Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Studies—Wheat Bran Extract
2.2. H Nuclear Magnetic Resonance Studies
2.2.1. NMR—Synthetic Mixtures
2.2.2. NMR Studies—Wheat Bran Extract
2.3. Mass Spectroscopy Studies
2.3.1. MS—Synthetic Mixtures
2.3.2. MS—Wheat Bran Extract
2.4. Fourier-Transform Infrared Spectroscopy Studies
2.4.1. FT-IR—Synthetic Mixtures
2.4.2. FT-IR—Wheat Bran Extract
2.5. Differential Scanning Calorimetry Studies
2.5.1. DSC—Synthetic Mixtures
2.5.2. DSC Studies—Wheat Bran Extract
2.6. Computational Analysis
3. Experimental
3.1. Materials
3.2. Extraction of Free Phenolic Acids
3.3. Analysis of Free Phenolic Acid Extract
3.4. Complex Preparation
3.5. Sample Preparation for NMR
3.6. Sample Preparation for Mass Spectroscopy (MS)
3.7. Nuclear Magnetic Resonance Spectroscopy (NMR)
3.8. Mass Spectroscopy (MS)
3.9. Fourier Transform InfraRed (FT-IR) Spectroscopy
3.10. Differential Scanning Calorimetry (DSC)
3.11. Computational Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baublis, A.; Clydesdale, F.; Decker, E. Antioxidants in wheat-based breakfast cereals. Cereal Foods World 2000, 45, 71–74. [Google Scholar]
- Onyeneho, S.N.; Hettiarachchy, N.S. Antioxidant activity of durum wheat bran. J. Agric. Food Chem. 1992, 40, 1496–1500. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Kroon, P.A.; Williamson, G.; Garcia-Conesa, M.-T. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Racical Biol. Med. 2001, 31, 304–314. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current research developments on polyphenolics of rapeseed/canola: A review. Food Chem. 1998, 62, 489–502. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Shahidi, F. Role of phenolics in flavor of rapeseed protein products. In Flavors: Formation, Analysis, and Packaging Influences; Contis, E.T., Ho, C.-T., Mussinan, C., Parliment, T., Shahidi, F., Spanier, A., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; Volume 40, pp. 597–609. [Google Scholar]
- Dass, C.R.; Jessup, W. Apolipoprotein A-I, cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. A review. J. Pharm. Pharmacol. 2000, 52, 731–761. [Google Scholar] [CrossRef]
- Voncina, B.; Vivod, V. Cyclodextrins in textile finishing. Text. Dyeing 2013, 53–75. [Google Scholar] [CrossRef] [Green Version]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today 2016, 21, 356–362. [Google Scholar] [CrossRef]
- Saenger, W. Stereochemistry of circularly closed oligosaccharides: Cyclodextrin structure and function. Biochem. Soc. Trans. 1983, 11, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef]
- Szejtli, J. Cyclodextrins and their inclusion complexes. Akad. Kiado 1982, 25, 22–174. [Google Scholar]
- Hedges, A.R. Industrial applications of cyclodextrins. Chem. Rev. 1998, 98, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Frazer, S.R. White Wheat: Biochemical and Sensory Characteristics of Bread. In Whole Grains Health; Marquart, L., Jacobs, D.R., McIntosh, G.H., Poutanen, K., Reicks, M., Eds.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 149–156. [Google Scholar]
- Challacombe, C.A.; Abdel-Aal, E.-S.M.; Seetharaman, K.; Duizer, L.M. Influence of phenolic acid content on sensory perception of bread and crackers made from red or white wheat. J. Cereal Sci. 2012, 56, 181–188. [Google Scholar] [CrossRef]
- Challacombe, C.A.; Seetharaman, K.; Duizer, L.M. Sensory characteristics and consumer acceptance of bread and cracker products made from red or white wheat. J. Food Sci. 2011, 76, S337–S346. [Google Scholar] [CrossRef]
- Armbrister, W.L. Relationship of Selected Phenolic Acids to Wheat Flavor. Ph.D. Dissertation, Kansas State University, Manhattan, KS, USA, 1995. [Google Scholar]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic Acids in Wheat Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Schneiderman, E.; Stalcup, A.M. Cyclodextrins: A versatile tool in separation science. J. Chromatogr. B Biomed. Sci. Appl. 2000, 745, 83–102. [Google Scholar] [CrossRef]
- Stražišar, M.; Andrenšek, S.; Šmidovnik, A. Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 2008, 110, 636–642. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Jia, W.; Chao, J.; Zhang, L. Theoretical and experimental study of the inclusion complexes of ferulic acid with cyclodextrins. Supramol. Chem. 2009, 21, 597–602. [Google Scholar] [CrossRef]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef]
- dos Santos, C.; Buera, P.; Mazzobre, F. Novel trends in cyclodextrins encapsulation. Applications in food science. Curr. Opin. Food Sci. 2017, 16, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Turabekova, M.; Rasulev, B. A QSAR toxicity study of a series of alkaloids with the lycoctonine skeleton. Molecules 2004, 9, 1194–1207. [Google Scholar] [CrossRef] [PubMed]
- Turabekova, M.A.; Rasulev, B.F.; Dzhakhangirov, F.N.; Salikhov, S.I. Aconitum and Delphinium alkaloids:“Drug-likeness” descriptors related to toxic mode of action. Environ. Toxicol. Pharmacol. 2008, 25, 310–320. [Google Scholar] [CrossRef]
- Stewart, J.J. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Simsek, T.; Simsek, S.; Mayer, C.; Rasulev, B. Combined computational and experimental study on the inclusion complexes of β-cyclodextrin with selected food phenolic compounds. Struct. Chem. 2019, 30, 1395–1406. [Google Scholar] [CrossRef]
- Simsek, T.; Simsek, S.; Mayer, C.; Rasulev, B. Experimental and Computational Study on the Inclusion Complexes of β-Cyclodextrin with Selected Food Phenolic Compounds. ChemRex 2019. [Google Scholar] [CrossRef] [Green Version]
- Puzyn, T.; Suzuki, N.; Haranczyk, M.; Rak, J. Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J. Chem. Inf. Model. 2008, 48, 1174–1180. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
(A) | Extract + | β-cyclodextrin | ||||||
δfree | δcomplex | ∆δ | ||||||
H1 | 5.0713 | 5.0741 | −0.0028 | |||||
H2 | 3.6506 | 3.6517 | −0.0011 | |||||
H3 | 3.9664 | 3.9445 | 0.0219 | |||||
H4 | 3.5858 | 3.5965 | −0.0107 | |||||
H5 | 3.8621 | 3.8311 | 0.0309 | |||||
H6 | 3.8786 | 3.8768 | 0.0018 | |||||
(B) | Calculated Properties of the Complex of Phenolic Acid/β-Cyclodextrin δH5, ππμ | |||||||
Complex | ET | Hf | ΔHϕ** | EHOMO | ELUMO | ΔHL | ||
CA-β-CD | −16,350.12 | −1476.23 | −9.81 | −9.362 | −1.203 | 8.159 | 3.764 | |
CO-β-CD | −16,058.7 | −1437.22 | −11.72 | −9.33 | −1.142 | 8.188 | 3.72 | |
FA-β-CD | −16,499.48 | −1469.97 | −9.28 | −8.972 | −0.893 | 8.079 | 3.791 | |
(CA + FA)-β-CD | - | - | −9.55 | - | - | - | 3.759 | |
(CO + FA)-β-CD | - | - | −10.5 | - | - | - | 3.731 | |
(CA + CO)-β-CD | - | - | −10.77 | - | - | - | 3.713 | |
(CA + CO + FA)-β-CD | - | - | −10.27 | - | - | - | 3.723 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simsek, T.; Rasulev, B.; Mayer, C.; Simsek, S. Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques. Molecules 2020, 25, 4275. https://doi.org/10.3390/molecules25184275
Simsek T, Rasulev B, Mayer C, Simsek S. Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques. Molecules. 2020; 25(18):4275. https://doi.org/10.3390/molecules25184275
Chicago/Turabian StyleSimsek, Tuba, Bakhtiyor Rasulev, Christian Mayer, and Senay Simsek. 2020. "Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques" Molecules 25, no. 18: 4275. https://doi.org/10.3390/molecules25184275
APA StyleSimsek, T., Rasulev, B., Mayer, C., & Simsek, S. (2020). Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques. Molecules, 25(18), 4275. https://doi.org/10.3390/molecules25184275