Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains
Abstract
:1. Introduction
2. Results
2.1. Carbohydrates Profile
2.2. Concentration of Total Polyphenols and Antioxidative Activity
2.3. Browning Index and Concentrations of 5-Hydroxymethylfurfural (HMF)
3. Discussion
3.1. Carbohydrates Profile
3.2. Concentration of Total Polyphenols and Antioxidative Activity
3.3. Browning Index and Concentrations of 5-Hydroxymethylfurfural (HMF)
3.4. Correlation and Linear Regression Analysis
4. Materials and Methods
4.1. Raw Material
4.2. Prepartation of the Congress Worts
4.3. Analytic Methods
4.3.1. High-Performance Liquid Chromatography (HPLC) Analysis of Carbohydrate Profile
4.3.2. High-Performance Liquid Chromatography (HPLC) Analysis of 5-Hydroxymethylfurfural (HMF) Content
4.3.3. Total Polyphenols Content
4.3.4. Antioxidative Activity
Ability to Iron Ions Reduction (FRAP)
Ability to Cation Radical ABTS•+ Reduction
4.3.5. Browning Index
4.3.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar]
- Kondo, K. Beer and health: Preventive effects of beer components on lifestyle-related diseases. Biofactors 2004, 22, 303–310. [Google Scholar] [CrossRef]
- Kołota, A.; Oczkowski, M.; Gromadzka-Ostrowska, J. Wpływ występujących w piwie związków polifenolowych na organizm–przegląd literatury. Alcohol. Drug Addict. 2014, 27, 273–281. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Bartoszek-Pączkowska, A. Bioaktywne Fitozwiązki W Chemoprewencji Przewlekłych Chorób Niezakaźnych–Owoce I Warzywa Czy Suplementy Diety? Żywność. Nauka. Technol. Jakość 2019, 1, 5–14. [Google Scholar]
- Blazewicz, J.; Kawa-Rygielska, J. Zalety technologiczne nietypowo suszonych słodów specjalnych. Przemysł Ferment. Owocowo Warzywny 2018, 1, 16–17. [Google Scholar] [CrossRef]
- Coghe, S.; Vanderhaegen, B.; Pelgrims, B.; Basteyns, A.V.; Delvaux, F.R. Characterization of dark specialty malts: New insights in color evaluation and pro-and antioxidative activity. J. Am. Soc. Brew. Chem. 2003, 61, 125–132. [Google Scholar] [CrossRef]
- Błażewicz, J.; Kawa-Rygielska, J.; Gasinski, A. Słody żytnie w ocenie technologicznej. Przemysł Ferment. Owocowo Warzywny 2019, 63. [Google Scholar] [CrossRef]
- Błażewicz, J.; Kawa-Rygielska, J.; Gasior, J. Słody specjalne z nasion roślin strączkowych. Przemysł Ferment. i Owocowo Warzywny 2019, 63. [Google Scholar] [CrossRef]
- Malt, V. Available online: https://vikingmalt.pl/oferta/ (accessed on 21 August 2020).
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall antioxidant properties of malt and how they are influenced by the individual constituents of barley and the malting process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Coghe, S.; Martens, E.; D’Hollander, H.; Dirinck, P.J.; Delvaux, F.R. Sensory and instrumental flavour analysis of wort brewed with dark specialty malts. J. Inst. Brew. 2004, 110, 94–103. [Google Scholar] [CrossRef]
- Baranwal, D. Malting: An indigenous technology used for improving the nutritional quality of grains: A review. Asian J. Dairy Food Res. 2017, 36, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.O.; Curto, A.F.; Guido, L.F. Determination of phenolic content in different barley varieties and corresponding malts by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Antioxidants 2015, 4, 563–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 2005, 41, 1941–1954. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, H.M.; Ames, J.M.; Chandra, S. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in ale. J. Am. Soc. Brew. Chem. 2003, 61, 203–209. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Morales, F.J. Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J. Agric. Food Chem. 2005, 53, 1403–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Echavarrı’a, A.P.; Paga’n, J.; Ibarz, A. Melanoidins formed by maillard reaction in food and their biological activity. Food. Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Michalska, A.; Zielinski, H. Produkty reakcji Maillarda w zywnosci. Żywność Nauka Technol. Jakość 2007, 14, 5–16. [Google Scholar]
- Aljahdali, N.; Gadonna-Widehem, P.; Anton, P.M.; Carbonero, F. Gut Microbiota Modulation by Dietary Barley Malt Melanoidins. Nutrients 2020, 12, 241. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.R.; Alagawany, M.; Bin-Jumah, M.; Othman, S.I.; Khafaga, A.F.; Shaheen, H.M.; Mohamed, E. The Toxicological Aspects of the Heat-Borne Toxicant 5-Hydroxymethylfurfural in Animals: A Review. Molecules 2020, 25, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Gasiński, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gąsior, J.; Pietrzak, W. Volatile Compounds Content, Physicochemical Parameters, and Antioxidant Activity of Beers with Addition of Mango Fruit (Mangifera Indica). Molecules 2020, 25, 3033. [Google Scholar] [CrossRef]
- Gasiński, A.; Kawa-Rygielska, J.; Szumny, A.; Gąsior, J.; Głowacki, A. Assessment of Volatiles and Polyphenol Content, Physicochemical Parameters and Antioxidant Activity in Beers with Dotted Hawthorn (Crataegus punctata). Foods 2020, 9, 775. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Pérez-Jiménez, J. What Contribution Is Beer to the Intake of Antioxidants in the Diet? In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 441–448. [Google Scholar]
- Tubaro, F. Antioxidant Activity of Beer’s Maillard Reaction Products: Features and Health Aspects. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 449–457. [Google Scholar]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and Melanoidins as Natural Antioxidants in Beer. Structure, Reactivity and Antioxidant Activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Coghe, S.; D’Hollander, H.; Verachtert, H.; Delvaux, F.R. Impact of dark specialty malts on extract composition and wort fermentation. J. Inst. Brew. 2005, 111, 51–60. [Google Scholar] [CrossRef]
- Briggs, D.E.; Brookes, P.A.; Stevens, R.B.C.A.; Boulton, C.A. Brewing: Science and Practice; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Oracz, J.; Nebesny, E. Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups. Eur. Food. Res. Technol. 2019, 245, 111–128. [Google Scholar] [CrossRef]
- Nanamori, M.; Watanabe, T.; Shinano, T.; Kihara, M.; Kawahara, K.; Yamada, S.; Osaki, M. Changes in saccharide, amino acid and S-methylmethionine content during malting of barley grown with different nitrogen and sulfur status. J. Sci. Food Agric. 2011, 91, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Dodig, D.; Basić, Z.; Vančetović, J.; Titan, P.; Đurić, N.; Tolimir, N. Free asparagine and sugars profile of cereal species: The potential of cereals for acrylamide formation in foods. Food Addit. Contam. Part A 2017, 34, 705–713. [Google Scholar]
- Vinje, M.A.; Duke, S.H.; Henson, C.A. Comparison of factors involved in starch degradation in barley germination under laboratory and malting conditions. J. Am. Soc. Brew. Chem. 2015, 73, 195–205. [Google Scholar] [CrossRef]
- Ferreira, I.M. Beer Carbohydrates. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 291–298. [Google Scholar]
- Mohsin, G.F.; Schmitt, F.J.; Kanzler, C.; Epping, J.D.; Buhrke, D.; Hornemann, A. Melanoidin formed from fructosylalanine contains more alanine than melanoidin formed from d-glucose with L-alanine. Food Chem. 2020, 305, 125459. [Google Scholar] [CrossRef]
- Zhao, H. Endogenous Antioxidants and Antioxidant Activities of Beers. In Processing and Impact on Antioxidants in Beverages; Academic Press: Cambridge, MA, USA, 2014; pp. 15–24. [Google Scholar]
- Dybkowska, E.; Sadowska, A.; Rakowska, R.; Debowska, M.; Swiderski, F.; Swiader, K. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz. Panstw. Zakl. Hig. 2017, 68, 347–353. [Google Scholar]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Atoba, T.M. Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. J. Food Sci. 2004, 69, FCT7–FCT10. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef]
- Woffenden, H.M.; Ames, J.M.; Chandra, S.; Anese, M.; Nicoli, M.C. Effect of kilning on the antioxidant and pro-oxidant activities of pale malts. J. Agric. Food Chem. 2002, 50, 4925–4933. [Google Scholar] [CrossRef]
- Fogarasi, A.L.; Kun, S.; Tankó, G.; Stefanovits-Bányai, É.; Hegyesné-Vecseri, B. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 2015, 167, 1–6. [Google Scholar] [CrossRef]
- Inns, E.L.; Buggey, L.A.; Booer, C.; Nursten, H.E.; Ames, J.M. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt. J. Agric. Food Chem. 2011, 59, 9335–9343. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, L.; Cao, L.; Lin, W.; Ye, X. Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (malus pumila mill, cv. Red Fuji) juice. Int. J. Food. Sci. Tech. 2015, 52, 8336–8342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Chen, K.T.; Lin, J.A.; Chen, Y.T.; Chen, Y.A.; Wu, J.T.; Hsieh, C.W. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 2019, 93, 271–280. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Lachenmeier, D.W. The margin of exposure of 5-hydroxymethylfurfural (HMF) in alcoholic beverages. Environ. Health Toxicol. 2012, 27, e2012016. [Google Scholar] [CrossRef] [PubMed]
- González, L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Hydroxymethylfurfural determination in cereal and insect bars by high-performance liquid chromatography-mass spectrometry employing a functionalized mesostructured silica as sorbent in solid-phase extraction. J. Chromatogr. A 2020, 1622, 461124. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, V.; Kumar, S.; Majid, I.; Aggarwal, P.; Suri, S. 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: Recent developments. Toxin Rev. 2020, 1–17. [Google Scholar] [CrossRef]
- Akıllıoglu, H.G.; Mogol, B.A.; Gökmen, V. Degradation of 5-hydroxymethylfurfural during yeast fermentation. Food Addit. Contam. 2011, 28, 1629–1635. [Google Scholar] [CrossRef]
- Viegas, O.; Prucha, M.; Gökmen, V.; Ferreira, I.M. Parameters affecting 5-hydroxymethylfurfural exposure from beer. Food Addit. Contam. Part A 2018, 35, 1464–1471. [Google Scholar] [CrossRef]
- Rufian-Henares, J.A.; De la Cueva, S.P. Assessment of hydroxymethylfurfural intake in the Spanish diet. Food Addit. Contam. 2008, 25, 1306–1312. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Nilsson, J.; Pillai, D.; Önning, G.; Persson, C.; Nilsson, Å.; Åkesson, B. Comparison of the 2, 2′-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid (ABTS) and ferric reducing anti-oxidant power (FRAP) methods to assess the total antioxidant capacity in extracts of fruit and vegetables. Mol. Nutr. Food Res. 2005, 49, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.S.; Kim, H.Y.; Hwang, I.G.; Lee, S.H.; Jeong, H.S. Characteristics of the thermal degradation of glucose and maltose solutions. Prev. Nutr. Food Sci. 2015, 20, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of standards and interfering compounds in the determination of phenolics by Folin-Ciocalteu assay method for effective bioprocessing of biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Kroh, L.W.; Schulz, A. News on the Maillard reaction of oligomeric carbohydrates: A survey. Food Nahr. 2001, 45, 160–163. [Google Scholar] [CrossRef]
- Pietrzak, W.; Kawa-Rygielska, J. Simultaneous saccharification and ethanol fermentation of waste wheat–rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel 2015, 147, 236–242. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chen, S.L.; Jin, S.Y.; Chen, C.S. Relative reactivities of glucose and galactose in browning and pyruvaldehyde formation in sugar/glycine model systems. Food Chem. 2005, 92, 597–605. [Google Scholar] [CrossRef]
Sample Availability: Samples of the worts are available from the authors. |
Series | Variant | Maltose | Dextrin | Maltotriose | Glucose |
---|---|---|---|---|---|
g/L | |||||
P | 51.59 ± 0.01 a,A | 23.49 ± 0.04 d,E | 13.57 ± 0.02 b,A | 5.65 ±0.19 b,c,A | |
I | CJ | 45.86 ± 0.40 c | 21.86 ± 0.40 e | 12.21 ± 0.10 e | 3.96 ± 0.15 d |
CC | 50.50 ± 0.04 b | 26.09 ± 0.22 b | 13.46 ± 0.01 c | 5.48 ± 0.14 c | |
PC | 34.74 ± 0.02 c | 18.03 ± 0.30 f | 9.13 ± 0.01 f | 0.47 ± 0.06 e | |
JP | 51.69 ± 0.33 a | 28.43 ± 0.08 a | 13.87 ± 0.08 a | 5.80 ± 0.02 b | |
JB | 50.14 ± 0.06 b | 25.31 ± 0.23 c | 13.34 ± 0.00 d | 6.48 ± 0.04 a | |
II | CC20 | 46.12 ± 0.18 B | 35.06 ± 0.17 C | 12.68 ± 0.10 B | nd |
CC25 | 45.50 ± 0.23 C | 33.73 ± 0.32 D | 11.83 ± 0.12 D | 2.80 ± 0.40 C | |
CC30 | 45.71 ± 0.41 B,C | 37.22 ± 0.22 B | 12.05 ± 0.11 C | 4.18 ± 0.34 B | |
CC35 | 41.17 ± 0.22 D | 37.43 ± 0.22 B | 10.90 ± 0.06 E | 5.60 ± 0.08 A | |
CC40 | 39.50 ± 0.06 E | 39.85 ± 0.16 A | 10.74 ± 0.00 F | nd |
Series | Variant | Total Polyphenol Content (F–C) | FRAP | ABTS•+ | |
---|---|---|---|---|---|
mg GAE/L | mmol TE/L | mmol TE/L | % Inhibition | ||
P | 192.58 ± 8.66 d,F | 1.23 ± 0.01 f,D | 1.44 ± 0.09 c,B | 22.17 ± 0.87 | |
I | CJ | 252.84 ±12.81 c | 1.66 ± 0.03 c | 1.76 ± 0.17 c | 26.82 ± 1.70 |
CC | 404.38 ± 5.98 a | 2.07 ± 0.03 a | 2.17 ± 0.17 b | 32.78 ± 1.80 | |
PC | 303.90 ± 7.83 b | 1.44 ± 0.01 d | 1.46 ± 0.11 c | 22.53 ± 1.13 | |
JP | 397.03 ± 7.63 a | 1.90 ± 0.02 b | 2.70 ± 0.40 a | 40.33 ± 4.06 | |
JB | 176.02 ± 0.59 d | 1.32 ± 0.02 e | 1.46 ± 0.05 c | 22.53 ± 0.51 | |
II | CC20 | 593.82 ± 6.23 E | 6.01 ± 0.09 C | 1.23 ± 0.03 C | 19.19 ± 0.31 |
CC25 | 628.79 ± 10.73 D | 6.10 ± 0.09 C | 1.01 ± 0.03 D | 16.06 ± 0.26 | |
CC30 | 776.21 ± 10.78 C | 6.62 ± 0.09 B | 1.50 ± 0.09 B | 23.11 ± 0.92 | |
CC35 | 871.77 ± 16.55 B | 7.14 ± 0.15 A | 1.51 ± 0.04 B | 23.26 ± 0.41 | |
CC40 | 922.32 ± 6.96 A | 7.09 ± 0.07 A | 1.68 ± 0.13 A | 25.73 ± 1.34 |
Series | Variant | Browning Index | HMF |
---|---|---|---|
AU | mg/L | ||
P | 0.62 ± 0.04 f,F | 0.66 ± 0.00 f,F | |
I | CJ | 1.80 ± 0.01 d | 19.65 ± 0.00 c |
CC | 4.43 ± 0.04 b | 20.90 ± 0.01 b | |
PC | 3.16 ± 0.01 c | 5.54 ± 0.03 e | |
JP | 5.57 ± 0.03 a | 24.31 ± 0.17 a | |
JB | 1.05 ± 0.00 e | 12.32 ± 0.04 d | |
II | CC20 | 10.05 ± 0.07 E | 51.81 ± 0.54 C |
CC25 | 10.79 ± 0.16 D | 50.62 ± 0.14 D | |
CC30 | 13.58 ± 0.50 C | 47.62 ± 0.54 E | |
CC35 | 15.53 ± 0.39 B | 75.61 ± 0.43 B | |
CC40 | 17.99 ± 0.48 A | 91.94 ± 0.85 A |
Variable | FRAP | ABTS•+ | TPC | BI | HMF | Dextrin | Maltotriose | Maltose | Glucose |
---|---|---|---|---|---|---|---|---|---|
FRAP | 1.00 | 0.83 | 0.91 | 0.94 | 0.79 | 0.87 | −0.87 | −0.86 | 0.32 |
ABTS•+ | 1.00 | 0.75 | 0.84 | 0.70 | 0.95 | −0.62 | −0.72 | −0.01 | |
TPC | 1.00 | 0.93 | 0.87 | 0.82 | −0.91 | −0.91 | 0.17 | ||
BI | 1.00 | 0.88 | 0.94 | −0.88 | −0.91 | 0.11 | |||
HMF | 1.00 | 0.80 | −0.88 | −0.98 | −0.17 | ||||
Dextrin | 1.00 | −0.70 | −0.81 | −0.06 | |||||
Maltotriose | 1.00 | 0.94 | −0.19 | ||||||
Maltose | 1.00 | 0.04 | |||||||
Glucose | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules 2020, 25, 3882. https://doi.org/10.3390/molecules25173882
Gąsior J, Kawa-Rygielska J, Kucharska AZ. Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules. 2020; 25(17):3882. https://doi.org/10.3390/molecules25173882
Chicago/Turabian StyleGąsior, Justyna, Joanna Kawa-Rygielska, and Alicja Z. Kucharska. 2020. "Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains" Molecules 25, no. 17: 3882. https://doi.org/10.3390/molecules25173882
APA StyleGąsior, J., Kawa-Rygielska, J., & Kucharska, A. Z. (2020). Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules, 25(17), 3882. https://doi.org/10.3390/molecules25173882