The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples—Trends and Perspectives
Abstract
:1. Introduction
2. Ionic Liquids
3. Sample Preparation
3.1. Liquid-Phase Based Extraction and Microextraction Procedures
3.1.1. Liquid-Liquid Extraction
Environmental Samples
3.1.2. Dispersive Liquid-Liquid Microextraction and Modifications
Biological Samples
Environmental Samples
3.1.3. Other Liquid-Phase Extraction
Biological Samples
Environmental Samples
3.1.4. Aqueous Two-Phase System
Biological Samples
Environmental Samples
3.2. Sorbent-Based Extraction Procedures
3.2.1. Solid-Phase Extraction
Biological Samples
Environmental Samples
3.2.2. Solid-Phase Microextraction
Biological Samples
Environmental Samples
3.3. Stir Bar Sorptive Extraction
3.4. PASsive Sampling with Ionic Liquids
4. Chromatographic Techniques
4.1. High Performance Liquid Chromatography
4.1.1. IL Additives to the Mobile Phase
4.1.2. Ionic Liquid Stationary Phases
4.2. Other Chromatographic Techniques
4.2.1. Gas Chromatography
4.2.2. Thin-Layer Chromatography
4.2.3. Supercritical Fluid Chromatography
5. Electromigration Techniques
5.1. Capillary Electrophoresis
5.2. Micellar Electrokinetic Chromatography
5.3. Non-Aqueous Capillary Electrophoresis
6. Current Trends and Future Perspectives
7. Conclusions
Funding
Conflicts of Interest
References
- Ma, W.; Row, K.H. Simultaneous determination of levofloxacin and ciprofloxacin in human urine by ionic-liquid-based, dual-template molecularly imprinted coated graphene oxide monolithic solid-phase extraction. J. Sep. Sci. 2019, 42, 642–649. [Google Scholar] [CrossRef]
- Gorynski, K. A critical review of solid-phase microextraction applied in drugs of abuse determinations and potential applications for targeted doping testing. TrAC Trends Anal. Chem. 2019, 112, 135–146. [Google Scholar] [CrossRef]
- Boyacı, E.; Rodríguez-Lafuente, A.; Gorynski, K.; Mirnaghia, F.; Souza-Silva, E.A.; Heind, D.; Pawliszyn, J. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases. Anal. Chim. Acta 2015, 873, 14–30. [Google Scholar] [CrossRef]
- Kokosa, J.M. Recent trends in using single-drop microextraction and related techniques in green analytical methods. TrAC Trends Anal. Chem. 2015, 71, 194–204. [Google Scholar] [CrossRef]
- Yamini, Y.; Safari, M.; Shamsayei, M. Simultaneous determination of steroid drugs in the ointment via magnetic solid phase extraction followed by HPLC-UV. J. Pharm. Anal. 2018, 8, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Carda-Broch, S.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase. J. Chromatogr. A 2018, 1559, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Peris-García, E.; Alvarez-Coque, M.C.G.; Carda-Broch, S.; Ruiz-Angel, M.J. Effect of buffer nature and concentration on the chromatographic performance of basic compounds in the absence and presence of 1-hexyl-3-methylimidazolium chloride. J. Chromatogr. A 2019, 1602, 397–408. [Google Scholar] [CrossRef]
- Ren, Y.M.; Yang, R.C. Efficient method for the synthesis of 3-arylbenzoquinoline, pyranoquinoline, and thiopyranoquinoline derivatives using PEG1000-based dicationic acidic ionic liquid as recyclable catalyst via a one-pot multicomponent reaction. Synth. Commun. 2016, 46, 1318–1325. [Google Scholar] [CrossRef]
- Halayqa, M.; Zawadzki, M.; Domańska, U.; Plichta, A. Polymer—Ionic liquid—Pharmaceutical conjugates as drug delivery systems. J. Mol. Struct. 2019, 1180, 573–584. [Google Scholar] [CrossRef]
- Abbott, A.P.; Frisch, G.; Ryder, K.S. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358. [Google Scholar] [CrossRef]
- Pei, Y.C.; Wang, J.J.; Xuan, X.P.; Fan, J.; Fan, M. Factors Affecting Ionic Liquids Based Removal of Anionic Dyes from Water. Environ. Sci. Technol. 2007, 41, 5090–5095. [Google Scholar] [CrossRef] [PubMed]
- Kobylis, P.; Lis, H.; Stepnowski, P.; Caban, M. Spectroscopic verification of ionic matrices for MALDI analysis. J. Mol. Liq. 2019, 284, 328–342. [Google Scholar] [CrossRef]
- Shekaari, H.; Zafarani-Moattar, M.T.; Mirheydari, S.N. Conductometric analysis of 1-butyl-3-methylimidazolium ibuprofenate as an active pharmaceutical ingredient ionic liquid (API-IL) in the aqueous amino acids solutions. J. Chem. Thermodyn. 2016, 103, 165–175. [Google Scholar] [CrossRef]
- Nacham, O.; Ho, T.D.; Anderson, J.L.; Webster, G.K. Use of ionic liquids as headspace gas chromatography diluents for the analysis of residual solvents in pharmaceuticals. J. Pharm. Biomed. Anal. 2017, 145, 879–886. [Google Scholar] [CrossRef]
- De Boeck, M.; Damilano, G.; Dehaen, W.; Tytgat, J.; Cuypers, E. Evaluation of 11 ionic liquids as potential extraction solvents for benzodiazepines from whole blood using liquid-liquid microextraction combined with LC-MS/MS. Talanta 2018, 184, 369–374. [Google Scholar] [CrossRef]
- Hamed Mosavian, M.T.; Es’haghi, Z.; Razavi, N.; Banihashemi, S. Pre-concentration and determination of amitriptyline residues in waste water by ionic liquid based immersed droplet microextraction and HPLC. J. Pharm. Anal. 2012, 2, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.T.; Anastas, P.T. Introduction: Green Chemistry. Chem. Rev. 1999, 107, 2167–2168. [Google Scholar] [CrossRef] [Green Version]
- Koel, M. General review of ionic liquids and their properties. In Analytical Applications of Ionic Liquids; Schröder, C., Ed.; World Scientific Publishing Europe: London, UK, 2016. [Google Scholar]
- Kantae, V.; Krekels, E.H.; Van Esdonk, M.J.; Lindenburg, P.; Harms, A.C.; Knibbe, C.A.J.; Van der Graaf, P.H.; Hankemeier, T. Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: Towards personalized drug therapy. Metabolomics 2017, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- González-Mariño, I.; Castro, V.; Montes, R.; Rodil, R.; Lores, A.; Cela, R.; Quintana, J.B. Multi-residue determination of psychoactive pharmaceuticals, illicit drugs and related metabolites in wastewater by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1569, 91–100. [Google Scholar] [CrossRef]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Tracking the environmental dissemination of carbapenem-resistant Klebsiella pneumoniae using whole genome sequencing. Sci. Total. Environ. 2019, 691, 80–92. [Google Scholar] [CrossRef]
- Gustavsson, P.; Andersson, T.; Gustavsson, A.; Reuterwall, C. Cancer incidence in female laboratory employees: Extended follow-up of a Swedish cohort study. Occup. Environ. Med. 2017, 74, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Koel, M. Do we need Green Analytical Chemistry? Green Chem. 2016, 18, 923–931. [Google Scholar] [CrossRef]
- Kaljurand, M.; Koel, M. Recent advancements on greening analytical separation. Crit. Rev. Anal. Chem. 2005, 35, 177–192. [Google Scholar] [CrossRef]
- Yu, H.; Ho, T.D.; Anderson, J.L. Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. Trends Anal. Chem. 2013, 45, 219–232. [Google Scholar] [CrossRef]
- Patinha, D.J.S.; Silvestre, A.J.D.; Marrucho, I.M. Poly(ionic liquids) in solid phase microextraction: Recent advances and perspectives. Prog. Polym. Sci. 2019, 98, 101148. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, Ch.; Ouyang, G. New materials in solid-phase microextraction. TrAC Trends Anal. Chem. 2013, 47, 68–83. [Google Scholar] [CrossRef]
- Mei, M.X.; Huang, X.L.; Chen, L. Recent development and applications of poly (ionic liquids) in microextraction techniques. Trends Anal. Chem. 2019, 112, 123–134. [Google Scholar] [CrossRef]
- Sun, P.; Armstrong, D.W. Ionic liquids in analytical chemistry. Anal. Chim. Acta 2010, 661, 1–16. [Google Scholar] [CrossRef]
- Soares, B.; Passos, H.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D.; Freire, M.G. Ionic liquids in chromatographic and electrophoretic techniques: Toward additional improvements in the separation of natural compounds. Green Chem. 2016, 17, 4582–4604. [Google Scholar] [CrossRef]
- Ho, T.D.; Zhang, C.; Hantao, L.W.; Anderson, J.L. Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives. Anal. Chem. 2014, 86, 262–285. [Google Scholar] [CrossRef]
- Koel, M. Ionic liquids in chemical analysis. Crit. Rev. Anal. Chem. 2005, 35, 177–192. [Google Scholar] [CrossRef]
- Wilkes, J.S. A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Gabriel, S.; Weiner, J. Ueber einige Abkömmlinge des Propylamins. Ber. Dtsch. Chem. Ges. 1888, 21, 2669–2679. [Google Scholar] [CrossRef] [Green Version]
- Walden, P. Über die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze. Bull. l’Académie Impériale Sci. St. Pétersbourg 1914, 8, 405–422. [Google Scholar]
- Boeck, G. Paul Walden (1863–1957): The man behind the Walden inversion, the Walden rule, the Ostwald-Walden-Bredig rule and Ionic liquids. ChemTexts 2019, 5, 6. [Google Scholar] [CrossRef]
- Yoke, J.T.; Weiss, J.F.; Tollin, G. Reactions of Triethylamine with Copper (I) and Copper (II) Halides. Inorg. Chem. 1963, 2, 1210–1216. [Google Scholar] [CrossRef]
- Koch, V.R.L.; Miller, L.; Osteryoung, R.A. Electroinitiated Friedel-Crafts transalkylations in a room-temperature molten-salt medium. J. Am. Chem. Soc. 1976, 98, 5277–5284. [Google Scholar] [CrossRef]
- Pacholec, F.; Butler, H.T.; Poole, C.F. Molten organic salt phase for gas-liquid chromatography. Anal. Chem. 1982, 54, 1938–1941. [Google Scholar] [CrossRef]
- Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium chloroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982, 21, 1263–1264. [Google Scholar] [CrossRef]
- Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Rebecca Mayton, R.; Sheff, S.A.; Davis, J.H.; Rogers, R.D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun 2001, 135–136. [Google Scholar] [CrossRef]
- Ludwig, R. Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; ohn Wiley & Sons: Weinheim, Germany, 2008; Volume 1, pp. 863–864. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction—Chemical Communications (RSC Publishing). Chem. Commun. 1998, 16, 1765–1766. [Google Scholar] [CrossRef]
- Liu, J.; Li, N.; Jiang, G.; Liu, J.; Jönsson, J.Å.; Wen, M. Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography–flame ionization detection. J. Chromatogr. A 2005, 1066, 27–32. [Google Scholar] [CrossRef]
- Moschovi, A.M.; Dracopoulos, V.; Nikolakis, V. Inter- and Intramolecular Interactions in Imidazolium Protic Ionic Liquids. J. Phys. Chem. B 2014, 118, 8673–8683. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wang, Z.; Wen, H. Research on the strengths of electrostatic and van der Waals interactions in ionic liquids. J. Mol. Liq. 2017, 241, 486–488. [Google Scholar] [CrossRef]
- Seddon, K.R.; Carmichael, A.J. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J. Phys. Org. Chem. 2000, 13, 591–595. [Google Scholar] [CrossRef]
- Mondal, S.S.; Müller, H.; Junginger, M.; Kelling, A.; Schilde, U.; Strehmel, V.; Holdt, H.J. Imidazolium 2-Substituted 4,5-Dicyanoimidazolate Ionic Liquids: Synthesis, Crystal Structures and Structure-Thermal Property Relationships. Chem. Eur. J. 2014, 20, 8170–8181. [Google Scholar] [CrossRef]
- Marcinkowski, Ł.; Szepiński, E.; Milewska, M.J.; Kloskowski, A. Density, sound velocity, viscosity, and refractive index of new morpholinium ionic liquids with amino acid-based anions: Effect of temperature, alkyl chain length, and anion. J. Mol. Liq. 2019, 284, 557–568. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Raeissi, S. Estimation of viscosities of 1-alkyl-3-methylimidazolium ionic liquids over a range of temperatures using a simple correlation. Phys. Chem. Liq. 2019, 57, 401–421. [Google Scholar] [CrossRef]
- Sun, L.; Morales-Collazo, O.; Xia, H.; Brennecke, J.F. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation. J. Psych. Chem. B 2016, 120, 5767–5776. [Google Scholar] [CrossRef]
- Rashid, T.; Kait, C.F.; Murugesan, T. Effect of alkyl chain length on the thermophysical properties of pyridinium carboxylates. Chin. J. Chem. Eng. 2016, 25, 1266–1272. [Google Scholar] [CrossRef]
- Yuan, W.L.; Yang, X.; He, L.; Xue, Y.; Qin, S.; Tao, G.H. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids. Front. Chem. 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpińska, M.; Królikowska, M. The influence of structure of ionic liquid containing cyano group on mutual solubility with water. J. Chem. Thermodyn. 2019, 137, 56–61. [Google Scholar] [CrossRef]
- Handy, S.T.; Okello, M. The 2-Position of Imidazolium Ionic Liquids: Substitution and Exchange. J. Org. Chem. 2005, 13902, 4673–4676. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mu, T. Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Ind. Eng. Chem. Res. 2014, 53, 8651–8664. [Google Scholar] [CrossRef]
- Efimova, A.; Varga, J.; Matuschek, G.; Saraji-Bozorgzad, M.R.; Denner, T.; Zimmermann, R.; Schmidt, P. Thermal Resilience of Imidazolium-Based Ionic Liquids—Studies on Short- and Long-Term Thermal Stability and Decomposition Mechanism of 1-Alkyl-3-methylimidazolium Halides by Thermal Analysis and Single-Photon Ionization Time-of-Flight Mass Spectrometry. J. Phys. Chem. B 2018, 122, 8738–8749. [Google Scholar] [CrossRef]
- Götz, M.; Reimert, R.; Bajohr, S.; Schnetzer, H.; Wimberg, J.; Schubert, T.J.S. Long-term thermal stability of selected ionic liquids in nitrogen and hydrogen atmosphere. Thermochim. Acta 2015, 600, 82–88. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Yermalayeu, A.V.; Schubert, T.J.S.; Verevkin, S.P. Alkyl-imidazolium tetrafluoroborates: Vapor pressure, thermodynamics of vaporization, and enthalpies of formation. J. Mol. Liq. 2017, 242, 951–957. [Google Scholar] [CrossRef]
- Aschenbrenner, O.; Supasitmongkol, S.; Taylor, M.; Styring, P. Measurement of vapour pressures of ionic liquids and other low vapour pressure solvents. Green Chem. 2009, 11, 1217–1221. [Google Scholar] [CrossRef]
- Huo, Y.; Xia, S.; Yi, S.; Ma, P. Measurement and correlation of vapor pressure of benzene and thiophene with [BMIM][PF6] and [BMIM][BF4] ionic liquids. Fluid Phase Equilibria 2009, 276, 46–52. [Google Scholar] [CrossRef]
- Hough, W.L.; Smiglak, M.; Rodríguez, H.; Swatloski, R.P.; Spear, S.C.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The third evolution of ionic liquids: Active pharmaceutical ingredients. New J. Chem. 2007, 31, 1429–1436. [Google Scholar] [CrossRef]
- Zhou, C.; Deng, J.; Shi, G.; Zhou, T. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis 2017, 38, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Binellas, C.; Maidatsi, K.; Stalikas, C. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals. Anal. Chim. Acta 2016, 910, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Merib, J.; Anderson, J.L. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography. J. Chromatogr. A 2016, 1438, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Casado, N.; Salgado, A.; Castro-Puyana, M.; Gacia, M.A.; Marina, M.L. Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids. J. Chromatogr. A 2019, 1608, 460407. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, K.; Liu, Z.; Zhang, H.; Jin, X. Novelty aqueous two-phase extraction system based on ionic liquid for determination of sulfonamides in blood coupled with high-performance liquid chromatography. Microchem. J. 2018, 136, 263–269. [Google Scholar] [CrossRef]
- Kiszkiel, I.; Starczewska, B.; Leśniewska, B.; Późniak, P. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection. J. Pharm. Biomed. Anal. 2015, 106, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. One-step in-syringe ionic liquid-based dispersive liquid-liquid microextraction. J. Chromatogr. A 2009, 1216, 6459–6465. [Google Scholar] [CrossRef]
- Hatami, M.; Karimnia, E.; Farhadi, K. Determination of salmeterol in dried blood spot using an ionic liquid based dispersive liquid-liquid microextraction coupled with HPLC. J. Pharm. Biomed. Anal. 2013, 85, 283–287. [Google Scholar] [CrossRef]
- Padró, J.M.; Marsón, M.E.; Mastrantonio, G.E.; Altcheh, J.; García-Bournissen, F.; Reta, M. Development of an ionic liquid-based dispersive liquid-liquid microextraction method for the determination of nifurtimox and benznidazole in human plasma. Talanta 2013, 107, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.M.; Pellegrino Vidal, R.B.; Echevarria, R.N.; Califano, A.N.; Reta, M.R. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design. J. Sep. Sci. 2015, 38, 1591–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Tang, M.; Li, J.; Yin, C.; Xiang, G.; Xu, L. Determination of sildenafil, vardenafil and aildenafil in human plasma by dispersive liquid-liquid microextraction-back extraction based on ionic liquid and high performance liquid chromatography-ultraviolet detection. J. Chromatogr. B 2013, 931, 111–116. [Google Scholar] [CrossRef]
- Gong, A.; Zhu, X. Dispersve solvent-free ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with HPLC for determination of ulipriststal acetate. Talanta 2015, 131, 603–608. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, M.; Missotten, S.; Dehaen, W.; Tytgat, J.; Cuypers, E. Development and validation of a fast ionic liquid-based dispersive liquid-liquid microextraction procedure combined with LC-MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood. Forensic Sci. Int. 2017, 274, 44–54. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, M.; Dehaen, W.; Tytgat, J.; Cuypers, E. Ionic Liquid-Based Liquid-Liquid Microextraction for Benzodiazepine Analysis in Postmortem Blood Samples. J. Forensic Sci. 2018, 63, 1875–1879. [Google Scholar] [CrossRef]
- De Boeck, M.; Dubrulle, L.; Dehaen, W.; Tytgat, J.; Cuypers, E. Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent. Talanta 2018, 180, 292–299. [Google Scholar] [CrossRef]
- Vaghar-Lahijani, G.; Aberoomand-Azar, P.; Saber-Tehrani, M.; Soleimani, M. Application of ionic liquid-based ultrasonic-assisted microextraction coupled with HPLC for determination of citalopram and nortriptyline in human plasma. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 1–7. [Google Scholar] [CrossRef]
- Rao, R.N.; Raju, S.S.; Vali, R.M. Ionic-liquid based dispersive liquid-liquid microextraction followed by high performance liquid chromatographic determination of anti-hypertensives in rat seru. J. Chromatogr. B 2013, 931, 174–180. [Google Scholar] [CrossRef]
- Rao, R.N.; Naidu, C.G.; Suresh, C.V.; Srinath, N.; Padiya, R. Ionic liquid based dispersive liquid-liquid microextraction followed by RP-HPLC determination of balofloxacin in rat serum. Anal. Methods 2014, 6, 1674–1683. [Google Scholar] [CrossRef]
- Rao, R.N.; Mastan Vali, R.; Vara Prasada Rao, A. Determination of rifaximin in rat serum by ionic liquid based dispersive liquid-liquid microextraction combined with RP-HPLC. J. Sep. Sci. 2012, 35, 1945–1952. [Google Scholar] [CrossRef]
- Vaghar-Lahijani, G.; Saber-Tehrani, M.; Aberoomand-Azar, P.; Soleimani, M. Extraction and Determination of Two Antidepressant Drugs in Human Plasma by Dispersive Liquid-Liquid Microextraction—HPLC. J. Anal. Chem. 2018, 73, 145–151. [Google Scholar] [CrossRef]
- Gong, A.; Zhu, X. Miniaturized ionic liquid dispersive liquid-liquid microextraction in a coupled-syringe system combined with UV for extraction and determination of danazol in danazol capsule and mice serum. Spectrochim. Acta A 2016, 159, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, M.; Jamil, P.T.; Berenjian, A.; Ganjali, M.R.; Olyai, M.R.T.B. Quantitative analysis of piroxicam using temperature-controlled ionic liquid dispersive liquid phase microextraction followed by stopped-flow injection spectrofluorimetry. DARU. J. Pharm. Sci. 2013, 21, 63. [Google Scholar] [CrossRef] [Green Version]
- Zeeb, M.; Ganjali, M.R.; Norouzi, P. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with spectrofluorimetry for trace determination of ofloxacin in pharmaceutical and biological samples. DARU. J. Pharm. Sci. 2011, 19, 446–454. [Google Scholar]
- Song, J.; Zhang, Z.H.; Zhang, Y.Q.; Feng, C.; Wang, G.N.; Wang, J.P. Ionic liquid dispersive liquid-liquid microextraction combined with high performance liquid chromatography for determination of tetracycline drugs in eggs. Anal. Methods 2014, 6, 6459–6466. [Google Scholar] [CrossRef]
- Wang, G.N.; Feng, C.; Zhang, H.C.; Zhang, Y.Q.; Zhang, L.; Wang, J.P. Determination of fluoroquinolone drugs in meat by ionic-liquid-based dispersive liquid-liquid microextraction-high performance liquid chromatography. Anal. Methods 2015, 7, 1046–1052. [Google Scholar] [CrossRef]
- Liu, X.; Fu, F.; Li, M.; Guo, L.P.; Yang, L. Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Coupled with Capillary Electrophoresis to Determine Drugs of Abuse in Urine. Chin. J. Anal. Chem. 2013, 41, 1919–1922. [Google Scholar] [CrossRef]
- Rao, T.S.; Sridevi, M.; Naidu, C.G.; Nagaraju, B. Ionic liquid-based vortex-assisted DLLME followed by RP-LC-PDA method for bioassay of daclatasvir in rat serum: Application to pharmacokinetics. J. Anal. Sci. Technol. 2019, 10, 20. [Google Scholar] [CrossRef]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Ionic liquid-based dynamic liquid-phase microextraction: Application to the determination of anti-inflammatory drugs in urine samples. J. Chromatogr. A 2008, 1202, 1–7. [Google Scholar] [CrossRef]
- Yao, C.; Li, T.; Twu, P.; Pitner, W.R.; Anderson, J.L. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids. J. Chromatogr. A 2011, 1218, 1556–1566. [Google Scholar] [CrossRef]
- Zhao, R.S.; Wang, X.; Sun, J.; Wang, S.S.; Yuan, J.P.; Wang, X.K. Trace determination of triclosan and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC-ESI-MS-MS. Anal. Bioanal. Chem. 2010, 397, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Merib, J.; Anderson, J.L. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J. Chromatogr. A 2016, 1463, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Hao, B.; He, J.; Li, W.; Li, S.; Yu, Z. Ultrasound assisted ionic liquid dispersive liquid phase extraction of lovastatin and simvastatin: A new pretreatment procedure. J. Sep. Sci. 2009, 32, 3029–3033. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Guan, Y.; Di, X. Temperature-Induced Ionic Liquids Dispersive Liquid-Liquid Microextraction of Tetracycline Antibiotics in Environmental Water Samples Assisted by Complexation. Chromatographia 2011, 73, 1057–1064. [Google Scholar] [CrossRef]
- Parrilla Vázquez, M.M.; Parrilla Vázquez, P.; Martínez Galera, M.; Gil García, M.D.; Uclés, A. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with liquid chromatography-quadrupole-linear ion trap-mass spectrometry for simultaneous analysis of pharmaceuticals in wastewaters. J. Chromatogr. A 2013, 1291, 19–26. [Google Scholar] [CrossRef]
- Vázquez, M.P.; Vázquez, P.P.; Galera, M.M.; García, M.G. Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction prior to high-performance liquid chromatography and fluorescence detection. Anal. Chim. Acta 2012, 748, 20–27. [Google Scholar] [CrossRef]
- Ji, Y.; Du, Z.; Zhang, H.; Zhang, Y. Rapid analysis of non-steroidal anti-inflammatory drugs in tap water and drinks by ionic liquid dispersive liquid-liquid microextraction coupled to ultra-high performance supercritical fluid chromatography. Anal. Methods 2014, 6, 7294–7304. [Google Scholar] [CrossRef]
- Xu, X.; Su, R.; Zhao, X.; Liu, Z.; Zhang, Y.; Li, D.; Li, X.; Zhang, H.; Wang, Z. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma. Anal. Chim. Acta 2011, 707, 92–99. [Google Scholar] [CrossRef]
- Ge, D.; Lee, H.K. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples. J. Chromatogr. A 2013, 1317, 217–222. [Google Scholar] [CrossRef]
- Zhao, R.S.; Wang, X.; Sun, J.; Hu, C.; Wang, X.K. Determination of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchim. Acta 2011, 174, 145–151. [Google Scholar] [CrossRef]
- Toledo-Neira, C.; Álvarez-Lueje, A. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array—Fluorescence detection. Talanta 2015, 134, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Zare, F.; Ghaedi, M.; Daneshfar, A. Ionic-liquid-based surfactant-emulsified microextraction procedure accelerated by ultrasound radiation followed by high-performance liquid chromatography for the simultaneous determination of antidepressant and antipsychotic drugs. J. Sep. Sci. 2015, 38, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, W.; Zhang, H.; Gu, F.; Jin, X. Salting-out homogenous extraction followed by ionic liquid/ionic liquid liquid-liquid micro-extraction for determination of sulfonamides in blood by high performance liquid chromatography. Talanta 2016, 161, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. J. Chromatogr. B 2009, 877, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Li, B.; Liu, M.S.; Yang, Y.L. Separation and pre-concentration of glucocorticoids in water samples by ionic liquid supported vortex-assisted synergic microextraction and HPLC determination. J. Sep Sci. 2013, 36, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, L.; Lu, C.; Li, N.; Hu, M.; Wang, Z. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples. J. Sep. Sci. 2014, 37, 3533–3538. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, J.F.; Hu, X.L.; Li, H.C.; Wang, T.; Jiang, G.B. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 6259–6266. [Google Scholar] [CrossRef]
- Goh, S.X.L.; Goh, H.A.; Lee, H.K. Automation of ionic liquid enhanced membrane bag-assisted-liquid-phase microextraction with liquid chromatography-tandem mass spectrometry for determination of glucocorticoids in water. Anal. Chim. Acta 2018, 1035, 77–86. [Google Scholar] [CrossRef]
- Hanapi, N.S.M.; Sanagi, M.M.; Ismail, A.K.; Ibrahim, W.A.W.; Saim, N.; Ibrahim, W.N.W. Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-μ-EME) for the analysis of antidepressants in water samples. J. Chromatogr. B 2017, 1046, 73–80. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, X.; Li, N.; Shi, Ji.; Zhang, H.; Wang, Z.; Zhang, H.; Yu, A.; Yu, Y. Ionic liquid-based aqueous two-phase system extraction of sulfonamides in milk. J. Chromatogr. B 2014, 961, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, Y.; Yu, C.; Li, C.; Yan, Y.; Liu, Y.; Wang, L. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Anal. Chim. Acta 2011, 685, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Yao, S. Magnetic ionic liquid aqueous two-phase system coupled with high performance liquid chromatography: A rapid approach for determination of chloramphenicol in water environment. J. Chromatogr. A 2017, 1481, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal. Chem. 2014, 59, 26–41. [Google Scholar] [CrossRef]
- Pang, X.; Bai, L.; Lan, D.; Guo, B.; Wang, H.; Liu, H.; Ma, Z. Development of an SPE Method Using Ionic Liquid-Based Monolithic Column for On-Line Cleanup of Human Plasma and Simultaneous Determination of Five Steroid Drugs. Chromatographia 2018, 81, 1391–1400. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; He, S.; Bai, L.; Liu, H. On-line SPE Using Ionic Liquid-Based Monolithic Column for the Determination of Antihypertensives in Human Plasma. Chromatographia 2016, 79, 441–449. [Google Scholar] [CrossRef]
- Ferreira, D.C.; De Toffoli, A.L.; Maciel, E.V.S.; Lanças, F.M. Online fully automated SPE-HPLC-MS/MS determination of ceftiofur in bovine milk samples employing a silica-anchored ionic liquid as sorbent. Electrophoresis 2018, 39, 2210–2217. [Google Scholar] [CrossRef]
- Da Silva, M.R.; Lanças, M.F. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples. J. Sep. Sci. 2018, 41, 2237–2244. [Google Scholar] [CrossRef]
- Yan, H.; Liu, S.; Gao, M.; Sun, N. Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine. J. Chromatogr. A 2013, 1294, 10–16. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Xiao, D.; Chuong, P.H.; He, J.; He, H. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis. J. Chromatogr. A. 2016, 1454, 1–8. [Google Scholar] [CrossRef]
- Taghvimi, A.; Hamidi, S.; Javadzadeh, Y. Mixed hemimicelle magnetic dispersive solid-phase extraction using carbon-coated magnetic nanoparticles for the determination of tramadol in urine samples. J. Sep. Sci. 2019, 42, 582–590. [Google Scholar] [CrossRef]
- Yan, H.; Gao, M.; Yang, C.; Qiu, M. Ionic liquid-modified magnetic polymeric microspheres as dispersive solid phase extraction adsorbent: A separation strategy applied to the screening of sulfamonomethoxine and sulfachloropyrazine from urine. Anal. Bioanal. Chem. 2014, 406, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, M.; Jiang, Ch.; Zhang, F.; Du, S.; Feng, W.; Zhang, H. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography. J. Sep. Sci. 2015, 38, 4127–4135. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yu, W.; Yang, X.; Liu, Z.; Jia, Y.; Zhang, H. On-line ionic liquid-based dynamic microwave-assisted extraction-high performance liquid chromatography for the determination of lipophilic constituents in root of Salvia miltiorrhiza Bunge. J. Sep. Sci. 2012, 35, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Yamini, Y.; Safari, M.; Asiabi, H. Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids. Microchim. Acta 2016, 183, 2297–2305. [Google Scholar] [CrossRef]
- Fontanals, N.; Ronka, S.; Borrull, F.; Trochimczuk, A.W.; Marcé, R.M. Supported imidazolium ionic liquid phases: A new material for solid-phase extraction. Talanta 2009, 80, 250–256. [Google Scholar] [CrossRef]
- Bratkowska, D.; Fontanals, N.; Ronka, S.; Trochimczuk, A.W.; Borrull, F.; Marcé, R.M. Comparison of different imidazolium supported ionic liquid polymeric phases with strong anion-exchange character for the extraction of acidic pharmaceuticals from complex environmental samples. J. Sep. Sci. 2012, 35, 1953–1958. [Google Scholar] [CrossRef]
- Zhu, G.; Cheng, G.; Wang, P.; Li, W.; Wang, Y.; Fan, J. Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 2019, 200, 307–315. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Jamshidi, S.; Rofouei, M.K.; Thorsen, G. Using magnetic core-shell nanoparticles coated with an ionic liquid dispersion assisted by effervescence powder for the micro-solid-phase extraction of four beta blockers from human plasma by ultra high performance liquid chromatography with mass. J. Sep. Sci. 2019, 42, 698–705. [Google Scholar] [CrossRef]
- Yang, M.; Wu, X.; Jia, Y.; Xi, X.; Yang, X.; Lu, R.; Zhang, R.; Gao, H.; Zhou, W. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal. Chim. Acta 2016, 906, 118–127. [Google Scholar] [CrossRef]
- Serrano, M.; Chatzimitakos, T.; Gallego, M.; Stalikas, C.D. 1-Butyl-3-aminopropyl imidazolium-functionalized graphene oxide as a nanoadsorbent for the simultaneous extraction of steroids and β-blockers via dispersive solid-phase microextraction. J. Chromatogr. A 2016, 1436, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernández, I.; Najafi, A.; Pino, V.; Anderson, J.L.; Ayala, J.H.; Afonso, A.M. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta 2016, 158, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talebpour, Z.; Taraji, M.; Adib, N. Stir bar sorptive extraction and high performance liquid chromatographic determination of carvedilol in human serum using two different polymeric phases and an ionic liquid as desorption solvent. J. Chromatogr. A 2012, 1236, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Męczykowska, H.; Kobylis, P.; Stepnowski, P.; Caban, M. Calibration of Passive Samplers for the Monitoring of Pharmaceuticals in Water-Sampling Rate Variation. Crit. Rev. Anal. Chem. 2017, 47, 204–222. [Google Scholar] [CrossRef]
- Caban, M.; Męczykowska, H.; Stepnowski, P. Application of the PASSIL technique for the passive sampling of exemplary polar contaminants (pharmaceuticals and phenolic derivatives) from water. Talanta 2016, 155, 185–192. [Google Scholar] [CrossRef]
- Męczykowska, H.; Stepnowski, P.; Caban, M. Effect of salinity and pH on the calibration of the extraction of pharmaceuticals from water by PASSIL. Talanta 2018, 179, 271–278. [Google Scholar] [CrossRef]
- Męczykowska, H.; Stepnowski, P.; Caban, M. Impact of humic acids, temperature and stirring on passive extraction of pharmaceuticals from water by trihexyl (tetradecyl) phosphonium dicyanamide. Microchem. J. 2019, 144, 500–505. [Google Scholar] [CrossRef]
- Petruczynik, A.; Wróblewski, K.; Waksmundzka-Hajnos, M. Application of mobile phases containing ionic liquid for the analysis of selected psychotropic drugs by HPLC-DAD and HPLC-MS. Acta Chromatogr. 2018, 31, 255–261. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. J. Chromatogr. A 2009, 1216, 7281–7287. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples. Anal. Bioanal. Chem. 2008, 392, 1439–1446. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Baczek, T.; Kaliszan, R. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids. Anal. Chim. Acta 2005, 547, 172–178. [Google Scholar] [CrossRef]
- Nageswara Rao, R.; Ramachandra, B.; Mastan Vali, R. Reversed-phase liquid chromatographic separation of antiretroviral drugs on a monolithic column using ionic liquids as mobile phase additives. J. Sep. Sci. 2011, 34, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Anal. Bioanal. Chem. 2008, 391, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Somova, V.D.; Bessonova, E.A.; Kartsova, L.A. A new version of hydrophilic interaction liquid chromatography with the use of ionic liquids based on imidazole for the determination of highly polar drugs in body fluids. Аналитика И Контроль 2017, 21, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Calabuig-Hernández, S.; Peris-García, E.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Suitability of 1-hexyl-3-methylimidazolium ionic liquids for the analysis of pharmaceutical formulations containing tricyclic antidepressants. J. Chromatogr. A 2018, 1559, 118–127. [Google Scholar] [CrossRef]
- Fernández-Navarro, J.J.; Torres-Lapasió, J.R.; Ruiz-Ángel, M.J.; García-Álvarez-Coque, M.C. Silanol suppressing potency of alkyl-imidazolium ionic liquids on C18 stationary phases. J. Chromatogr. A 2012, 1232, 166–175. [Google Scholar] [CrossRef]
- Ubeda-Torres, M.T.; Ortiz-Bolsico, C.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds. J. Chromatogr. A 2015, 1380, 96–103. [Google Scholar] [CrossRef]
- Fernández-Navarro, J.J.; García-Álvarez-Coque, M.C.; Ruiz-Ángel, M.J. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. J. Chromatogr. A 2011, 1218, 398–407. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants. Anal. Chim. Acta 2017, 967, 102–110. [Google Scholar] [CrossRef]
- Han, D.; Wang, Y.; Jin, Y.; Row, K.H. Analysis of some β-Lactam antibiotics using ionic liquids as mobile phase additives by RP-HPLC. J. Chromatogr. Sci. 2011, 49, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Angel, M.J.; Carda-Broch, S.; Berthod, A. Ionic liquids versus triethylamine as mobile phase additives in the analysis of β-blockers. J. Chromatogr. A 2006, 1119, 202–208. [Google Scholar] [CrossRef]
- Flieger, J. Effect of Ionic Liquids as Mobile-Phase Additives on Chromatographic Parameters of Neuroleptic Drugs in Reversed-Phase High-Performance Liquid Chromatography. Anal. Lett. 2009, 42, 1632–1649. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Baczek, T.; Kaliszan, R. Evaluation of the silanol-suppressing potency of ionic liquids. J. Sep. Sci. 2006, 29, 1138–1145. [Google Scholar] [CrossRef]
- Shu, X.H.J.; Liu, F.; Zhou, X.; Jiang, S.X.; Liu, X.; Zhao, L. Surface confined ionic liquid—A new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin. Chem. Lett. 2004, 15, 1060–1062. [Google Scholar]
- Zhang, M.; Chen, J.; Gu, T.; Qiu, H.; Jiang, S. Novel imidazolium-embedded and imidazolium-spaced octadecyl stationary phases for reversed phase liquid chromatography. Talanta 2014, 126, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Huanjun, P.; Xiang, W.; Dengying, L.; Ranxi, N.; Jun, C.; Shiyu, L.; Zhongying, Z.; Jingdong, P. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2013, 1286, 137–145. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, M.; Chen, J.; Gu, T.; Takafuji, M.; Ihara, H. Anionic and cationic copolymerized ionic liquid-grafted silica as a multifunctional stationary phase for reversed-phase chromatography. Anal. Methods 2014, 6, 469–475. [Google Scholar] [CrossRef]
- Sun, M.; Feng, J.; Wang, X.; Duan, H.; Li, L.; Luo, C. Dicationic imidazolium ionic liquid modified silica as a novel reversed-phase/anion-exchange mixed-mode stationary phase for high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- He, S.; He, Y.; Cheng, L.; Wu, Y.; Ke, Y. Novel chiral ionic liquids stationary phases for the enantiomer separation of chiral acid by high-performance liquid chromatography. Chirality 2018, 30, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Mallik, A.K.; Takafuji, M.; Jiang, S.; Ihara, H. New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst 2012, 137, 2553. [Google Scholar] [CrossRef]
- Rahim, N.Y.; Tay, K.S.; Mohamad, S. Chromatographic and spectroscopic studies on β-cyclodextrin functionalized ionic liquid as chiral stationary phase: Enantioseparation of NSAIDs. Adsorpt. Sci. Technol. 2018, 36, 130–148. [Google Scholar] [CrossRef]
- Rahim, N.Y.; Tay, K.S.; Mohamad, S. β-Cyclodextrin functionalized ionic liquid as chiral stationary phase of high performance liquid chromatography for enantioseparation of β-blockers. J. Incl. Phenom. Macrocl. Chem. 2016, 85, 303–315. [Google Scholar] [CrossRef]
- Xian, H.; Peng, H.; Wang, X.; Long, D.; Ni, R.; Chen, J.; Li, S.; Zhang, Z.; Peng, Z. Preparation and evaluation a mixed-mode stationary phase with imidazolium and carboxyl group for high performance liquid chromatography. Microchem. J. 2019, 150, 104131. [Google Scholar] [CrossRef]
- Dai, Q.; Ma, J.; Ma, S.; Wang, S.; Li, L.; Zhu, X.; Qiao, X. Cationic Ionic Liquids Organic Ligands Based Metal-Organic Frameworks for Fabrication of Core-Shell Microspheres for Hydrophilic Interaction Liquid Chromatography. ACS Appl. Mater. Inter. 2016, 8, 21632–21639. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Lv, W.; Chang, M.; Shi, X.; Xu, G. Surface-bonded amide-functionalized imidazolium ionic liquid as stationary phase for hydrophilic interaction liquid chromatography. J. Chromatogr. A 2018, 1559, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sun, Y.; Gao, J.; Chen, L.; Dong, S.; Luo, G.; Li, H.; Wang, L.; Zhao, L. Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. New J. Chem. 2018, 42, 8672–8680. [Google Scholar] [CrossRef]
- Domínguez, C.; Reyes-Contreras, C.; Bayona, J.M. Determination of benzothiazoles and benzotriazoles by using ionic liquid stationary phases in gas chromatography mass spectrometry. Application to their characterization in wastewaters. J. Chromatogr. A 2012, 1230, 117–122. [Google Scholar] [CrossRef]
- Nan, H.; Anderson, J.L. Ionic liquid stationary phases for multidimensional gas chromatography. TrAC Trends Anal. Chem. 2018, 105, 367–379. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Domínguez, C.; Bayona, J.M. Determination of nitrosamines and caffeine metabolites in wastewaters using gas chromatography mass spectrometry and ionic liquid stationary phases. J. Chromatogr. A 2012, 1261, 164–170. [Google Scholar] [CrossRef]
- Ragonese, C.; Sciarrone, D.; Tranchida, P.Q.; Dugo, P.; Mondello, L. Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques. J. Chromatogr. A 2012, 1255, 130–144. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, V.; Afonso, M.J.; Pino, A.M. Analytical Applications of Ionic Liquids in Chromatographic and Electrophoretic Separation Techniques. In Ionic Liquids for Better Separation Processes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 193–233. [Google Scholar] [CrossRef]
- Berthod, A.; Ruiz-Ángel, M.J.; Carda-Broch, S. Recent advances on ionic liquid uses in separation techniques. J. Chromatogr. A 2018, 1559, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; He, J.; Qi, M.; Huang, X. Amphiphilic triptycene-based stationary phase for high-resolution gas chromatographic separations. J. Chromatogr. A 2019, 1599, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Cagliero, C.; Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. Room temperature ionic liquids: New GC stationary phases with a novel selectivity for flavor and fragrance analyses. J. Chromatogr. A 2012, 1268, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Cagliero, C.; Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. J. Chromatogr. A 2017, 1495, 64–75. [Google Scholar] [CrossRef]
- Zeng, A.X.; Chin, S.T.; Nolvachai, Y.; Kulsing, C.; Sidisky, L.M.; Marriott, P.J. Characterisation of capillary ionic liquid columns for gas chromatography–mass spectrometry analysis of fatty acid methyl esters. Anal. Chim. Acta 2013, 803, 166–173. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Rodríguez-Pino, V.; Juárez, M.; De la Fuente, M.A. Optimization of milk odd and branched-chain fatty acids analysis by gas chromatography using an extremely polar stationary phase. Food Chem. 2017, 231, 11–18. [Google Scholar] [CrossRef]
- Talebi, M.; Patil, R.A.; Sidisky, L.M.; Berthod, A.; Armstrong, D.W. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography. Anal. Bioanal. Chem. 2018, 410, 4633–4643. [Google Scholar] [CrossRef]
- Hammann, S.; Vetter, W. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column. J. Chromatogr. B 2015, 1007, 67–71. [Google Scholar] [CrossRef]
- Lin, C.C.; Wasta, Z.; Mjøs, S.A. Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters. J. Chromatogr. A 2014, 1350, 83–91. [Google Scholar] [CrossRef]
- Krupčík, J.; Gorovenko, R.; Špánik, I.; Bočková, I.; Sandra, P.; Armstrong, D.W. On the use of ionic liquid capillary columns for analysis of aromatic hydrocarbons in low-boiling petrochemical products by one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2013, 1301, 225–236. [Google Scholar] [CrossRef]
- Frink, L.A.; Armstrong, D.W. Determination of Trace Water Content in Petroleum and Petroleum Products. Anal. Chem. 2016, 88, 8194–8201. [Google Scholar] [CrossRef] [PubMed]
- González Paredes, R.M.; García Pinto, C.; Pavón, J.L.P.; Moreno Cordero, B. Ionic liquids as stationary phases in gas chromatography: Determination of chlorobenzenes in soils. J. Sep. Sci. 2014, 37, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Do, L.; Liljelind, P.; Zhang, J.; Haglund, P. Comprehensive profiling of 136 tetra- to octa-polychlorinated dibenzo-p-dioxins and dibenzofurans using ionic liquid columns and column combinations. J. Chromatogr. A 2013, 1311, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Boczkaj, G.; Makoś, P.; Przyjazny, A. Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents. Anal. Methods 2016, 8, 3570–3577. [Google Scholar] [CrossRef] [Green Version]
- Escudero, L.B.; Grijalba, C.A.; Martinis, E.M.; Wuilloud, R.G. Bioanalytical separation and preconcentration using ionic liquids. Anal. Bioanal. Chem. 2013, 405, 7597–7613. [Google Scholar] [CrossRef] [PubMed]
- Destaillats, F.; Guitard, M.; Cruz-Hernandez, C. Identification of Δ6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. J. Chromatogr. A 2011, 1218, 9384–9389. [Google Scholar] [CrossRef]
- Zapadlo, M.; Krupčík, J.; Kovalczuk, T.; Májek, P.; Špánik, I.; Armstrong, D.W.; Sandrae, P. Enhanced comprehensive two-dimensional gas chromatographic resolution of polychlorinated biphenyls on a non-polar polysiloxane and an ionic liquid column series. J. Chromatogr. A 2011, 1218, 746–751. [Google Scholar] [CrossRef]
- Frink, L.A.; Weatherly, C.A.; Armstrong, D.W. Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols. J. Pharm. Biomed. Anal. 2014, 94, 111–117. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, Y. Room temperature ionic liquid as matrix medium for the determination of residual solvents in pharmaceuticals by static headspace gas chromatography. J. Chromatogr. A 2007, 1167, 116–119. [Google Scholar] [CrossRef]
- Ho, T.D.; Yehl, P.M.; Chetwyn, N.P.; Wang, J.; Anderson, J.L.; Zhong, Q. Determination of trace level genotoxic impurities in small molecule drug substances using conventional headspace gas chromatography with contemporary ionic liquid diluents and electron capture detection. J. Chromatogr. A 2014, 1361, 217–228. [Google Scholar] [CrossRef]
- Ni, M.; Sun, T.; Zhang, L.; Liu, Y.; Xu, M.; Jiang, Y. Relationship study of partition coefficients between ionic liquid and headspace for organic solvents by HS-GC. J. Chromatogr. B 2014, 945–946, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Laus, G.; Andre, M.; Bentivoglio, G.; Schottenberger, H. Ionic liquids as superior solvents for headspace gas chromatography of residual solvents with very low vapor pressure, relevant for pharmaceutical final dosage forms. J. Chromatogr. A 2009, 1216, 6020–6023. [Google Scholar] [CrossRef] [PubMed]
- Mieszkowski, D.; Sroka, W.D.; Marszałł, M.P. Influence of the anionic part of 1-Alkyl-3-methylimidazolium-based ionic liquids on the chromatographic behavior of perazine in RP-HPTLC. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1499–1506. [Google Scholar] [CrossRef]
- Buszewska-Forajta, M.; Markuszewski, M.J.; Kaliszan, R. Free silanols and ionic liquids as their suppressors in liquid chromatography. J. Chromatogr. A 2018, 1559, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Marszall, M.P.; Sroka, W.D.; Balinowska, A.; Mieszkowski, D.; Koba, M.; Kaliszan, R. Ionic Liquids as Mobile Phase Additives for Feasible Assay of Naphazoline in Pharmaceutical Formulation by HPTLC-UV-Densitometric Method. J. Chromatogr. Sci. 2013, 51, 560–565. [Google Scholar] [CrossRef]
- Kaliszan, R.; Marszałł, M.P.; Markuszewski, M.J.; Bączek, T.; Pernak, J. Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids. J. Chromatogr. A 2004, 1030, 263–271. [Google Scholar] [CrossRef]
- Mieszkowski, D.; Siódmiak, T.; Marszałł, M.P. 1-alkyl-3-methylimidazolium tetrafluoroborate as an alternative mobile phase additives for determination of haloperidol in pharmaceutical formulation by HPTLC UV densitometric method. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1524–1534. [Google Scholar] [CrossRef]
- Lu, J.; Ma, H.Y.; Zhang, W.; Ma, Z.G.; Yao, S. Separation of Berberine Hydrochloride and Tetrahydropalmatine and Their Quantitative Analysis with Thin Layer Chromatography Involved with Ionic Liquids. J. Anal. Methods Chem. 2015, 2015, 642401. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A. Application of mobile phases containing ionic liquid for the separation of a mixture of ten selected isoquinoline alkaloids by 2D-TLC and identification of analytes in Rhizoma Coptidis (Huang Lian) Extract by TLC and HPLC—DAD. J. Planar Chromatogr. Mod. TLC 2017, 30, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Roth, M. Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids. J. Chromatogr. A 2009, 1216, 1861–1880. [Google Scholar] [CrossRef]
- Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, Ö. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 2007, 43, 150–180. [Google Scholar] [CrossRef]
- Lemasson, E.; Bertin, S.; Hennig, P.; Boiteux, H.; Lesellier, E.; West, C. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition. J. Chromatogr. A 2015, 408, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Smuts, J.; Wanigasekara, E.; Armstrong, D.W. Comparison of stationary phases for packed column supercritical fluid chromatography based upon ionic liquid motifs: A study of cation and anion effects. Anal. Bioanal. Chem. 2011, 400, 435–447. [Google Scholar] [CrossRef]
- Chou, F.M.; Wang, W.T.; Wei, G.T. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. J. Chromatogr. A 2009, 1216, 3594–3599. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Markuszewski, M.J.; Kaliszan, R. Separation of nicotinic acid and its structural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. J. Pharm. Biomed. Anal. 2006, 41, 329–332. [Google Scholar] [CrossRef]
- Qin, W.; Li, S.F.Y. An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry. Electrophoresis 2002, 23, 4110–4116. [Google Scholar] [CrossRef]
- Abd El-Hady, D.; Albishri, H.M.; Rengarajan, R. Eco-friendly ionic liquid assisted capillary electrophoresis and α -acid glycoprotein-assisted liquid chromatography for simultaneous determination of anticancer drugs in human fluids. Biomed. Chromatogr. 2015, 29, 925–934. [Google Scholar] [CrossRef]
- Huang, L.; Lin, J.M.; Yu, L.; Xu, L.; Chen, G. Improved simultaneous enantioseparation of β-agonists in CE using β-CD and ionic liquids. Electrophoresis 2009, 30, 1030–1036. [Google Scholar] [CrossRef]
- Jiang, T.F.; Wang, Y.H.; Lv, Z.H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. J. Anal. Chem. 2006, 61, 1108–1112. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Yang, C.F.; Whang, C.W. Capillary electrophoretic separation of tricyclic antidepressants using 1-Alkyl-3-methylimidazolium-based ionic liquids as background electrolyte. J Chin. Chem. Soc. 2009, 56, 351–359. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, Y.; Yu, J.; Xu, S.; Guo, X. Combined use of hydroxypropyl-β-cyclodextrin and ionic liquids for the simultaneous enantioseparation of four azole antifungals by CE and a study of the synergistic effect. J. Sep. Sci. 2014, 37, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Tian, W.; Jia, Y.X.; Yue, H.Y. The use of CE ECL with ionic liquid for the determination of drug alkaloids and applications in human urine. Electrophoresis 2009, 30, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, C.; Meng, L.; Chen, J.; Li, M.; Zhu, Z. Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives. Talanta 2012, 89, 149–154. [Google Scholar] [CrossRef]
- François, Y.; Varenne, A.; Juillerat, E.; Villemin, D.; Gareil, P. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis. J. Chromatogr. A 2007, 1155, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Du, Y. Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis. J. Chromatogr. A 2013, 1306, 97–103. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, X.; Feng, C.; Tong, S.; Rui, M. Three chiral ionic liquids as additives for enantioseparation in capillary electrophoresis and their comparison with conventiona modifiers. J. Chromatogr. A 2016, 1462, 146–152. [Google Scholar] [CrossRef]
- Zuo, L.; Meng, H.; Wu, J.; Jiang, Z.; Xu, S.; Guo, X. Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE. J. Sep Sci. 2013, 36, 517–523. [Google Scholar] [CrossRef]
- Kolobova, E.; Kartsova, L.; Alopina, E.; Smirnova, N. Separation of amino acids and β-blockers enantiomers by capillary electrophoresis with 1-butyl-3-methylimidazolium L-prolinate [C4MIm][L-Pro] as a chiral selector. Anal. I Kontrol 2018, 22, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Du, Y.; Du, S.; Zhang, J.; Feng, Z.; Zhang, Y.; Li, X. Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis. Electrophoresis 2015, 36, 1216–1223. [Google Scholar] [CrossRef]
- Zhang, J.; Du, Y.; Zhang, Q.; Chen, J.; Xu, G.; Yu, T.; Hua, X.J. Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis. J. Chromatogr. A 2013, 1316, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Du, Y.; Zhang, Q.; Lei, Y. Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti-inflamatory drugs by capillary electrophoresis. Talanta 2014, 119, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Du, Y.; Du, F.; Chen, J.; Yu, T.; Zhang, Q.; Zhang, J.; Du, S.; Feng, Z. Establishment and Evaluation of the Novel Tetramethylammonium-l-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis. Chirality 2015, 27, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, Y.; Feng, Z.; Liu, Z.; Li, J. Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis. J. Chromatogr. A 2018, 1559, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Du, Y.; Sun, X. Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis. Chirality 2017, 29, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, S.; Feng, Z.; Du, Y.; Yan, Z. Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis. Anal. Bioanal. Chem. 2016, 408, 2543–2555. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Yu, T.; Feng, Z.; Chen, J. Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis. J. Pharm. Biomed. Anal. 2019, 164, 413–420. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Y.; Du, S. Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J. Chromatogr. A 2014, 1339, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zuo, L.; Liu, H.; Zhang, L.; Guo, X. Synthesis and application of a chiral ionic liquid functionalized β-cyclodextrin as a chiral selector in capillary electrophoresis. Biomed. Chromatogr. 2013, 27, 1027–1033. [Google Scholar] [CrossRef]
- Wang, B.; He, J.; Bianchi, V.; Shamsi, S.A. Combined use of chiral ionic liquid and cyclodextrin for MEKC: Part I. Simultaneous enantioseparation of anionic profens. Electrophoresis 2009, 30, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; He, J.; Bianchi, V.; Shamsi, S.A. Combined use of chiral ionic liquid and CD for MEKC: Part II. Determination of binding constants. Electrophoresis 2009, 30, 2820–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Ma, X.; Zhao, M.; Jiang, Z.; Xu, S.; Guo, X. Combined Use of Ionic Liquid and Hydroxypropyl-β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis. Chirality 2013, 25, 409–414. [Google Scholar] [CrossRef]
- Su, H.L.; Kao, W.C.; Lin, K.W.; Lee, C.; Hsieh, Y.Z. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant: Excellent background electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. J. Chromatogr. A 2010, 1217, 2973–2979. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, L.; Lin, L.; Ji, P.; Guo, X. Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector. Biomed. Chromatogr. 2010, 24, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Olędzka, I.; Kowalski, P.; Plenis, A.; Miękus, N.; Grabow, N.; Eickner, T.; Bączek, T. Simultaneous electrokinetic and hydrodynamic injection and sequential stacking featuring sweeping for signal amplification following MEKC during the analysis of rapamycin (sirolimus) in serum samples. Electrophoresis 2018, 39, 2590–2597. [Google Scholar] [CrossRef]
- Kowalski, P.; Olędzka, I.; Plenis, A.; Miękus, N.; Pieckowski, M.; Bączek, T. Combination of field amplified sample injection and hydrophobic interaction electrokinetic chromatography (FASI-HIEKC) as a signal amplification method for the determination of selected macrocyclic antibiotics. Anal. Chim. Acta 2019, 1046, 192–198. [Google Scholar] [CrossRef]
Cation Structure | Full Name | Abbreviations | |
---|---|---|---|
Cations | Anions | ||
| 1-ethyl-3-methylimidazolium | hexafluorophosphate, tetrafluoroborate, chloride, bromide, bis(trifluoromethylsulfonyl)imide, methyl sulfate | [C2MIM][PF6], [C2MIM][BF4], [C2MIM][Cl], [C2MIM][Br], [C2MIM][Nf2T], [C2MIM][CH3(SO4)] |
| 1-butyl-3-methylimidazolium | hexafluorophosphate, tetrafluoroborate, chloride, bromide, bis(trifluoromethylsulfonyl)imide, nitrate, methyl sulfate, octyl sulfate, trifluoromethanesulfonate, dimethyl phosphate, hydroxide | [C4MIM][PF6], [C4MIM][BF4], [C4MIM][Cl], [C4MIM][Br], [C4MIM][Nf2T], [C4MIM][NO3], [C4MIM][CH3(SO4)], [C4MIM][C8H17(SO4)], [C4MIM][CF3SO4], [C4MIM][DMP], [C4MIM][OH] |
| 1-hexyl-3-methylimidazolium | hexafluorophosphate, tetrafluoroborate, chloride, bromide, bis(trifluoromethylsulfonyl)imide, tris(pentafluoroethyl)trifluoro-phosphate | [C6MIM][PF6], [C6MIM][BF4], [C6MIM][Cl], [C6MIM][Br], [C6MIM][Nf2T], [C6MIM][TFP] |
| 1-octyl-3-methylimidazolium | hexafluorophosphate, tetrafluoroborate, chloride, bromide, bis(trifluoromethylsulfonyl)imide | [C8MIM][PF6], [C8MIM][BF4], [C8MIM][Cl], [C8MIM][Br], [C8MIM][Nf2T] |
| methyltrioctylammonium | tetrachloroferrate, tetrachloromanganate(II) | [C8MAmm][FeCl4], [C8MAmm][MnCl42−] |
| ethyl-dimethyl-propylammonium | bis(trifluoromethylsulfonyl)imide | [NEMMP][Nf2T] |
| 1-butyl-3-methylammonium | bis(trifluoromethylsulfonyl)imide | [C4M3Amm][Nf2T] |
| 1-butyl-1-methylpyrrolidinium | bis(trifluoromethylsulfonyl)imide, tetracyanoborate, tris(pentafluoroethyl)trifluoro-phosphate | [C4MPyrr][Nf2T], [C4MPyrr][B(CN)4] [C4MPyrr][TFP] |
| tetraethylammonium | tetrafluoroborate | [(C2H5)4N][BF4] |
| 1-dodecyl-3-methylimidazolium | chloride | [C12MIM][Cl] |
| 1-dodecyl-3-methylammonium | chloride | [C12MAmm][Cl] |
| 1-vinyl-3-butylimidazolium | chloride | [ViC4MIM][Cl] |
| 1-allyl-3-ethylimidazolium | bromide | [AC2MIM][Br] |
| 1,3-dimethylimidazolium | methyl sulfate | [MMIM]][CH3(SO4)] |
| 1-(6-amino-hexyl)-1-methylpyrrolidinium | tris(pentafluoroethyl)trifluoro-phosphate | [C6NH2MPyrr][TFP] |
| 1-ethoxycarbonyl-methyl-1-methyl-pyrrolidinium | tris(pentafluoroethyl)trifluoro-phosphate | [ECMMPyrr][TFP] |
| methoxyethyl-dimethylethyl-ammonium | tris(pentafluoroethyl)trifluoro-phosphate | [MOEDEAmm][TFP] |
| 1-methoxyethyl-3-methylimidazolium | tris(pentafluoroethyl)trifluoro-phosphate | [MOEMIM]][TFP] |
| 1-methoxyethyl-1-methylmorpholinium | tris(pentafluoroethyl)trifluorophosphate | [MOEMMO][TFP] |
| 1-methoxypropyl-1-methylpiperidinum | tris(pentafluoroethyl)trifluorophosphate | [MOPMPP][TFP] |
| trihexyltetradecylphosphonium | tetrachloromanganate(II), dicyanamide, bis(trifluoromethanesulfonyl) imide | [P6,6,6,14+]2[MnCl42−], [P6,6,6,14+][N(CN)2], [P6,6,6,14+][Nf2T] |
| tributyl(tetradecyl)phosphonium | p-dodecylbenzenesulfonate | [P4,4,4,14+][DDBS]) |
| tributyl(ethyl)phosphonium | diethylphosphate | [P2,4,4,4+][(2O)2PO2] |
Drug(s) | Matrices | Tested Ionic Liquids | Extraction Solvent | Analytical Technique | LOD [ng/mL] | Efficiency [%] | Ref. |
---|---|---|---|---|---|---|---|
LLE | |||||||
Environmental samples | |||||||
Ranitidine, nizatidine | River water, wastewater | [C4MIM][Nf2T] [C4MIM][PF6] | MeOH | HPLC-UV | 90 430 | 100.4 101.2 | [68] |
IL-DLLME | |||||||
Biological samples | |||||||
NSAIDs | Human urine | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | MeOH | HPLC-UV | 8.3–32 | 36.8–42.3 | [70] |
Anti-hypertensive drugs | Rat serum | [C4MIM][PF6] [C6MIM][PF6] [C4MIM][BF4] [C6MIM][Cl] [C2MIM][CH3(SO4)] | Acetone | HPLC-PDA | 15–20 | 92.8–98.5 | [80] |
Balofloxacin | Rat serum | [C4MIM][PF6] [C6MIM][PF6] [C4MIM][BF4] [C6MIM][Cl] [C4MIM][Br] [C2MIM][CH3(SO4)] | ACN | HPLC-DAD | 10 | 99.5 | [81] |
Rifaximin | Rat serum | [C4MIM][PF6] [C4MIM][BF4] [C6MIM][Cl] [C4MIM][Br] [C2MIM][CH3(SO4)] | MeOH | HPLC-DAD | 10 | 99.5 | [82] |
Ofloxacin | Human urine and plasma, tablets | [C6MIM][PF6] | Ethanol | SFIS | 29 | 89.5–93 | [86] |
Tetracycline | Eggs | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] [IMIM][PF6] | ACN | HPLC-DAD | 2–12 | 58.6–95.3 | [87] |
Fluoroquinolone | Chicken, pork and fish meat | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | ACN | HPLC-DAD | 0.5–1.1 | 60.4–96.3 | [88] |
Nifurtimox, benznidazole | Human plasma | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | MeOH | HPLC-UV | 15.7 3.66 | 98 79.8 | [72] |
Nifurtimox, benznidazole | Human breast milk | [C8MIM][PF6] | MeOH | HPLC-UV | 90 60 | 89.7 77.5 | [73] |
Sildenafil, Vardenafil, Aildenafil | Human plasma | [C8MIM][PF6] [C4MIM][PF6] | MeOH | HPLC-UV | 0.92–2.69 | 100.4–103.9 | [74] |
Ephedrine, Ketamine | Human urine | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | ACN | HPCE | 210 390 | 79–90 | [89] |
Daclatasvir | Rat serum | [C4MIM][PF6] [C6MIM][PF6] [C4MIM][BF4] [C4MIM][Br] [C6MIM][Cl] [C2MIM][CH3(SO4)] | ACN | HPLC-DAD | 15 | 99.4 | [90] |
Environmental samples | |||||||
NSAIDs, acetazolamide, caffeine, sulfonamides, carbamazepine, gemfibrozil | Tap water, creek water | [C6NH2MPyrr][TFP] [C4MIM][Cl] [C4MIM][Nf2T] [ECMMPyrr][TFP] [MOEDEAmm][TFP] [MOEMIM][TFP] [MOEMMO][TFP] [MOEMPyrr][TFP] [MOPMPP][TFP] | MeOH/Acetone | HPLC-UV | 0.1–55.1 | 91–110 | [92] |
Triclosan, triclocarbon | Tap water, wastewater | [C6MIM][PF6] [C4MIM][BF4] | MeOH | LC-MS/MS | 0.040–0.58 | 70.0–103.5 | [93] |
DLLME modifications | |||||||
Biological samples | |||||||
US-IL-DLLME | |||||||
Salmeterol | Dried blood spot | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | MeOH | HPLC-FL | 0.30 | 90 | [71] |
Citalopram, nortriptyline | Human plasma | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | HPLC-PDA | 10 6 | 90–92 | [79] | |
Venlafaxine, amitriptyline | Human plasma | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | HPLC-DAD | 0.5 0.8 | 91.4–92.6 | [83] | |
Ulipristal | Mice serum, tablets | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | HPLC-UV | 6.8 9.3 | 95 | [75] | |
Benzodiazepines and benzodiazepine-like | Human blood, post-mortem human blood | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | LC-MS/MS | 0.03–4.74 | 24.7–126.2 | [15,76,77] | |
Antidepressants | Human blood | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] [C4MPyrr][Nf2T] [C4M3Amm][Nf2T] | LC-MS/MS | 1–2 | 53.11–132.98 | [78] | |
DLLME (rapid shooting) | |||||||
Danazol | Mice serum, capsules | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | UV | 55 54 | 90.5–103.4 | [84] | |
TCIL-DLPME | |||||||
Piroxicam | Human urine, plasma, and tablets | [C6MIM][PF6] | SFIS | 46 | 95.2–104 | [85] | |
Environmental samples | |||||||
US-IL-DLLME | |||||||
Lovastatin, simvastatin | Tap water, lake water, river water | [C6MIM][PF6] | MeOH | HPLC-UV | 0.17 0.29 | 90.0–102.2, 80.5–112.0 | [95] |
β-Blockers NSAIDs | Wastewaters | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | ACN | LC-MS | 0.0002–0.060 | 88–111 | [97] |
Fluoroquinolones | Groundwater | [C8MIM][PF6] [C4MIM][PF6] [C6MIM][PF6] | MeOH | HPLC-FL | 0.0008–0.013 | 105–107 | [98] |
NSAIDs | Tap water, drinking water | [C8MIM][PF6], [C4MIM][PF6] | MeOH | UHPSFC-PDA | 0.62–7.69 | 81.4–107.5 | [99] |
MADLLME | |||||||
Derivatization of sulfonamides | River water | [C6MIM][PF6], [C4MIM][PF6], [C8MIM][PF6] | MeOH | HPLC-FD | 0.011–0.018 | 95.0–110.8 | [100] |
MIL-DLLME | |||||||
Acetaminophen sulfamethoxypyridazine, phenacetin, ketoprofen | Lake water, river water | [P6,6,6,14+]2[MnCl42−] [Aliquat+]2[MnCl42−] [C8MAmm][MnCl42−] | ACN/MeOH | HPLC-UV | 0.25–1.0 | 42.9–114.7 | [94] |
IL-DLLME-μ-SPE | |||||||
Antidepressant drugs | Canal water | [C6MIM][TFP] [C6MIM][Nf2T] | Methanol | HPLC-UV | 0.3–1.0 | 94.3–114.7 | [101] |
IL-DLLME-SDS | |||||||
Tetracyclines | River water, fishpond water, leaching water | [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] | Methanol | UHPLC-TUV | 0.031–0.079 | 55.1–96.3 | [96] |
IL/IL-DLLME | |||||||
Triclocarbon, triclosan | Tap, river, snow, Lake water | Hydrophobic: [C4MIM][PF6] [C6MIM][PF6] [C8MIM][PF6] Hydrophilic: [C2MIM][BF4] [C4MIM][BF4] [C4MIM][NO3] | - | LC-MS/MS | 0.23 0.35 | 88–111 | [102] |
NSAIDs | Tap water, River water | [C4MIM][BF4] [C4MIM][PF6] [NEMMP][Nf2T] [MOEDEA][TFP] | Methanol | HPLC-DADHPLC-FL | 17–95 | 89–103 | [103] |
Other liquid phase extraction | |||||||
Biological samples | |||||||
IL-SE-UE-ME | |||||||
Doxepin, perphenazine | Human urine | [C6MIM][PF6] [C6MIM][Nf2T] [C4MIM][PF6] | HPLC-MWD | 100 1000 | 89–98 | [104] | |
IL/IL LPME | |||||||
Sulfonamides | Human, chicken, rabbit, cow, pig blood | [C4MIM][BF4] [C6MIM][PF6] | HPLC-UV | 3.77–5.21 | 90–113 | [105] | |
dLPME | |||||||
NSAIDS | Human urine | [C4MIM][PF6] | ACN | HPLC-UV | 38–70 | 72.8–90.3 | [91] |
Phenothiazines | Human urine | [C4MIM][PF6] | ACN | HPLC-UV | 21–60 | 72–98 | [106] |
Environmental samples | |||||||
SADBME | |||||||
Diclofenac, ibuprofen | Wastewater treatment plant, river and lake water | [C8MAmm][FeCl4] | ACN | HPLC-DAD | [64] | ||
ILSVA-SME | |||||||
Glucocorticoids | Mineral water, lake water, tap water | [C4MIM][PF6] | ACN | HPLC-DAD | 4.11–7.50 | ≥97.24 | [107] |
MA-LLME-SIL | |||||||
Sulfonamides | Tap water, lake water, river water, pool water | [C2MIM][PF6] | ACN | HPLC-UV | 0.33–0.85 | 75.1–115.8 | [108] |
Sulfonamides | Wastewater paddy water, river water | [C8MIM][PF6] | HPLC-UV | 0.1–0.4 | [109] | ||
(MBA)-LPME | |||||||
Glucocorticoids | Wastewater | [C4MIM][CH3(SO4)] [C4MIM]BF4] [C4MIM][Cl] [C4MIM][PF6] [C4MPyrr][TFP] [C6MIM][TFP] | MeOH | UHPLC-MS/MS | 0.0128–0.0470 | 49.40–83.1 | [110] |
IL-AF-μ-EME | |||||||
Antidepressants | Tap water, river water | [C6MIM][PF6] [C8MIM][PF6] | MeOH/ACN | HPLC-UV | 0.4 | 88.2–111.4, 90.9–107 | [111] |
IL-IDME | |||||||
Amitriptyline | Hospital wastewater | [C6MIM][PF6] | MeOH/ACN | HPLC-UV | 4.0 | 85.12 | [16] |
ATPS | |||||||
Biological samples | |||||||
Sulfonamides | Milk (from supermarket) | [C4MIM][BF4] [C2MIM][BF4] [C6MIM][BF4] [C8MIM][BF4] | ACN | HPLC-UV | 2.04–2.84 | 72.3–108.9 | [112] |
Sulfonamides | Pig, rabbit, cow, chicken and human blood | [C6MIM][Cl] [C4MIM][Cl] [C8MIM][Cl] | HPLC-UV | 2.45–4.13 | 85.5–110.9 | [67] | |
Environmental samples | |||||||
IL-ATPF | |||||||
Chlorampheni-col | Lake water, feed water | [C4MIM][Cl] [C8MIM][Cl] [C4MIM][BF4] | HPLC-UV | 0.1 | 97.1–101.9 | [113] | |
MILATPs | |||||||
Chloramphenicol | River water | [TMG][TEMPO-OSO3] | HPLC-UV | 0.14 | 94.6–99.7 | [114] |
Drug(s) | Matrice(s) | Tested Ionic Liquids | Apparatures | Stationary Phase | Ref. |
---|---|---|---|---|---|
Psychotropic drugs | Human serum | [C4MIM][BF4] | HPLC-DAD λ = 240 nm | Synergi Polar RP 80A (150 × 4.6 mm, 5 µm) | [140] |
Fluoroquinolone antibiotics | Bovine, ovine and caprine milk | [C2MIM][BF4], [C4MIM][BF4] | HPLC-FL λex = 280 nm λem = 450 nm | RP Nova-Pak C18 (150 × 3.9 mm, 4 µm) | [141] |
Fluoroquinolone antibiotics | Mineral and tap water | [C2MIM][BF4], [C4MIM][BF4], [C6MIM][BF4], [C8MIM][BF4], [(C2H5)4N][BF4] | HPLC-FL λex = 280 nm λem = 450 nm | RP Nova-Pak C18 (150 × 3.9 mm, 4 μm) | [142] |
Antiretroviral drugs | Rats plasma | [C4MIM][BF4], [C4MIM][Br], [C4MIM][C8H17(SO4)], [C2MIM][CH3(SO4)], [C6MIM][Cl] | HPLC-DAD | monolithic RP-18e column (250 × 4.6 mm, porous material) | [144] |
Antidepressants | Urine samples | [C4MIM][BF4], [C4MIM][PF6], [C4MIM][CF3SO4], | HPLC-UV λ = 254 nm | RP Eclipse X-DB-C8 (150 × 4.6 mm) | [145] |
Ofloxacin, sparfloxacin, moxifloxacin, levofloxacin, p-amino-salicylic acid, ketoprofen, ibuprofen | Human plasma | [C4MIM][Cl], [C6MIM][Cl], [C8MIM][Cl], [C12MIM][Cl], [C6MIM][BF4] | HPLC-DAD λ = 235–375 nm | Luna C18(150 × 4.6 mm, 5 μm) | [146] |
Tricyclic antidepressants | Tablets | [C6MIM][Cl], [C6MIM][BF4] | HPLC-UV λ = 254 nm | Zorbax Eclipse XDB C18 and C8 (150 × 4.6 mm, 5 µm) | [147] |
β-Blockers | [C2MIM][Cl], [C4MIM][Cl], [C6MIM][Cl] | HPLC-UV λ = 254 nm | Zorbax Eclipse XDB (150 × 4.6 mm, 5 µm) | [6] | |
β-Blockers | [C6MIM][Cl] | HPLC-UV λ = 254 nm, λ = 300 nm (timolol) | Zorbax Eclipse XDB C18 (150 × 4.6 mm, 5 µm) | [7] | |
Quinine, fluphenazine, thioridazine, chlorpromazine, trifluopromazine, phenazoline, tiamenidine, naphazoline propiomazine | [C2MIM][BF4], [MMIM][CH3(SO4)] | HPLC-DAD λ = 254 nm | LiChrospher RP-18 (250 × 4.6 mm, 5 µm) | [143] | |
β-Blockers | [C4MIM][BF4], [C6MIM][BF4] | HPLC-UV λ = 254 nm | Zorbax SB C18 X-Terra MS C18 Kromasil Lichrospher, Nucleosil, Spherisorb | [148] | |
β-Blockers | [C2MIM][Cl], [C4MIM][Cl], [C6MIM][Cl], [C2MIM][BF4], [C4MIM][BF4], [C6MIM][BF4], [C2MIM][PF6] | HPLC-DADλ = 254 nm, λ = 300 nm (timolol) | Kromasil C18 (150 × 4.6 mm, 5 µm) | [149] | |
β-Blockers | [C2MIM][PF6], [C4MIM][PF6], [C4MIM][BF4], [C6MIM][BF4] | HPLC-UV λ = 254 nm, λ = 300 nm (timolol) | Kromasil C18 (150 × 4.6 mm, 5 µm) | [150] | |
Tricyclic antidepressants | [C4MIM][PF6], [C4MIM][Cl], | HPLC-DAD λ = 254 nm | Gemini-NX C18 (150 x 4.6 mm, 5 µm) | [151] | |
β-Lactam antibiotics | [C4MIM][BF4], [C6MIM][BF4], [C8MIM][BF4] | HPLC-UV λ = 254 nm | RS Tech C18 (250 × 4.6 mm, 5 μm) | [152] | |
β-Blockers | [C4MIM][BF4], [C8MIM][BF4], [C4MIM][PF6] | HPLC-UV λ = 254 nm | RP Kromasil C18 (150 × 4.6 mm, 5µm) | [153] | |
Neuroleptic Drugs | [C2MIM][PF6], [C4MIM][PF6], [C4MIM][Cl] | HPLC-DAD | Zorbax Extend-C18 (150 × 4.6 mm, 5 µm) | [154] | |
Naphazoline, phenazoline, chlorpromazine, fluphenazine; propiomazine, thioridazine | [C6MIM][BF4], [C8MIM][BF4], [MMIM][CH3(SO4)], | HPLC-DAD λ = 254 nm | LiChrospher RP-18 (250 × 4.6 mm, 5 µm) | [155] |
GC Capillary Column | Matrix Active Group |
---|---|
SLB-IL59 | 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide |
SLB-IL60 | 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide |
SLB-IL61 | 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethylsulfonate |
SLB-IL76 | Tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide |
SLB-IL82 | 1,12-Di(2,3-dimethylimidazolium)dodecane bis(trifluoromethylsulfonyl)imide |
SLB-IL110 | 1,9-Di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide |
SLB-IL111 | 1,5-Di(2,3-dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide |
SLB-ILD3606 | 1,5-Di(2,3-dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treder, N.; Bączek, T.; Wychodnik, K.; Rogowska, J.; Wolska, L.; Plenis, A. The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples—Trends and Perspectives. Molecules 2020, 25, 286. https://doi.org/10.3390/molecules25020286
Treder N, Bączek T, Wychodnik K, Rogowska J, Wolska L, Plenis A. The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples—Trends and Perspectives. Molecules. 2020; 25(2):286. https://doi.org/10.3390/molecules25020286
Chicago/Turabian StyleTreder, Natalia, Tomasz Bączek, Katarzyna Wychodnik, Justyna Rogowska, Lidia Wolska, and Alina Plenis. 2020. "The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples—Trends and Perspectives" Molecules 25, no. 2: 286. https://doi.org/10.3390/molecules25020286
APA StyleTreder, N., Bączek, T., Wychodnik, K., Rogowska, J., Wolska, L., & Plenis, A. (2020). The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples—Trends and Perspectives. Molecules, 25(2), 286. https://doi.org/10.3390/molecules25020286