Repurposing Drugs to Fight Hepatic Malaria Parasites
Abstract
:1. Introduction
2. Drug Repurposing
3. Targeting the Liver Stage of Plasmodium Infection
3.1. From HIV to Parasites
3.2. From Bacteria to Parasites
3.3. Repurposing within Parasitism
3.4. From Chronicity to Infection
3.5. Targeting Parasite Dormancy
4. Co-Endemic Infectious Diseases: An Opportunity for Repurposing
5. Conclusions and Summary of Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biamonte, M.A.; Wanner, J.; Le Roch, K.G. Recent advances in malaria drug discovery. Bioorg. Med. Chem. Lett. 2013, 23, 2829–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: Progress, perils, and prospects for eradication. J. Clin. Investig. 2008, 118, 1266–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prudencio, M.; Rodriguez, A.; Mota, M.M. The silent path to thousands of merozoites: The Plasmodium liver stage. Nat. Rev. Microbiol. 2006, 4, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell 2016, 167, 610–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, M.M.; Pradel, G.; Vanderberg, J.P.; Hafalla, J.C.; Frevert, U.; Nussenzweig, R.S.; Nussenzweig, V.; Rodriguez, A. Migration of Plasmodium sporozoites through cells before infection. Science 2001, 291, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Tavares, J.; Formaglio, P.; Thiberge, S.; Mordelet, E.; Van Rooijen, N.; Medvinsky, A.; Menard, R.; Amino, R. Role of host cell traversal by the malaria sporozoite during liver infection. J. Exp. Med. 2013, 210, 905–915. [Google Scholar] [CrossRef] [Green Version]
- Graewe, S.; Rankin, K.E.; Lehmann, C.; Deschermeier, C.; Hecht, L.; Froehlke, U.; Stanway, R.R.; Heussler, V. Hostile takeover by Plasmodium: Reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathog. 2011, 7, e1002224. [Google Scholar] [CrossRef] [Green Version]
- Cowman, A.F.; Tonkin, C.J.; Tham, W.H.; Duraisingh, M.T. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe 2017, 22, 232–245. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Pirmohamed, M.; Mirza, N. New uses for old drugs. BMJ 2018, 361. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203–214. [Google Scholar] [PubMed]
- Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 2005, 4, 727–740. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Debnath, A.; Parsonage, D.; Andrade, R.M.; He, C.; Cobo, E.R.; Hirata, K.; Chen, S.; García-Rivera, G.; Orozco, E.; Martínez, M.B.; et al. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med. 2012, 18, 956–960. [Google Scholar] [CrossRef]
- Gunther, J.; Shafir, S.; Bristow, B.; Sorvillo, F. Short report: Amebiasis-related mortality among United States residents, 1990–2007. Am. J. Trop. Med. Hyg. 2011, 85, 1038–1040. [Google Scholar] [CrossRef] [Green Version]
- Sheskin, J. Thalidomide in the Teatment of Lepra Reactions. Clin. Pharmacol. Ther. 1965, 6, 303–306. [Google Scholar] [CrossRef]
- Kinch, M.S.; Patridge, E. An analysis of FDA-approved drugs for infectious disease: HIV/AIDS drugs. Drug Discov. Today 2014, 19, 1510–1513. [Google Scholar] [CrossRef]
- Fischl, M.A.; Richman, D.D.; Grieco, M.H.; Gottlieb, M.S.; Volberding, P.A.; Laskin, O.L.; Leedom, J.M.; Groopman, J.E.; Mildvan, D.; Schooley, R.T.; et al. The Efficacy of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS-related Complex. A Double-Blind, Placebo-Controlled Trial. N. Engl. J. Med. 1987, 317, 185–191. [Google Scholar] [CrossRef]
- He, S.; Lin, B.; Chu, V.; Hu, Z.; Hu, X.; Xiao, J.; Wang, A.Q.; Schweitzer, C.J.; Li, Q.; Imamura, M.; et al. Repurposing of the Antihistamine Chlorcyclizine and Related Compounds for Treatment of Hepatitis C Virus Infection. Sci. Transl. Med. 2015, 7, 282ra49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Choosing a Drug to Prevent Malaria. Available online: https://www.cdc.gov/malaria/travelers/drugs.html (accessed on 22 May 2020).
- Wells, T.N.; Burrows, J.N.; Baird, J.K. Targeting the hypnozoite reservoir of Plasmodium vivax: The hidden obstacle to malaria elimination. Trends Parasitol. 2010, 26, 145–151. [Google Scholar] [CrossRef]
- Frampton, J.E. Tafenoquine: First Global Approval. Drugs 2018, 78, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Alving, A.S.; Carson, P.E.; Flanagan, C.L.; Ickes, C.E. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956, 124, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, N.; Garcia-Domenech, R.; Galvez, J.; Farhati, K.; Franetich, J.F.; Sauerwein, R.; Hannoun, L.; Derouin, F.; Danis, M.; Mazier, D. New active drugs against liver stages of Plasmodium predicted by molecular topology. Antimicrob. Agents Chemother. 2008, 52, 1215–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, K.T.; Fairlie, D.P.; Madala, P.K.; Ray, J.; Wyatt, D.M.; Hilton, P.M.; Melville, L.A.; Beattie, L.; Gardiner, D.L.; Reid, R.C.; et al. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob. Agents Chemother. 2006, 50, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Lek-Uthai, U.; Suwanarusk, R.; Ruengweerayut, R.; Skinner-Adams, T.S.; Nosten, F.; Gardiner, D.L.; Boonma, P.; Piera, K.A.; Andrews, K.T.; Machunter, B.; et al. Stronger activity of human immunodeficiency virus type 1 protease inhibitors against clinical isolates of Plasmodium vivax than against those of P. falciparum. Antimicrob. Agents Chemother. 2008, 52, 2435–2441. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qin, L.; Peng, N.; Liu, G.; Zhao, S.; He, Z.; Chen, X. Antimalarial effects of human immunodeficiency virus protease inhibitors in rhesus macaques. Antimicrob. Agents Chemother. 2011, 55, 3039–3042. [Google Scholar] [CrossRef]
- Nsanzabana, C.; Rosenthal, P.J. In Vitro activity of antiretroviral drugs against Plasmodium falciparum. Antimicrob. Agents Chemother. 2011, 55, 5073–5077. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.; Gut, J.; Istvan, E.; Goldberg, D.E.; Havlir, D.V.; Rosenthal, P.J. Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob. Agents Chemother. 2005, 49, 2983–2985. [Google Scholar] [CrossRef] [Green Version]
- Peatey, C.L.; Andrews, K.T.; Eickel, N.; MacDonald, T.; Butterworth, A.S.; Trenholme, K.R.; Gardiner, D.L.; McCarthy, J.S.; Skinner-Adams, T.S. Antimalarial asexual stage-specific and gametocytocidal activities of HIV protease inhibitors. Antimicrob. Agents Chemother. 2010, 54, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Skinner-Adams, T.S.; McCarthy, J.S.; Gardiner, D.L.; Hilton, P.M.; Andrews, K.T. Antiretrovirals as antimalarial agents. J. Infect. Dis. 2004, 190, 1998–2000. [Google Scholar] [CrossRef]
- Hobbs, C.V.; Tanaka, T.Q.; Muratova, O.; Van Vliet, J.; Borkowsky, W.; Williamson, K.C.; Duffy, P.E. HIV treatments have malaria gametocyte killing and transmission blocking activity. J. Infect. Dis. 2013, 208, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, C.V.; De La Vega, P.; Penzak, S.R.; Van Vliet, J.; Krzych, U.; Sinnis, P.; Borkowsky, W.; Duffy, P.E. The effect of antiretrovirals on Plasmodium falciparum liver stages. AIDS 2013, 27, 1674–1677. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, C.V.; Voza, T.; Coppi, A.; Kirmse, B.; Marsh, K.; Borkowsky, W.; Sinnis, P. HIV protease inhibitors inhibit the development of preerythrocytic-stage Plasmodium parasites. J. Infect. Dis. 2009, 199, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.; Sanches-Vaz, M.; Cruz, J.P.; Mendes, A.M.; Prudencio, M. Inhibition of Plasmodium Hepatic Infection by Antiretroviral Compounds. Front. Cell Infect. Microbiol. 2017, 7, 329. [Google Scholar] [CrossRef] [Green Version]
- Abiodun, O.O.; Akinbo, J.; Ojurongbe, O. The effect of lopinavir/ritonavir on the antimalarial activity of artemether or artemether/lumefantrine in a mouse model of Plasmodium berghei. J. Chemother. 2015, 27, 25–28. [Google Scholar] [CrossRef]
- Redmond, A.M.; Skinner-Adams, T.; Andrews, K.T.; Gardiner, D.L.; Ray, J.; Kelly, M.; McCarthy, J.S. Antimalarial activity of sera from subjects taking HIV protease inhibitors. AIDS 2007, 21, 763–765. [Google Scholar] [CrossRef]
- Hobbs, C.V.; Dixit, S.; Penzak, S.R.; Sahu, T.; Orr-Gonzalez, S.; Lambert, L.; Zeleski, K.; Chen, J.; Neal, J.; Borkowsky, W.; et al. Neither the HIV protease inhibitor lopinavir-ritonavir nor the antimicrobial trimethoprim-sulfamethoxazole prevent malaria relapse in Plasmodium cynomolgi-infected non-human primates. PLoS ONE 2014, 9, e115506. [Google Scholar] [CrossRef]
- Hobbs, C.V.; Voza, T.; De La Vega, P.; Vanvliet, J.; Conteh, S.; Penzak, S.R.; Fay, M.P.; Anders, N.; Ilmet, T.; Li, Y.; et al. HIV nonnucleoside reverse transcriptase inhibitors and trimethoprim-sulfamethoxazole inhibit Plasmodium liver stages. J. Infect. Dis. 2012, 206, 1706–1714. [Google Scholar] [CrossRef] [Green Version]
- Akinyede, A.; Akintonwa, A.; Awodele, O.; Olayemi, S.; Oreagba, I.; Okany, C.; Aina, O.; Akindele, S. Antimalaria action of antiretroviral drugs on Plasmodium berghei in mice. Am. J. Trop. Med. Hyg. 2013, 88, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Dutta, G.P. Antimalarial activity of demeclocycline against Plasmodium cynomolgi bastianellii in rhesus monkeys. Ann. Trop. Med. Parasitol. 1989, 83, 199–206. [Google Scholar] [CrossRef]
- Garnham, P.C.; Warren, M.; Killick-Kendrick, R. The action of ‘terramycin’ on the primary exoerythrocytic development of Plasmodium vivax and Plasmodium cynomolgi ceylonensis. J. Trop. Med. Hyg. 1971, 74, 32–35. [Google Scholar]
- Kumar, A.; Dutta, G.P. Tissue schizontocidal activity of minocycline against a relapsing malaria parasite Plasmodium cynomolgi B. Indian J. Med. Res. 1987, 85, 519–521. [Google Scholar]
- Da Cruz, F.P.; Martin, C.; Buchholz, K.; Lafuente-Monasterio, M.J.; Rodrigues, T.; Sonnichsen, B.; Moreira, R.; Gamo, F.J.; Marti, M.; Mota, M.M.; et al. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis. 2012, 205, 1278–1286. [Google Scholar] [CrossRef]
- Pradines, B.; Rogier, C.; Fusai, T.; Mosnier, J.; Daries, W.; Barret, E.; Parzy, D. In vitro activities of antibiotics against Plasmodium falciparum are inhibited by iron. Antimicrob. Agents Chemother. 2001, 45, 1746–1750. [Google Scholar] [CrossRef] [Green Version]
- Kaddu, J.B.; Warhurst, D.C. The action of minocycline, a tetracycline derivative on drug-resistant P. berghei. Trans. R Soc. Trop. Med. Hyg. 1973, 67, 17–18. [Google Scholar] [CrossRef]
- Kaddu, J.B.; Warhurst, D.C.; Peters, W. The chemotherapy of rodent malaria, XIX. The action of a tetracycline derivative, minocycline, on drug-resistant Plasmodium berghei. Ann. Trop. Med. Parasitol. 1974, 68, 41–46. [Google Scholar] [CrossRef]
- Apoorv, T.S.; Babu, P.P. Minocycline prevents cerebral malaria, confers neuroprotection and increases survivability of mice during Plasmodium berghei ANKA infection. Cytokine 2017, 90, 113–123. [Google Scholar] [CrossRef]
- Jacobs, R.L.; Koontz, L.C. Plasmodium berghei: Development of resistance to clindamycin and minocycline in mice. Exp. Parasitol. 1976, 40, 116–123. [Google Scholar] [CrossRef]
- Deye, G.A.; Gettayacamin, M.; Hansukjariya, P.; Im-erbsin, R.; Sattabongkot, J.; Rothstein, Y.; Macareo, L.; Fracisco, S.; Bennett, K.; Magill, A.J.; et al. Use of a rhesus Plasmodium cynomolgi model to screen for anti-hypnozoite activity of pharmaceutical substances. Am. J. Trop. Med. Hyg. 2012, 86, 931–935. [Google Scholar] [CrossRef]
- Marussig, M.; Motard, A.; Renia, L.; Baccam, D.; Lebras, J.; Charmot, G.; Mazier, D. Activity of doxycycline against preerythrocytic malaria. J. Infect. Dis. 1993, 168, 1603–1604. [Google Scholar] [CrossRef]
- Dahl, E.L.; Shock, J.L.; Shenai, B.R.; Gut, J.; DeRisi, J.L.; Rosenthal, P.J. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 2006, 50, 3124–3131. [Google Scholar] [CrossRef] [Green Version]
- Dahl, E.L.; Rosenthal, P.J. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob. Agents Chemother. 2007, 51, 3485–3490. [Google Scholar] [CrossRef] [Green Version]
- Briolant, S.; Wurtz, N.; Zettor, A.; Rogier, C.; Pradines, B. Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J. Infect. Dis. 2010, 201, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Pradines, B.; Spiegel, A.; Rogier, C.; Tall, A.; Mosnier, J.; Fusai, T.; Trape, J.F.; Parzy, D. Antibiotics for prophylaxis of Plasmodium falciparum infections: In vitro activity of doxycycline against Senegalese isolates. Am. J. Trop. Med. Hyg. 2000, 62, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.L.; Ager, A.L.; McGreevy, P.; Schuster, B.G.; Ellis, W.; Berman, J. Efficacy of azithromycin as a causal prophylactic agent against murine malaria. Antimicrob. Agents Chemother. 1994, 38, 1862–1863. [Google Scholar] [CrossRef] [Green Version]
- Friesen, J.; Silvie, O.; Putrianti, E.D.; Hafalla, J.C.; Matuschewski, K.; Borrmann, S. Natural immunization against malaria: Causal prophylaxis with antibiotics. Sci. Transl. Med. 2010, 2, 40ra49. [Google Scholar] [CrossRef]
- Sidhu, A.B.; Sun, Q.; Nkrumah, L.J.; Dunne, M.W.; Sacchettini, J.C.; Fidock, D.A. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J. Biol. Chem. 2007, 282, 2494–2504. [Google Scholar] [CrossRef] [Green Version]
- Gingras, B.A.; Jensen, J.B. Activity of azithromycin (CP-62,993) and erythromycin against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg. 1992, 47, 378–382. [Google Scholar] [CrossRef]
- Gingras, B.A.; Jensen, J.B. Antimalarial activity of azithromycin and erythromycin against Plasmodium berghei. Am. J. Trop. Med. Hyg. 1993, 49, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Dahl, E.L.; Rosenthal, P.J. Apicoplast translation, transcription and genome replication: Targets for antimalarial antibiotics. Trends Parasitol. 2008, 24, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, N.; Ciceron, L.; Franetich, J.F.; Farhati, K.; Silvie, O.; Eling, W.; Sauerwein, R.; Danis, M.; Mazier, D.; Derouin, F. In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob. Agents Chemother. 2003, 47, 2636–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divo, A.A.; Sartorelli, A.C.; Patton, C.L.; Bia, F.J. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 1988, 32, 1182–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamzah, J.; Skinner-Adams, T.; Davis, T.M. In vitro antimalarial activity of trovafloxacin, a fourth-generation fluoroquinolone. Acta Trop. 2000, 74, 39–42. [Google Scholar] [CrossRef]
- Tripathi, K.D.; Sharma, A.K.; Valecha, N.; Biswas, S. In vitro activity of fluoroquinolones against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Indian J. Malariol. 1993, 30, 67–73. [Google Scholar]
- Goodman, C.D.; Su, V.; McFadden, G.I. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 2007, 152, 181–191. [Google Scholar] [CrossRef]
- Salmon, D.; Deloron, P.; Gaudin, C.; Malhotra, K.; Lebras, J.; Pocidalo, J.J. Activities of pefloxacin and ciprofloxacin against experimental malaria in mice. Antimicrob. Agents Chemother. 1990, 34, 2327–2330. [Google Scholar] [CrossRef] [Green Version]
- Yeo, A.E.; Rieckmann, K.H. Prolonged exposure of Plasmodium falciparum to ciprofloxacin increases anti-malarial activity. J. Parasitol. 1994, 80, 158–160. [Google Scholar] [CrossRef]
- Fink, E. Assessment of causal prophylactic activity in Plasmodium berghei yoelii and its value for the development of new antimalarial drugs. Bull. World Health Organ. 1974, 50, 213–222. [Google Scholar]
- Hobbs, C.V.; Neal, J.; Conteh, S.; Donnelly, L.; Chen, J.; Marsh, K.; Lambert, L.; Orr-Gonzalez, S.; Hinderer, J.; Healy, S.; et al. HIV treatments reduce malaria liver stage burden in a non-human primate model of malaria infection at clinically relevant concentrations in vivo. PLoS ONE 2014, 9, e100138. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E. In vitro susceptibility of Plasmodium falciparum malaria to pyrimethamine, sulfadoxine, trimethoprim and sulfamethoxazole, singly and in combination. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 238–241. [Google Scholar] [CrossRef]
- Daramola, O.O.; Alonso, P.L.; O’Dempsey, T.J.; Twumasi, P.; McArdle, T.F.; Greenwood, B.M. Sensitivity of Plasmodium falciparum in The Gambia to co-trimoxazole. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 345–348. [Google Scholar] [CrossRef]
- Diggens, S.M.; Gregory, K.G. Drug Sensitivity of Exo-Erythrocytic Stages in Pyrimethamine-Resistant Plasmodium berghei. Trans. R. Soc. Trop. Med. Hyg. 1970, 64, 468–469. [Google Scholar] [CrossRef]
- McFadzean, J.A. Morphological Changes in Plasmodium cynomolgi Following Proguanil, Sulphadiazine, and Mepacrine Therapy. Trans. R. Soc. Trop. Med. Hyg. 1951, 44, 707–716. [Google Scholar] [CrossRef]
- Thurston, J.P. Morphological Changes in Plasmodium berghei Following Proguanil, Sulphadiazine and Mepacrine Therapy. Trans. R. Soc. Trop. Med. Hyg. 1951, 44, 703–706. [Google Scholar] [CrossRef]
- Chin, W.; Contacos, P.G.; Coatney, G.R.; King, H.K. The Evaluation of Sulfonamides, Alone or in Combination with Pyrimethamine, in the Treatment of Multi-Resistant Falciparum Malaria. Am. J. Trop. Med. Hyg. 1966, 15, 823–829. [Google Scholar] [CrossRef]
- Mendes, A.M.; Albuquerque, I.S.; Machado, M.; Pissarra, J.; Meireles, P.; Prudencio, M. Inhibition of Plasmodium Liver Infection by Ivermectin. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, L.P.; Sandri, T.L.; Jose Tenorio de Melo, E.; Fendel, R.; Kremsner, P.G.; Mordmuller, B.; Held, J. Ivermectin Impairs the Development of Sexual and Asexual Stages of Plasmodium falciparum In Vitro. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Panchal, M.; Rawat, K.; Kumar, G.; Kibria, K.M.; Singh, S.; Kalamuddin, M.; Mohmmed, A.; Malhotra, P.; Tuteja, R. Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell Death Dis. 2014, 5, e994. [Google Scholar] [CrossRef] [Green Version]
- Muller, H.M.; Reckmann, I.; Hollingdale, M.R.; Bujard, H.; Robson, K.J.; Crisanti, A. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO J. 1993, 12, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Fleck, S.L.; Birdsall, B.; Babon, J.; Dluzewski, A.R.; Martin, S.R.; Morgan, W.D.; Angov, E.; Kettleborough, C.A.; Feeney, J.; Blackman, M.J.; et al. Suramin and suramin analogues inhibit merozoite surface protein-1 secondary processing and erythrocyte invasion by the malaria parasite Plasmodium falciparum. J. Biol. Chem. 2003, 278, 47670–47677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanneur, V.; Duranton, C.; Brand, V.B.; Sandu, C.D.; Akkaya, C.; Kasinathan, R.S.; Gachet, C.; Sluyter, R.; Barden, J.A.; Wiley, J.S.; et al. Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J. 2006, 20, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Dobeli, H.; Trzeciak, A.; Gillessen, D.; Matile, H.; Srivastava, I.K.; Perrin, L.H.; Jakob, P.E.; Certa, U. Expression, purification, biochemical characterization and inhibition of recombinant Plasmodium falciparum aldolase. Mol. Biochem. Parasitol. 1990, 41, 259–268. [Google Scholar] [CrossRef]
- Pal, B.; Pybus, B.; Muccio, D.D.; Chattopadhyay, D. Biochemical characterization and crystallization of recombinant 3-phosphoglycerate kinase of Plasmodium falciparum. Biochim. Biophys. Acta 2004, 1699, 277–280. [Google Scholar] [CrossRef]
- Marques, A.F.; Esser, D.; Rosenthal, P.J.; Kassack, M.U.; Lima, L.M. Falcipain-2 inhibition by suramin and suramin analogues. Bioorg. Med. Chem. 2013, 21, 3667–3673. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Yogavel, M.; Sharma, A. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci. Rep. 2016, 6, 19981. [Google Scholar] [CrossRef] [Green Version]
- Gillet, J.M.; Bone, G.; Herman, F. Inhibitory action of alpha-difluoromethylornithine on rodent malaria (Plasmodium berghei). Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 776–777. [Google Scholar] [CrossRef]
- Francois, G.; Van Looveren, M.; Timperman, G. Evaluation of alpha-difluoromethylornithine (DFMO) as a tool to induce protective immunity against Plasmodium berghei malaria. Ann. Trop. Med. Parasitol. 1997, 91, 103–106. [Google Scholar] [CrossRef]
- Hollingdale, M.R.; McCann, P.P.; Sjoerdsma, A. Plasmodium berghei: Inhibitors of ornithine decarboxylase block exoerythrocytic schizogony. Exp. Parasitol. 1985, 60, 111–117. [Google Scholar] [CrossRef]
- Gillet, J.; Bone, G.; Lowa, P.; Charlier, J.; Rona, A.M.; Schechter, P.J. alpha-Difluoromethylornithine induces protective immunity in mice inoculated with Plasmodium berghei sporozoites. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 236–239. [Google Scholar] [CrossRef]
- Lowa, P.M.; Gillet, J.; Bone, G.; Schechter, P.J. alpha-Difluoromethylornithine inhibits the first part of exoerythrocytic schizogony of Plasmodium berghei in rodents. Ann. Soc. Belg. Med. Trop. 1986, 66, 301–308. [Google Scholar] [PubMed]
- Bitonti, A.J.; McCann, P.P.; Sjoerdsma, A. Plasmodium falciparum and Plasmodium berghei: Effects of ornithine decarboxylase inhibitors on erythrocytic schizogony. Exp. Parasitol. 1987, 64, 237–243. [Google Scholar] [CrossRef]
- Su, R.B.; Wei, X.L.; Liu, Y.; Li, J. Antimalarial effect of agmatine on Plasmodium berghei K173 strain. Acta Pharmacol. Sin. 2003, 24, 918–922. [Google Scholar]
- McCann, P.P.; Bacchi, C.J.; Hanson, W.L.; Cain, G.D.; Nathan, H.C.; Hutner, S.H.; Sjoerdsma, A. Effect on parasitic protozoa of alpha-Difluoromethylornithine, an inhibitor of ornithine decarboxylase. Adv. Polyam. Res. 1981, 3, 97–110. [Google Scholar]
- Assaraf, Y.G.; Golenser, J.; Spira, D.T.; Bachrach, U. Polyamine levels and the activity of their biosynthetic enzymes in human erythrocytes infected with the malarial parasite, Plasmodium falciparum. Biochem. J. 1984, 222, 815–819. [Google Scholar] [CrossRef] [Green Version]
- Whaun, J.M.; Brown, N.D. Ornithine decarboxylase inhibition and the malaria-infected red cell: A model for polyamine metabolism and growth. J. Pharmacol. Exp. Ther. 1985, 233, 507–511. [Google Scholar]
- Assaraf, Y.G.; Golenser, J.; Spira, D.T.; Messer, G.; Bachrach, U. Cytostatic effect of DL-alpha-difluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine. Parasitol. Res. 1987, 73, 313–318. [Google Scholar] [CrossRef]
- Wright, P.S.; Byers, T.L.; Cross-Doersen, D.E.; McCann, P.P.; Bitonti, A.J. Irreversible inhibition of S-adenosylmethionine decarboxylase in Plasmodium falciparum-infected erythrocytes: Growth inhibition in vitro. Biochem. Pharmacol. 1991, 41, 1713–1718. [Google Scholar] [CrossRef]
- Das, B.; Gupta, R.; Madhubala, R. Combined action of inhibitors of polyamine biosynthetic pathway with a known antimalarial drug chloroquine on Plasmodium falciparum. Pharmacol. Res. 1995, 31, 189–193. [Google Scholar] [CrossRef]
- Bell, C.A.; Hall, J.E.; Kyle, D.E.; Grogl, M.; Ohemeng, K.A.; Allen, M.A.; Tidwell, R.R. Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmania mexicana amazonensis. Antimicrob. Agents Chemother. 1990, 34, 1381–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayence, A.; Vanden Eynde, J.J.; Krogstad, F.M.; Krogstad, D.J.; Cushion, M.T.; Huang, T.L. Parallel solution-phase synthesis of conformationally restricted congeners of pentamidine and evaluation of their antiplasmodial activities. J. Med. Chem. 2004, 47, 2700–2705. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.L.; Vanden Eynde, J.J.; Mayence, A.; Donkor, I.O.; Khan, S.I.; Tekwani, B.L. Anti-plasmodial and anti-leishmanial activity of conformationally restricted pentamidine congeners. J. Pharm. Pharmacol. 2006, 58, 1033–1042. [Google Scholar] [CrossRef]
- Bakunova, S.M.; Bakunov, S.A.; Wenzler, T.; Barszcz, T.; Werbovetz, K.A.; Brun, R.; Hall, J.E.; Tidwell, R.R. Synthesis and in vitro antiprotozoal activity of bisbenzofuran cations. J. Med. Chem. 2007, 50, 5807–5823. [Google Scholar] [CrossRef] [PubMed]
- Patrick, D.A.; Bakunov, S.A.; Bakunova, S.M.; Kumar, E.V.; Chen, H.; Jones, S.K.; Wenzler, T.; Barzcz, T.; Werbovetz, K.A.; Brun, R.; et al. Synthesis and antiprotozoal activities of dicationic bis(phenoxymethyl)benzenes, bis(phenoxymethyl)naphthalenes, and bis(benzyloxy)naphthalenes. Eur. J. Med. Chem. 2009, 44, 3543–3551. [Google Scholar] [CrossRef]
- Hu, L.; Arafa, R.K.; Ismail, M.A.; Patel, A.; Munde, M.; Wilson, W.D.; Wenzler, T.; Brun, R.; Boykin, D.W. Synthesis and activity of azaterphenyl diamidines against Trypanosoma brucei rhodesiense and Plasmodium falciparum. Bioorg. Med. Chem. 2009, 17, 6651–6658. [Google Scholar] [CrossRef] [Green Version]
- Branowska, D.; Farahat, A.A.; Kumar, A.; Wenzler, T.; Brun, R.; Liu, Y.; Wilson, W.D.; Boykin, D.W. Synthesis and antiprotozoal activity of 2,5-bis[amidinoaryl]thiazoles. Bioorg. Med. Chem. 2010, 18, 3551–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, M.A.; Bialy, S.A.; Brun, R.; Wenzler, T.; Nanjunda, R.; Wilson, W.D.; Boykin, D.W. Dicationic phenyl-2,2’-bichalcophenes and analogues as antiprotozoal agents. Bioorg. Med. Chem. 2011, 19, 978–984. [Google Scholar] [CrossRef] [Green Version]
- Arafa, R.K.; Wenzler, T.; Brun, R.; Chai, Y.; Wilson, W.D. Molecular modeling study and synthesis of novel dicationic flexible triaryl guanidines and imidamides as antiprotozoal agents. Eur. J. Med. Chem. 2011, 46, 5852–5860. [Google Scholar] [CrossRef]
- Stead, A.M.; Bray, P.G.; Edwards, I.G.; DeKoning, H.P.; Elford, B.C.; Stocks, P.A.; Ward, S.A. Diamidine compounds: Selective uptake and targeting in Plasmodium falciparum. Mol. Pharmacol. 2001, 59, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Vazquez, G.; Chavez-Silva, F.; Argotte-Ramos, R.; Rodriguez-Gutierrez Mdel, C.; Chan-Bacab, M.J.; Cedillo-Rivera, R.; Moo-Puc, R.; Hernandez-Nunez, E. Synthesis of benzologues of Nitazoxanide and Tizoxanide: A comparative study of their in vitro broad-spectrum antiprotozoal activity. Bioorg. Med. Chem. Lett. 2011, 21, 3168–3171. [Google Scholar] [CrossRef] [PubMed]
- Vera, I.M.; Grilo Ruivo, M.T.; Lemos Rocha, L.F.; Marques, S.; Bhatia, S.N.; Mota, M.M.; Mancio-Silva, L. Targeting liver stage malaria with metformin. JCI Insight. 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyakoda, M.; Bayarsaikhan, G.; Kimura, D.; Akbari, M.; Udono, H.; Yui, K. Metformin Promotes the Protection of Mice Infected with Plasmodium yoelii Independently of gammadelta T Cell Expansion. Front. Immunol. 2018, 9, 2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Puri, S.K. Causal prophylactic activity of antihistaminic agents against Plasmodium yoelii nigeriensis infection in Swiss mice. Acta Trop. 1998, 69, 255–260. [Google Scholar] [CrossRef]
- Zhou, M.X.; Pan, X.Q.; Tong, X.M. [Observation on the inhibitory effect of ketotifen, cyproheptadine and pizotifenum on Plasmodium falciparum in vitro]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 1988, 6, 130–133. (In Chinese) [Google Scholar]
- Peters, W.; Ekong, R.; Robinson, B.L.; Warhurst, D.C.; Pan, X.Q. The chemotherapy of rodent malaria. XLV. Reversal of chloroquine resistance in rodent and human Plasmodium by antihistaminic agents. Ann. Trop. Med. Parasitol. 1990, 84, 541–551. [Google Scholar] [CrossRef]
- Singh, N.; Puri, S.K. Interaction between chloroquine and diverse pharmacological agents in chloroquine resistant Plasmodium yoelii nigeriensis. Acta Trop. 2000, 77, 185–193. [Google Scholar] [CrossRef]
- Agrawal, R.; Tripathi, R.; Tekwani, B.L.; Jain, S.K.; Dutta, G.P.; Shukla, O.P. Haem polymerase as a novel target of antimalarial action of cyproheptadine. Biochem. Pharmacol. 2002, 64, 1399–1406. [Google Scholar] [CrossRef]
- Derbyshire, E.R.; Prudencio, M.; Mota, M.M.; Clardy, J. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc. Natl. Acad. Sci. USA 2012, 109, 8511–8516. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.Y.; Quan, B.; Sylvester, K.; Srivastava, T.; Fitzgerald, M.C.; Derbyshire, E.R. Plasmodium chaperonin TRiC/CCT identified as a target of the antihistamine clemastine using parallel chemoproteomic strategy. Proc. Natl. Acad. Sci. USA 2020, 117, 5810–5817. [Google Scholar] [CrossRef]
- Chong, C.R.; Chen, X.; Shi, L.; Liu, J.O.; Sullivan, D.J., Jr. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat. Chem. Biol. 2006, 2, 415–416. [Google Scholar] [CrossRef]
- Murphy, J.R.; Baqar, S.; Baker, R.H.; Roberts, E.; Nickell, S.P.; Cole, G.A. Stage-selective inhibition of rodent malaria by cyclosporine. Antimicrob. Agents Chemother. 1988, 32, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Nickell, S.P.; Scheibel, L.W.; Cole, G.A. Inhibition by cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infect. Immun. 1982, 37, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thommen-Scott, K. Antimalarial activity of cyclosporin A. Agents Actions 1981, 11, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Bobbala, D.; Koka, S.; Lang, C.; Boini, K.M.; Huber, S.M.; Lang, F. Effect of cyclosporine on parasitemia and survival of Plasmodium berghei infected mice. Biochem. Biophys. Res. Commun. 2008, 376, 494–498. [Google Scholar] [CrossRef]
- Kocken, C.H.; van der Wel, A.; Rosenwirth, B.; Thomas, A.W. Plasmodium vivax: In vitro antiparasitic effect of cyclosporins. Exp. Parasitol. 1996, 84, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Azouzi, S.; El Kirat, K.; Morandat, S. The potent antimalarial drug cyclosporin A preferentially destabilizes sphingomyelin-rich membranes. Langmuir 2010, 26, 1960–1965. [Google Scholar] [CrossRef]
- Azouzi, S.; Morandat, S.; El Kirat, K. The potent antimalarial peptide cyclosporin A induces the aggregation and permeabilization of sphingomyelin-rich membranes. Langmuir 2011, 27, 9465–9472. [Google Scholar] [CrossRef]
- World Health Organization. Consolidated Guidelines on the Use of Antireviral Drugs for Treating and Preventing HIV Infection; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Azevedo, R.; Mendes, A.M.; Prudencio, M. The Impact of Antiretroviral Therapy on Malaria Parasite Transmission. Front. Microbiol. 2019, 10, 3048. [Google Scholar] [CrossRef]
- Liu, J.; Gluzman, I.Y.; Drew, M.E.; Goldberg, D.E. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 2005, 280, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.M.; Domingos, A.; Berry, C.; Wyatt, D.M. The activity and inhibition of the food vacuole plasmepsin from the rodent malaria parasite Plasmodium chabaudi. Acta Trop. 2006, 97, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Onchieku, N.M.; Mogire, R.; Ndung’u, L.; Mwitari, P.; Kimani, F.; Matoke-Muhia, D.; Kiboi, D.; Magoma, G. Deciphering the targets of retroviral protease inhibitors in Plasmodium berghei. PLoS ONE 2018, 13, e0201556. [Google Scholar] [CrossRef] [PubMed]
- Savarino, A.; Cauda, R.; Cassone, A. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors. J. Infect. Dis. 2005, 191, 1381–1382. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.V.; Parikh, S. Buy one, get one free? Benefits of certain antiretrovirals against malaria. AIDS 2017, 31, 583–585. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Revised recommendations for preventing malaria in travelers to areas with chloroquine-resistant Plasmodium falciparum. MMWR Morb. Mortal. Wkly. Rep. 1985, 34, 185–190, 195. [Google Scholar]
- MacPherson, D.W.; Keystone, J.S. Revised recommendations for preventing malaria in travelers to areas with chloroquine-resistant Plasmodium falciparum. N. Engl. J. Med. 1985, 313, 454–455. [Google Scholar] [CrossRef]
- Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in malaria. Malar. J. 2015, 14, 445. [Google Scholar] [CrossRef] [Green Version]
- Kuschner, R.A.; Heppner, D.G.; Andersen, S.L.; Wellde, B.T.; Hall, T.; Schneider, I.; Ballou, W.R.; Foulds, G.; Sadoff, J.C.; Schuster, B.; et al. Azithromycin prophylaxis against a chloroquine-resistant strain of Plasmodium falciparum. Lancet 1994, 343, 1396–1397. [Google Scholar] [CrossRef]
- Anderson, S.L.; Berman, J.; Kuschner, R.; Wesche, D.; Magill, A.; Wellde, B.; Schneider, I.; Dunne, M.; Schuster, B.G. Prophylaxis of Plasmodium falciparum malaria with azithromycin administered to volunteers. Ann. Intern. Med. 1995, 123, 771–773. [Google Scholar] [CrossRef]
- Andersen, S.L.; Oloo, A.J.; Gordon, D.M.; Ragama, O.B.; Aleman, G.M.; Berman, J.D.; Tang, D.B.; Dunne, M.W.; Shanks, G.D. Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin. Infect. Dis. 1998, 26, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Schachterle, S.E.; Mtove, G.; Levens, J.P.; Clemens, E.; Shi, L.; Raj, A.; Dumler, J.S.; Munoz, B.; West, S.; Sullivan, D.J. Short-term malaria reduction by single-dose azithromycin during mass drug administration for trachoma, Tanzania. Emerg. Infect. Dis. 2014, 20, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.R.; Richie, T.L.; Fryauff, D.J.; Picarima, H.; Ohrt, C.; Tang, D.; Braitman, D.; Murphy, G.S.; Widjaja, H.; Tjitra, E.; et al. Malaria prophylaxis using azithromycin: A double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clin. Infect. Dis. 1999, 28, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chico, R.M.; Pittrof, R.; Greenwood, B.; Chandramohan, D. Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy. Malar. J. 2008, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, S.; Osada, Y.; Kanazawa, T.; Tanaka, Y.; Arai, M. Suppressive effect of azithromycin on Plasmodium berghei mosquito stage development and apicoplast replication. Malar. J. 2010, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, P.J. Azithromycin for Malaria? Am. J. Trop. Med. Hyg. 2016, 95, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Friman, G.; Nystrom-Rosander, C.; Jonsell, G.; Bjorkman, A.; Lekas, G.; Svendsrup, B. Agranulocytosis associated with malaria prophylaxis with Maloprim. Br. Med. J. (Clin. Res. Ed.) 1983, 286, 1244–1245. [Google Scholar] [CrossRef] [Green Version]
- Petersen, E. Malaria chemoprophylaxis: When should we use it and what are the options? Expert Rev. Anti-Infect. Ther. 2004, 2, 119–132. [Google Scholar] [CrossRef]
- Luzzatto, L. The rise and fall of the antimalarial Lapdap: A lesson in pharmacogenetics. Lancet 2010, 376, 739–741. [Google Scholar] [CrossRef]
- Manyando, C.; Njunju, E.M.; D’Alessandro, U.; Van Geertruyden, J.P. Safety and efficacy of co-trimoxazole for treatment and prevention of Plasmodium falciparum malaria: A systematic review. PLoS ONE 2013, 8, e56916. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, T.; Madamet, M.; Tsombeng, F.F.; Dormoi, J.; Pradines, B. Antibiotics in malaria therapy: Which antibiotics except tetracyclines and macrolides may be used against malaria? Malar. J. 2016, 15, 556. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Wilson, M.L. Avermectins in arthropod vector management-prospects and pitfalls. Parasitol. Today 1993, 9, 83–87. [Google Scholar] [CrossRef]
- Amazigo, U. The African Programme for Onchocerciasis Control (APOC). Ann. Trop. Med. Parasitol. 2008, 102 (Suppl. 1), 19–22. [Google Scholar] [CrossRef]
- Ottesen, E.A.; Hooper, P.J.; Bradley, M.; Biswas, G. The global programme to eliminate lymphatic filariasis: Health impact after 8 years. PLoS Negl. Trop. Dis. 2008, 2, e317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foy, B.D.; Alout, H.; Seaman, J.A.; Rao, S.; Magalhaes, T.; Wade, M.; Parikh, S.; Soma, D.D.; Sagna, A.B.; Fournet, F.; et al. Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): A cluster-randomised trial. Lancet 2019, 393, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Metzger, W.G.; Theurer, A.; Pfleiderer, A.; Molnar, Z.; Maihofer-Braatting, D.; Bissinger, A.L.; Sulyok, Z.; Kohler, C.; Egger-Adam, D.; Lalremruata, A.; et al. Ivermectin for causal malaria prophylaxis: A randomised controlled human infection trial. Trop. Med. Int. Health 2020, 25, 380–386. [Google Scholar] [CrossRef]
- Kobylinski, K.C.; Escobedo-Vargas, K.S.; Lopez-Sifuentes, V.M.; Durand, S.; Smith, E.S.; Baldeviano, G.C.; Gerbasi, R.V.; Ballard, S.B.; Stoops, C.A.; Vasquez, G.M. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar. J. 2017, 16, 474. [Google Scholar] [CrossRef] [Green Version]
- Kobylinski, K.C.; Foy, B.D.; Richardson, J.H. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malar. J. 2012, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Pinilla, Y.T.; CPLopes, S.; SSampaio, V.; Andrade, F.S.; Melo, G.C.; Orfanó, A.S.; Secundino, N.F.; Guerra, M.G.; Lacerda, M.V.; Kobylinski, K.C.; et al. Promising approach to reducing Malaria transmission by ivermectin: Sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. PLoS Negl. Trop. Dis. 2018, 12, e0006221. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.; Mendes, A.M.; Prudencio, M. Inhibition of Plasmodium sporogonic stages by ivermectin and other avermectins. Parasit. Vectors 2019, 12, 549. [Google Scholar] [CrossRef] [Green Version]
- Chaccour, C.; Lines, J.; Whitty, C.J. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: The potential of oral insecticides in malaria control. J. Infect. Dis. 2010, 202, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, D.H.; Bryan, J.H.; Lawrence, G.W. The potential of ivermectin to control the malaria vector Anopheles farauti. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 625–628. [Google Scholar] [CrossRef]
- Fritz, M.L.; Walker, E.D.; Miller, J.R. Lethal and sublethal effects of avermectin/milbemycin parasiticides on the African malaria vector, Anopheles arabiensis. J. Med. Entomol. 2012, 49, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobylinski, K.C.; Deus, K.M.; Butters, M.P.; Hongyu, T.; Gray, M.; da Silva, I.M.; Sylla, M.; Foy, B.D. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010, 116, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobylinski, K.C.; Ubalee, R.; Ponlawat, A.; Nitatsukprasert, C.; Phasomkulsolsil, S.; Wattanakul, T.; Tarning, J.; Na-Bangchang, K.; McCardle, P.W.; Davidson, S.A.; et al. Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar. J. 2017, 16, 280. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, A.L.; Bastiaens, G.J.; Tiono, A.B.; Guelbeogo, W.M.; Kobylinski, K.C.; Ouedraogo, A.; Barry, A.; Bougouma, E.C.; Nebie, I.; Ouattara, M.S.; et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: A double-blind, randomized, clinical trial. Clin. Infect. Dis. 2015, 60, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Sylla, M.; Kobylinski, K.C.; Gray, M.; Chapman, P.L.; Sarr, M.D.; Rasgon, J.L.; Foy, B.D. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar. J. 2010, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Alout, H.; Krajacich, B.J.; Meyers, J.I.; Grubaugh, N.D.; Brackney, D.E.; Kobylinski, K.C.; Diclaro, J.W.; Bolay, F.K.; Fakoli, L.S.; Diabate, A.; et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar. J. 2014, 13, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobylinski, K.C.; Alout, H.; Foy, B.D.; Clements, A.; Adisakwattana, P.; Swierczewski, B.E.; Richardson, J.H. Rationale for the coadministration of albendazole and ivermectin to humans for malaria parasite transmission control. Am. J. Trop. Med. Hyg. 2014, 91, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Kobylinski, K.C.; Sylla, M.; Chapman, P.L.; Sarr, M.D.; Foy, B.D. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am. J. Trop. Med. Hyg. 2011, 85, 3–5. [Google Scholar] [CrossRef]
- Chaccour, C.J.; Kobylinski, K.C.; Bassat, Q.; Bousema, T.; Drakeley, C.; Alonso, P.; Foy, B.D. Ivermectin to reduce malaria transmission: A research agenda for a promising new tool for elimination. Malar. J. 2013, 12, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaccour, C.J.; Rabinovich, N.R.; Slater, H.; Canavati, S.E.; Bousema, T.; Lacerda, M.; Ter Kuile, F.; Drakeley, C.; Bassat, Q.; Foy, B.D.; et al. Establishment of the Ivermectin Research for Malaria Elimination Network: Updating the research agenda. Malar. J. 2015, 14, 243. [Google Scholar] [CrossRef] [Green Version]
- Foy, B.D.; Kobylinski, K.C.; da Silva, I.M.; Rasgon, J.L.; Sylla, M. Endectocides for malaria control. Trends Parasitol. 2011, 27, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steketee, R.W.; Ter Kuile, F.O. Ivermectin as a complementary strategy to kill mosquitoes and stop malaria transmission? Clin. Infect. Dis. 2015, 60, 366–368. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Trypanosomiasis, Human African (Sleeping Sickness). Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 15 June 2020).
- World Health Organization. WHO Interim Guidelines for the Treatment of Gambiense Human African Trypanosomiasis; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Metcalf, B.W.; Bey, P.; Danzin, C.; Jung, M.J.; Casara, P.; Vevert, J.P. Catalytic irreversible inhibition of mammalian ornithine decarboxylase by substrate and product analogues. J. Am. Chem. Soc. 1978, 100, 2551–2553. [Google Scholar] [CrossRef]
- Gillet, J.M.; Charlier, J.; Bone, G.; Mulamba, P.L. Plasmodium berghei: Inhibition of the sporogonous cycle by alpha-difluoromethylornithine. Exp. Parasitol. 1983, 56, 190–193. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Elhag, E.R.; Mustafa, S.E. Ketotifen in treatment of uncomplicated falciparum malaria. Saudi Med. J. 2000, 21, 257–265. [Google Scholar]
- Sowunmi, A. A randomized comparison of chloroquine and chloroquine plus ketotifen in the treatment of acute, uncomplicated, Plasmodium falciparum malaria in children. Ann. Trop. Med. Parasitol. 2003, 97, 103–117. [Google Scholar] [CrossRef]
- Macareo, L.; Lwin, K.M.; Cheah, P.Y.; Yuentrakul, P.; Miller, R.S.; Nosten, F. Triangular test design to evaluate tinidazole in the prevention of Plasmodium vivax relapse. Malar. J. 2013, 12, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voorberg-van der Wel, A.M.; Zeeman, A.M.; Nieuwenhuis, I.G.; van der Werff, N.M.; Klooster, E.J.; Klop, O.; Vermaat, L.C.; Kumar Gupta, D.; Dembele, L.; Diagana, T.T.; et al. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun. Biol. 2020, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Voorberg-van der Wel, A.M.; Zeeman, A.M.; Nieuwenhuis, I.G.; van der Werff, N.M.; Klooster, E.J.; Klop, O.; Vermaat, L.C.; Kocken, C.H.M. Dual-Luciferase-Based Fast and Sensitive Detection of Malaria Hypnozoites for the Discovery of Antirelapse Compounds. Anal. Chem. 2020, 92, 6667–6675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef]
- World Health Organization; Stop TB Initiative (World Health Organization). Treatment of Tuberculosis: Guidelines, 4th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Aditya, N.P.; Patankar, S.; Madhusudhan, B. Assessment of in vivo antimalarial activity of rifampicin, isoniazide, and ethambutol combination therapy. Parasitol. Res. 2010, 106, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Goerg, H.; Ochola, S.A.; Goerg, R. Treatment of malaria tropica with a fixed combination of rifampicin, co-trimoxazole and isoniazid: A clinical study. Chemotherapy 1999, 45, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Freerksen, E.; Kanthumkumwa, E.W.; Kholowa, A.R. Malaria therapy and prophylaxis with cotrifazid, a multiple complex combination consisting of rifampicin + isoniazid + sulfamethoxazole + trimethoprim. Chemotherapy 1995, 41, 396–398. [Google Scholar] [CrossRef]
- Freerksen, E.; Kanthunkumva, E.W.; Kholowa, A.R. Cotrifazid--an agent against malaria. Chemotherapy 1996, 42, 391–401. [Google Scholar] [CrossRef]
- Genton, B.; Mueller, I.; Betuela, I.; Casey, G.; Ginny, M.; Alpers, M.P.; Reeder, J.C. Rifampicin/Cotrimoxazole/Isoniazid versus mefloquine or quinine + sulfadoxine- pyrimethamine for malaria: A randomized trial. PLoS Clin. Trials 2006, 1, e38. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Alavi, Y.I.; Mendoza, J.; Billker, O.; Sinden, R.E. Isonicotinic acid hydrazide: An anti-tuberculosis drug inhibits malarial transmission in the mosquito gut. Exp. Parasitol. 2004, 106, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Alger, N.E.; Spira, D.T.; Silverman, P.H. Inhibition of rodent malaria in mice by rifampicin. Nature 1970, 227, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Strath, M.; Scott-Finnigan, T.; Gardner, M.; Williamson, D.; Wilson, I. Antimalarial activity of rifampicin in vitro and in rodent models. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 211–216. [Google Scholar] [CrossRef]
- Pukrittayakamee, S.; Viravan, C.; Charoenlarp, P.; Yeamput, C.; Wilson, R.J.; White, N.J. Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob. Agents Chemother. 1994, 38, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Geary, T.G.; Divo, A.A.; Jensen, J.B. Stage specific actions of antimalarial drugs on Plasmodium falciparum in culture. Am. J. Trop. Med. Hyg. 1989, 40, 240–244. [Google Scholar] [CrossRef]
- Geary, T.G.; Jensen, J.B. Effects of antibiotics on Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg. 1983, 32, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Krugliak, M.; Waldman, Z.; Ginsburg, H. Gentamicin and amikacin repress the growth of Plasmodium falciparum in culture, probably by inhibiting a parasite acid phospholipase. Life Sci. 1987, 40, 1253–1257. [Google Scholar] [CrossRef]
- McColm, A.A.; McHardy, N. Evaluation of a range of antimicrobial agents against the parasitic protozoa, Plasmodium falciparum, Babesia rodhaini and Theileria parva in vitro. Ann. Trop. Med. Parasitol. 1984, 78, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Divo, A.A.; Geary, T.G.; Jensen, J.B. Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob. Agents Chemother. 1985, 27, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Charan, M.; Singh, N.; Kumar, B.; Srivastava, K.; Siddiqi, M.I.; Habib, S. Sulfur mobilization for Fe-S cluster assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition. Antimicrob. Agents Chemother. 2014, 58, 3389–3398. [Google Scholar] [CrossRef] [Green Version]
- Pala, Z.R.; Saxena, V.; Saggu, G.S.; Mani, S.K.; Pareek, R.P.; Kochar, S.K.; Kochar, D.K.; Garg, S. Functional analysis of iron-sulfur cluster biogenesis (SUF pathway) from Plasmodium vivax clinical isolates. Exp. Parasitol. 2019, 198, 53–62. [Google Scholar] [CrossRef]
- Tripathi, R.; Pandey, S.K.; Rizvi, A. Clarithromycin, a cytochrome P450 inhibitor, can reverse mefloquine resistance in Plasmodium yoelii nigeriensis- infected Swiss mice. Parasitology 2011, 138, 1069–1076. [Google Scholar] [CrossRef]
- Gunjan, S.; Singh, S.K.; Chauhan, B.S.; Pandey, S.K.; Ahmad, H.; Dwivedi, A.K.; Tripathi, R. Clarithromycin enhances the antimalarial efficacy of mefloquine via its increased bioavailability and disrupting P. falciparum apicoplast. Life Sci. 2015, 136, 126–132. [Google Scholar] [CrossRef]
- Uddin, T.; McFadden, G.I.; Goodman, C.D. Validation of Putative Apicoplast-Targeting Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Barteselli, A.; Casagrande, M.; Basilico, N.; Parapini, S.; Rusconi, C.M.; Tonelli, M.; Boido, V.; Taramelli, D.; Sparatore, F.; Sparatore, A. Clofazimine analogs with antileishmanial and antiplasmodial activity. Bioorg. Med. Chem. 2015, 23, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Makgatho, E.M.; Mbajiorgu, E.F. In vitro investigation of clofazimine analogues for antiplasmodial, cytotoxic and pro-oxidative activities. Afr. Health Sci. 2017, 17, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthel, D.; Schlitzer, M.; Pradel, G. Telithromycin and quinupristin-dalfopristin induce delayed death in Plasmodium falciparum. Antimicrob. Agents Chemother. 2008, 52, 774–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisman, J.L.; Liou, A.P.; Shelat, A.A.; Cohen, F.E.; Guy, R.K.; DeRisi, J.L. Searching for new antimalarial therapeutics amongst known drugs. Chem. Biol. Drug Des. 2006, 67, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Investig. 2008, 118, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Soil-Transmitted Helminth Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 22 May 2020).
- Dieckmann-Schuppert, A.; Franklin, R.M. Compounds binding to cytoskeletal proteins are active against Plasmodium falciparum in vitro. Cell Biol. Int. Rep. 1989, 13, 411–418. [Google Scholar] [CrossRef]
- Skinner-Adams, T.S.; Davis, T.M.; Manning, L.S.; Johnston, W.A. The efficacy of benzimidazole drugs against Plasmodium falciparum in vitro. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 580–584. [Google Scholar] [CrossRef]
- Dow, G.S.; Reynoldson, J.A.; Thompson, R.C. Plasmodium berghei: In vivo efficacy of albendazole in different rodent models. Exp. Parasitol. 1998, 88, 154–156. [Google Scholar] [CrossRef]
- Dow, G.S.; O’Hara, A.J.; Newton, S.C.; Reynoldson, J.A.; Thompson, R.C. Plasmodium berghei: The antimalarial activity of albendazole in rats is mediated via effects on the hematopoietic system. Exp. Parasitol. 2000, 94, 259–263. [Google Scholar] [CrossRef]
- Hurlimann, E.; Houngbedji, C.A.; N’Dri, P.B.; Banninger, D.; Coulibaly, J.T.; Yap, P.; Silue, K.D.; N’Goran, E.K.; Raso, G.; Utzinger, J. Effect of deworming on school-aged children’s physical fitness, cognition and clinical parameters in a malaria-helminth co-endemic area of Cote d’Ivoire. BMC Infect. Dis. 2014, 14, 411. [Google Scholar] [CrossRef] [Green Version]
- Kepha, S.; Nuwaha, F.; Nikolay, B.; Gichuki, P.; Mwandawiro, C.S.; Mwinzi, P.N.; Odiere, M.R.; Edwards, T.; Allen, E.; Brooker, S.J. Effect of Repeated Anthelminthic Treatment on Malaria in School Children in Kenya: A Randomized, Open-Label, Equivalence Trial. J. Infect. Dis. 2016, 213, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, P.; Jackson, A.L.; Asaolu, S.O.; Molloy, S.F.; Abiona, T.C.; Bruce, M.C.; Ranford-Cartwright, L.; SM, O.N.; Holland, C.V. Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: A double-blind placebo-controlled randomized trial. BMC Infect. Dis. 2010, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Midzi, N.; Mtapuri-Zinyowera, S.; Sangweme, D.; Paul, N.H.; Makware, G.; Mapingure, M.P.; Brouwer, K.C.; Mudzori, J.; Hlerema, G.; Chadukura, V.; et al. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study. BMC Int. Health Hum. Rights 2011, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiria, A.E.; Prasetyani, M.A.; Hamid, F.; Wammes, L.J.; Lell, B.; Ariawan, I.; Uh, H.W.; Wibowo, H.; Djuardi, Y.; Wahyuni, S.; et al. Does treatment of intestinal helminth infections influence malaria? Background and methodology of a longitudinal study of clinical, parasitological and immunological parameters in Nangapanda, Flores, Indonesia (ImmunoSPIN Study). BMC Infect. Dis. 2010, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis (accessed on 22 May 2020).
- World Health Organization. Onchocerciasis. Available online: https://www.who.int/news-room/fact-sheets/detail/onchocerciasis (accessed on 22 May 2020).
- World Health Organization. Schistosomiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 22 May 2020).
- World Health Organization. Fascioliasis Diagnosis, Treatment and Control Strategy. Available online: https://www.who.int/foodborne_trematode_infections/fascioliasis/fascioliasis_diagnosis/en/ (accessed on 22 May 2020).
- World Health Organization. Control of the Leishmaniases. In Proceedings of the Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, Switzerland, 22–26 March 2010; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Coleman, R.E.; Edman, J.D.; Semprevivo, L.H. The effect of pentostam and cimetidine on the development of leishmaniasis (Leishmania mexicana amazonensis) and concomitant malaria (Plasmodium yoelii). Ann. Trop. Med. Parasitol. 1989, 83, 339–344. [Google Scholar] [CrossRef]
- Hatabu, T.; Takada, T.; Taguchi, N.; Suzuki, M.; Sato, K.; Kano, S. Potent plasmodicidal activity of a heat-induced reformulation of deoxycholate-amphotericin B (Fungizone) against Plasmodium falciparum. Antimicrob. Agents Chemother. 2005, 49, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Wiehart, U.I.; Rautenbach, M.; Hoppe, H.C. Selective lysis of erythrocytes infected with the trophozoite stage of Plasmodium falciparum by polyene macrolide antibiotics. Biochem. Pharmacol. 2006, 71, 779–790. [Google Scholar] [CrossRef]
- Pessi, G.; Kociubinski, G.; Mamoun, C.B. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc. Natl. Acad. Sci. USA 2004, 101, 6206–6211. [Google Scholar] [CrossRef] [Green Version]
- Doerig, C.; Abdi, A.; Bland, N.; Eschenlauer, S.; Dorin-Semblat, D.; Fennell, C.; Halbert, J.; Holland, Z.; Nivez, M.; Semblat, J.; et al. Malaria: Targeting Parasite and Host Cell Kinomes. Biochim. Biophys. Acta 2010, 1804, 604–612. [Google Scholar] [CrossRef]
- Rodrigues, T.; Prudêncio, M.; Moreira, R.; Mota, M.M.; Lopes, F. Targeting the Liver Stage of Malaria Parasites: A Yet Unmet Goal. J. Med. Chem. 2012, 55, 995–1012. [Google Scholar] [CrossRef]
- Prudêncio, M.; Mota, M.M.; Mendes, A.M. A Toolbox to Study Liver Stage Malaria. Trends Parasitol. 2011, 27, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Arez, F.; Rebelo, S.P.; Fontinha, D.; Simão, D.; Martins, T.R.; Machado, M.; Fischli, C.; Oeuvray, C.; Badolo, L.; Carrondo, M.J.T.; et al. Flexible 3D Cell-Based Platforms for the Discovery and Profiling of Novel Drugs Targeting Plasmodium Hepatic Infection. ACS Infect. Dis. 2019, 5, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Fontinha, D.; Francisco, D.; Mendes, A.M.; Prudêncio, M.; Singh, K. Molecular Design and Synthesis of Ivermectin Hybrids Targeting Hepatic and Erythrocytic Stages of Plasmodium Parasites. J. Med. Chem. 2020, 63, 1750–1762. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Model Lists of Essential Medicines. Available online: https://www.who.int/medicines/publications/essentialmedicines/en/ (accessed on 26 June 2020).
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of Non-Communicable Diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef] [Green Version]
- Prudêncio, M.; Mota, M.M. Targeting host factors to circumvent anti-malarial drug resistance. Curr. Pharm. Des. 2013, 19, 290–299. [Google Scholar] [CrossRef]
- Duffy, P.E.; Gorres, J.P. Malaria Vaccines since 2000: Progress, Priorities, Products. NPJ Vaccines 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Mordmüller, B.; Surat, G.; Lagler, H.; Chakravarty, S.; Ishizuka, A.S.; Lalremruata, A.; Gmeiner, M.; Campo, J.J.; Esen, M.; Ruben, A.J.; et al. Sterile Protection against Human Malaria by Chemoattenuated PfSPZ Vaccine. Nature 2017, 542, 445–449. [Google Scholar] [CrossRef]
- Lyke, K.E.; Ishizuka, A.S.; Berry, A.A.; Chakravarty, S.; DeZure, A.; Enama, M.E.; James, E.R.; Billingsley, P.F.; Gunasekera, A.; Manoj, A.; et al. Attenuated PfSPZ Vaccine Induces Strain-Transcending T Cells and Durable Protection against Heterologous Controlled Human Malaria Infection. Proc. Natl. Acad. Sci. USA 2017, 114, 2711–2716. [Google Scholar] [CrossRef] [Green Version]
- Reuling, I.J.; Mendes, A.M.; de Jong, G.M.; Fabra-García, A.; Nunes-Cabaço, H.; van Gemert, G.; Graumans, W.; Coffeng, L.E.; de Vlas, S.J.; Yang, A.S.P.; et al. An Open-Label Phase 1/2a Trial of a Genetically Modified Rodent Malaria Parasite for Immunization against Plasmodium falciparum Malaria. Sci. Transl. Med. 2020, 12, eaay2578. [Google Scholar] [CrossRef]
- Ashley, E.A.; Phyo, A.P. Drugs in Development for Malaria. Drugs 2018, 78, 861–879. [Google Scholar] [CrossRef] [Green Version]
- Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019, 18, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphemot, R.; Posfai, D.; Derbyshire, E.R. Current therapies and future possibilities for drug development against liver-stage malaria. J. Clin. Investig. 2016, 126, 2013–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Original Purpose | Drug | Plasmodium Liver Stage | Plasmodium Blood Stage | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Py | Pf | Pcy | Pk | Pb | Py | Pch | Pvin | Pf | Pv | Pcy | Pk | |||
From HIV to Parasites | |||||||||||||||
Antiretroviral | Saquinavir | x 1 | x 1 | x 2 | x 1 | x 1 | x 2 | x 2 | [27,28,29,30,31,32,33,34,35] | ||||||
Lopinavir | x 1 | x 1 | x 1 | [27,28,31,32,33,35,36] | |||||||||||
Ritonavir | x 1 | x 2 | x 1 | x 1 | [28,29,31,32,33,34,37] | ||||||||||
Indinavir | x 1 | x 1 | x 2 | x 2 | [27,28,30,32,34] | ||||||||||
Nelfinavir | x 1,2 | x 1 | [28,31,32,34,38] | ||||||||||||
Lopinavir/Ritonavir | x 2 | x 2,3 | x 2 | x 2 | x 1 | [28,37,39,40,41] | |||||||||
Saquinavir/Ritonavir | x 2 | x 1 | [28,40] | ||||||||||||
Efavirenz | x 1 | x 2 | x 1 | [31,34,38,42] | |||||||||||
Etravirine | x 1,2 | x 2 | x 1 | [31,34,38,42] | |||||||||||
Nevirapine | x 2 | x 2 | x 1 | [31,34,42,43] | |||||||||||
Efavirenz/Zidovudine/Lamivudine | x 2 | [38] | |||||||||||||
Efavirenz/Tenofovir/Emtricitabine | x 2 | [38] | |||||||||||||
Nevirapine/Tenofovir/Emtricitabine | x 2 | [38] | |||||||||||||
From Bacteria to Parasites | |||||||||||||||
Antibacterial | Demeclocycline | x 2 | x 2 | [44] | |||||||||||
Terramycin | x 2 | [45] | |||||||||||||
Minocycline | x 1 | x 2,3 | x 2 | [46,47,48,49,50,51,52,53] | |||||||||||
Doxycycline | x 1,2 | x 1,2 | x 2,3 | x 1 | [48,53,54,55,56,57,58] | ||||||||||
Azithromycin | x 2 | x 2 | x 2,3 | x 2 | x 1 | [48,53,56,59,60,61,62,63,64] | |||||||||
Grepafloxacin | x 1 | x 1 | x 1 | [65] | |||||||||||
Norfloxacin | x 1 | x 1 | [48,65,66,67,68] | ||||||||||||
Piromidic acid | x 1 | x 1 | x 1 | [65] | |||||||||||
Trovafloxacin | x 1 | x 1 | x 1 | [65,67] | |||||||||||
Cinoxacin | x 1 | x 1 | [65] | ||||||||||||
Ciprofloxacin | x 1 | x 2,3 | x 2 | x 1 | [53,56,65,66,67,68,69,70,71] | ||||||||||
Rufloxacin | x 1 | x 1 | [65] | ||||||||||||
Sparfloxacin | x 1 | x 1 | [65] | ||||||||||||
Ofloxacin | x 1 | x 1 | [48,65,66,68] | ||||||||||||
Temafloxacin | x 1 | x 1 | [65] | ||||||||||||
Pefloxacin | x 1 | x 1 | [65,66] | ||||||||||||
Clinafloxacin | x 1 | x 1 | [65] | ||||||||||||
Dapsone | x 2 | [72] | |||||||||||||
Co-trimoxazole | x 1 | x 1,2 | x 1 | x 2,3 | x 2 | x 1 | [41,42,73,74,75] | ||||||||
Sulfadiazine | x 2 | x 2 | x 2 | x 1 | x 2 | [72,76,77,78,79] | |||||||||
Pyrazinamide | x 2,3 | [53] | |||||||||||||
Clindamycin | x 2,3 | [53] | |||||||||||||
Repurposing within Parasitism | |||||||||||||||
Antiparasitic, insecticidal | Ivermectin | x 1,2 | x 1 | [47,80,81,82] | |||||||||||
Abamectin | x 1 | [47] | |||||||||||||
Emamectin | x 1 | [80] | |||||||||||||
Eprinomectin | x 1 | [80] | |||||||||||||
Antitrypanosomal | Suramin | x 1 | x 2 | x 1 | [83,84,85,86,87,88,89] | ||||||||||
Eflornithine (DFMO) | x 1,2 | x 2 | x 1 | [90,91,92,93,94,95,96,97,98,99,100,101,102] | |||||||||||
Pentamidine | x 1 | x 1 | [103,104,105,106,107,108,109,110,111,112,113] | ||||||||||||
Antiprotozoal | Tinidazole | x 2,3 | [53] | ||||||||||||
From Chronicity to Infection | |||||||||||||||
Antidiabetic | Metformin | x 2 | x 1 | x 2 | x 2 | x 1 | [114,115] | ||||||||
Antihistaminic | Cyproheptadine | x 2 | x 2 | x 2 | x 1 | [116,117,118,119,120] | |||||||||
Ketotifen | x 2 | x 2 | x 2 | x 1 | [116,117,118,119] | ||||||||||
Terfenadine | x 2 | x 2 | [116] | ||||||||||||
Azatadine | x 2 | x 2 | [116,119] | ||||||||||||
Loratadine | x 2 | x 2 | [116,119] | ||||||||||||
Clemastine | x 1 | x 1 | [121,122] | ||||||||||||
Astemizole | x 1 | x 2 | x 2 | x 1 | [121,123] | ||||||||||
Promethazine | x 2,3 | [53] | |||||||||||||
Immunosuppressive | Cyclosporin A | x 1,2 | x 2 | x 2 | x 2 | x 1 | x 1 | [121,124,125,126,127,128,129,130] | |||||||
Proton pump inhibitor | Omeprazole | x 1 | [121] and references therein | ||||||||||||
Esomeprazole | x 1 | ||||||||||||||
Angiotensin receptor antagonist | Telmisartan | x 1 | |||||||||||||
Ovulation inducer | Clomiphene | x 1 | |||||||||||||
Anticancer | Daunorubicin | x 1 | |||||||||||||
Doxorubicin | x 1 | ||||||||||||||
Idarubicin | x 1 | ||||||||||||||
Antirheumatic | Auranofin | x 1 | |||||||||||||
Immunosuppressive | Mycophenolic acid | x 1 | |||||||||||||
Estrogen receptor modulator | Tamoxifen citrate | x 1 | [47] and references therein | ||||||||||||
Toremiphene citrate | x 1 | ||||||||||||||
Antianginal | Perhexiline maleate | x 1 | |||||||||||||
Diuretic | Triamterene | x 2,3 | [53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontinha, D.; Moules, I.; Prudêncio, M. Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020, 25, 3409. https://doi.org/10.3390/molecules25153409
Fontinha D, Moules I, Prudêncio M. Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules. 2020; 25(15):3409. https://doi.org/10.3390/molecules25153409
Chicago/Turabian StyleFontinha, Diana, Isabel Moules, and Miguel Prudêncio. 2020. "Repurposing Drugs to Fight Hepatic Malaria Parasites" Molecules 25, no. 15: 3409. https://doi.org/10.3390/molecules25153409
APA StyleFontinha, D., Moules, I., & Prudêncio, M. (2020). Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules, 25(15), 3409. https://doi.org/10.3390/molecules25153409