesity Hypo-cholesterolemic | |||
Beetroot | Pomace | Phenolic acids | 1513 | Ferulic acid Vanillic acid Caffeic acid Protocatechuic acid p-Hydroxy-benzoic acid | Antioxidant, hepatoprotective activity. | [111] |
Flavonoids | 386 | Catechin epicatechin, rutin | ||||
Betalains | 558.8 | Betacyanins (betanin and isobetanin) Betaxanthins (vulgaxanthin I) | ||||
Aerial parts (stems and leaves) | Phenolic compounds | 99 mg GAE/g *** | (not identified) | Antioxidant. | [112] | |
Broccoli | Industrial residues: stalks and florets | Phenolic acids | 74.6 (Stalks) 193.8 (Florets) | Chlorogenic acid Neochlorogenic acid Sinapic acid | Antioxidant, prevention of cancer, cardiovascular disease, and other age-related diseases. | [113] |
Flavonoids | n.d. (Stalks) 56.6 (Florets) | Kaempferol Quercetin | ||||
Glucosinolates | 1836.6 (Stalks) 5775.6 (Florets) | Glucoiberin Glucoerucin Glucoraphanin Gluconapin Glucoalyssin Glucobrassicin Neoglucobrassin | ||||
Agricultural waste: leaves | Glucosinolates | 1332–1594 | Glucoiberin Glucoraphanin Gluconasturtiin Glucobrassicin 4-Methoxy-glucobrassicin Neoglucobrassin | Chemo-preventive effect. | [114] | |
Cauliflower | Stems and leaves | Phenolic acids | n.a. | Ferulic acid Sinapic acid | Antioxidant, anti-hypertensive, anti-obesity. | [115] |
Flavonoids | n.a. | Kaempferol Quercetin glycosides | ||||
Isothiocyanate | n.a. | Chemo-preventive | [116] | |||
Proteins | n.a. | Bioactive peptides from protein hydrolysate | Anti-hypertensive (ACE inhibition). | [117] |
Industry | Type of Waste | Bioactive Compounds | Bioactivity | Reference |
---|---|---|---|---|
Dairy products | Whey | Bioactive peptides from protein hydrolysate | Antioxidant, ACE inhibitor | [157] |
Bioactive milk oligosaccharides Neutral oligosaccharides Acidic sialylated oligosaccharides | Bifidogenic, anti-inflammatory, adherence inhibition of enteric pathogens. | [158] | ||
Galactooligosaccharides | Prebiotic. | [159] | ||
Colostrum | Lactoferrin | Antioxidant, anti-inflammatory, anti-microbial, neuroprotective. | [160] | |
Oligosaccharides | Prebiotic (bifidogenic), anti-inflammatory. | [161] | ||
Meat products | Blood: Hemoglobin Plasma | Bioactive peptides from protein hydrolysate | Opioid, Antimicrobial, ACE inhibitor. | [162] |
Trimmings and cuttings | Bioactive peptides from protein hydrolysate | Antioxidant, ACE inhibitor. | [163] | |
Bones Horns Skin | Collagen hydrolysate | Beneficial effect on bone metabolism, Antioxidant, ACE inhibitor. | ||
Marine products | Shrimp shells, heads and tails | Chito-oligosaccharides | Antioxidant. | [164] |
Astaxanthin | Antioxidant, anti-cancer, neuroprotective, anti-aging. | [165] | ||
Polyunsaturated fatty acids Ω3 | Beneficial effects on cardiovascular disease, autoimmune diseases and mental health disorders. | [166] | ||
Salmon nasal cartilage | Proteoglycans | Anti-angiogenesis, relieving joint pain discomfort, promote wound healing. | [167,168,169] | |
Salmon skin and trimmings | Bioactive peptides from protein hydrolysate | Anti-diabetic, antioxidant, ACE inhibitor, enhancing learning and memory in aged mice | [170,171,172] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. https://doi.org/10.3390/molecules25030510
Ben-Othman S, Jõudu I, Bhat R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules. 2020; 25(3):510. https://doi.org/10.3390/molecules25030510
Chicago/Turabian StyleBen-Othman, Sana, Ivi Jõudu, and Rajeev Bhat. 2020. "Bioactives from Agri-Food Wastes: Present Insights and Future Challenges" Molecules 25, no. 3: 510. https://doi.org/10.3390/molecules25030510