High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability
Abstract
:1. Introduction
2. Evolution and Major Applications in the Last Decade
- Conservation and safety by decreasing the microbial load and inactivating enzymes. This occurs as a consequence of the thermal effect derived from mechanical stress or from structural changes in proteins.
- Recovery and extraction of proteins, fibrous materials and bioactive compounds (mainly polyphenols) and increase of the functionality considered in terms of technological use (stabilization of emulsions and dispersions, flow capacity and viscosity modifications, emulsifying activity improvement, etc.). Mechanical stresses and hydrodynamic effects induce cell disruption, favoring the release of intracellular content or structural components of the cell wall. Moreover, dispersed particles or fat droplets can be reduced in size and modified in structure.
- Increase of functionality in terms of health effect (increase bioaccessibility, bioavailability or probiotic effect). These effects result from favoring the release of bioactive compounds, the modification of biopolymer structures and the development of novel particle interactions and networking. Micro- or nano- capsules have also been developed.
3. Preservation and Safety
4. Extraction and Technological Functionality Improvement of Proteins, Fibrous Materials and Bioactive Compounds
5. Increase of Bioavailability and Encapsulation of Bioactive Compounds
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Augusto, P.E.; Tribst, A.A.; Cristianini, M. High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. In Fruit Juices; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 393–421. [Google Scholar]
- Koutchma, T. Fundamentals of HPP Technology. In Adapting High Hydrostatic Pressure for Food Processing Operations; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 5–10. [Google Scholar]
- Osorio-Arias, J.C.; Vega-Castro, O.; Martínez-Monteagudo, S.I. Fundamentals of High-Pressure Homogenization of Foods. In Reference Module in Food Science; Elsevier BV: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High-Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. J. Food Prot. 2019, 82, 2049–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2019, 5, 130. [Google Scholar] [CrossRef]
- McClatchie, J.M. The Borden Company. Valve Homog. Dev. 1930, 28, 131–134. [Google Scholar]
- Pandolfe, W.D. Development of the New Gaulin Micro-Gap™ Homogenizing Valve. J. Dairy Sci. 1982, 65, 2035–2044. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Braschi, G.; Lanciotti, R. Combined use of natural antimicrobial based nanoemulsions and ultra-high-pressure homogenization to increase safety and shelf-life of apple juice. Food Control. 2020, 111, 107051. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Barbosa-Cánovas, G.; Lelieveld, H. High Pressure Processing of Food-Principles, Technology and Application; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-1-4939-3233-7. [Google Scholar]
- Tribst, A.A.L.; Franchi, M.A.; de Massaguer, P.R.; Cristianini, M. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment. J. Food Sci. 2011, 76, M106–M110. [Google Scholar] [CrossRef] [PubMed]
- Calligaris, S.; Foschia, M.; Bartolomeoli, I.; Maifreni, M.; Manzocco, L. Study on the applicability of high-pressure homogenization to produce banana juices. LWT 2012, 45, 117–121. [Google Scholar] [CrossRef]
- Tabanelli, G.; Patrignani, F.; Vinderola, G.; Reinheimer, J.; Gardini, F.; Lanciotti, R. Effect of sub-lethal high-pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT 2013, 53, 580–586. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, L.; Bi, J.; Yi, J.; Liu, X.; Chen, Q.; Wu, X.; Zhou, M. Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innov. Food Sci. Emerg. Technol. 2016, 36, 320–329. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Xu, Y.; Xiao, G.; Zou, B. Effect of High-Pressure Homogenization and Dimethyl Dicarbonate (DMDC) on Microbial and Physicochemical Qualities of Mulberry Juice. J. Food Sci. 2016, 81, M702–M708. [Google Scholar] [CrossRef]
- Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Cao, J.; Zhou, J. Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin-based beverage treated with high-pressure homogenization. J. Food Process. Preserv. 2019, 43, e13912. [Google Scholar] [CrossRef]
- Benjamin, O.; Gamrasni, D. Microbial, nutritional, and organoleptic quality of pomegranate juice following high-pressure homogenization and low-temperature pasteurization. J. Food Sci. 2020, 85, 592–599. [Google Scholar] [CrossRef]
- Pinho, C.R.; Franchi, M.A.; Tribst, A.A.; Cristianini, M. Effect of Ultra High-Pressure Homogenization on Alkaline Phosphatase and Lactoperoxidase Activity in Raw Skim Milk. Procedia Food Sci. 2011, 1, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Amador-Espejo, G.G.; Hernández-Herrero, M.M.; Juan, B.; Trujillo, A.-J. Inactivation of Bacillus spores inoculated in milk by Ultra High-Pressure Homogenization. Food Microbiol. 2014, 44, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Mercan, E.; Sert, D.; Akın, N. Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT 2018, 97, 279–288. [Google Scholar] [CrossRef]
- Valencia-Flores, D.C.; Hernández-Herrero, M.M.; Guamis, B.; Ferragut, V. Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. J. Food Sci. 2013, 78, E199–E205. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Casanova, F.P.; Petruzzi, L.; Sinigaglia, M.; Corbo, M. Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiol. 2016, 53, 1–8. [Google Scholar] [CrossRef]
- Codina-Torrella, I.; Guamis, B.; Zamora, A.; Quevedo, J.; Trujillo, A.-J. Microbiological stabilization of tiger nuts’ milk beverage using ultra-high-pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiol. 2018, 69, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.A.; Tribst, A.A.L.; Cristianini, M. Inactivation of Lactobacillus brevis in Beer Utilizing a Combination of High-Pressure Homogenization and Lysozyme Treatment. J. Inst. Brew. 2011, 117, 634–638. [Google Scholar] [CrossRef]
- Franchi, M.A.; Tribst, A.A.L.; Cristianini, M. High-pressure homogenization: A non-thermal process applied for inactivation of spoilage microorganisms in beer. J. Inst. Brew. 2013, 119, 237–241. [Google Scholar] [CrossRef]
- Comuzzo, P.; Calligaris, S.; Iacumin, L.; Ginaldi, F.; Paz, A.E.P.; Zironi, R. Potential of high-pressure homogenization to induce autolysis of wine yeasts. Food Chem. 2015, 185, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.L.; Patrignani, F.; Quiberoni, A.D.L.; Reinheimer, J.A.; Lanciotti, R.; Guerzoni, M.E. Effect of high-pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. Int. Dairy J. 2009, 19, 336–341. [Google Scholar] [CrossRef]
- Patrignani, F.; Vannini, L.; Kamdem, S.L.S.; Lanciotti, R.; Guerzoni, M.E. Potentialities of High-Pressure Homogenization to Inactivate Zygosaccharomyces bailii in Fruit Juices. J. Food Sci. 2010, 75, M116–M120. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.G.D.S.; Cristianini, M.; Sato, H.H.; dos Santos, J.G. Modification of enzymes by use of high-pressure homogenization. Food Res. Int. 2018, 109, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Bot, F.; Calligaris, S.; Cortella, G.; Plazzotta, S.; Nocera, F.; Anese, M. Study on high pressure homogenization and high-power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. J. Food Eng. 2018, 221, 70–76. [Google Scholar] [CrossRef]
- Plazzotta, S.; Manzocco, L. High-pressure homogenisation combined with blanching to turn lettuce waste into a physically stable juice. Innov. Food Sci. Emerg. Technol. 2019, 52, 136–144. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Cristianini, M. High pressure homogenization of a fungi α-amylase. Innov. Food Sci. Emerg. Technol. 2012, 13, 107–111. [Google Scholar] [CrossRef]
- De Oliveira, M.M.; Júnior, B.R.D.C.L.; Tribst, A.A.L.; Cristianini, M. Use of high-pressure homogenization to reduce milk proteolysis caused by Pseudomonas fluorescens protease. LWT 2018, 92, 272–275. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Cristianini, M. Changes in commercial glucose oxidase activity by high pressure homogenization. Innov. Food Sci. Emerg. Technol. 2012, 16, 355–360. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, M.; Shi, J.; Yang, B.; Li, J.; Luo, D.; Jiang, G.; Jiang, Y. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innov. Food Sci. Emerg. Technol. 2011, 12, 478–483. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Ribeiro, L.R.; Cristianini, M. Comparison of the effects of high-pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innov. Food Sci. Emerg. Technol. 2017, 43, 60–67. [Google Scholar] [CrossRef]
- Iucci, L.; Patrignani, F.; Vallicelli, M.; Guerzoni, M.E.; Lanciotti, R. Effects of high-pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control. 2007, 18, 558–565. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, Y.; Chen, P.; Peng, P.; Liu, S.; Li, D.; Ruan, R. Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innov. Food Sci. Emerg. Technol. 2016, 37, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Flôres, S.H.; Rios, A.D.O.; Iahnke, A.O.; de Campo, C.; Vargas, C.G.; Santos, C.D.; Caetano, K.D.S.; Stoll, L.; Crizel, T.D.M. Films for Food from Ingredient Waste. In Reference Module in Food Science; Elsevier BV: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Xie, F.; Zhang, W.; Lan, X.; Gong, S.; Wu, J.; Wang, Z. Effects of high hydrostatic pressure and high-pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr. Polym. 2018, 196, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, G.; Plazzotta, S.; Calligaris, S.; Manzocco, L.; Nicoli, M.C. Impact of high-pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT 2019, 113, 108324. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, K.; Li, C.; Cheng, S.; Zhou, J.; Wu, Z. A novel biodegradable film from edible mushroom (F. velutipes) by product: Microstructure, mechanical and barrier properties associated with the fiber morphology. Innov. Food Sci. Emerg. Technol. 2018, 47, 153–160. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, D.; Lu, J.; Jiao, C.; Li, S.; Lei, Y.; Liu, D.; Wang, J.; Zhang, Z.; Liu, Y.; et al. Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocoll. 2020, 102, 105628. [Google Scholar] [CrossRef]
- Sarıcaoğlu, F.T.; Atalar, I.; Yilmaz, V.A.; Odabas, H.I.; Gul, O. Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. Food Chem. 2019, 282, 67–75. [Google Scholar] [CrossRef]
- Hua, X.; Xu, S.; Wang, M.; Chen, Y.; Yang, H.; Yang, R. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chem. 2017, 232, 443–449. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, Q.; Yuan, F.; Gao, Y. In vitro binding capacities and physicochemical properties of soluble fiber prepared by microfluidization pretreatment and cellulase hydrolysis of peach pomace. LWT 2015, 63, 677–684. [Google Scholar] [CrossRef]
- Willemsen, K.L.; Panozzo, A.; Moelants, K.; de Bon, S.J.; Desmet, C.; Cardinaels, R.; Moldenaers, P.; Wallecan, J.; Hendrickx, M. Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocoll. 2017, 72, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Plazzotta, S.; Manzocco, L. Effect of ultrasounds and high-pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innov. Food Sci. Emerg. Technol. 2018, 50, 11–19. [Google Scholar] [CrossRef]
- Huang, X.; Tu, Z.; Xiao, H.; Li, Z.; Zhang, Q.; Wang, H.; Hu, Y.; Zhang, L. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food Bioprod. Process. 2013, 91, 1–6. [Google Scholar] [CrossRef]
- Rommi, K.; Rahikainen, J.; Vartiainen, J.; Holopainen, U.; Lahtinen, P.; Honkapää, K.; Lantto, R. Potato peeling costreams as raw materials for biopolymer film preparation. J. Appl. Polym. Sci. 2015, 133. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, S.-H.; Chen, C.-N.N.; Chen, C.-Y.; Jing, K.; Ng, I.-S.; Chen, J.; Chang, J.-S.; Lu, Y. Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochem. Eng. J. 2016, 109, 243–251. [Google Scholar] [CrossRef]
- Zhu, X.; Lundberg, B.; Cheng, Y.; Shan, L.; Xing, J.-J.; Peng, P.; Chen, P.; Huang, X.; Li, D.; Ruan, R. Effect of high-pressure homogenization on the flow properties of citrus peel fibers. J. Food Process. Eng. 2017, 41, e12659. [Google Scholar] [CrossRef]
- Preece, K.; Hooshyar, N.; Zuidam, N. Whole soybean protein extraction processes: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Sarıcaoğlu, F.T.; Gul, O.; Besir, A.; Atalar, I. Effect of high-pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. J. Food Eng. 2018, 233, 98–108. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, F.; Lan, X.; Gong, S.; Wang, Z. Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. J. Food Eng. 2018, 216, 90–97. [Google Scholar] [CrossRef]
- Otoni, C.G.; Lodi, B.D.; Lorevice, M.V.; Leitão, R.C.; Ferreira, M.D.; de Moura, M.R.; Mattoso, L.H. Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Ind. Crop. Prod. 2018, 121, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.-J.; Cheng, Y.; Chen, P.; Shan, L.; Ruan, R.; Li, D.; Wang, L. Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds. Powder Technol. 2019, 358, 103–109. [Google Scholar] [CrossRef]
- Mustafa, W.; Pataro, G.; Ferrari, G.; Donsì, F. Novel approaches to oil structuring via the addition of high-pressure homogenized agri-food residues and water forming capillary bridges. J. Food Eng. 2018, 236, 9–18. [Google Scholar] [CrossRef]
- Griffin, S.; Sarfraz, M.; Farida, V.; Nasim, M.J.; Ebokaiwe, A.P.; Keck, C.M.; Jacob, C. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. J. Environ. Manag. 2018, 210, 114–121. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.; Ishak, M.; Zainudin, E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological, and thermal behavior. Int. J. Boil. Macromol. 2019, 123, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Jurić, S.; Ferrari, G.; Imhof, A.; Donsi’, F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J. Food Eng. 2019, 262, 170–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, R.; Xu, Y.; Chen, M.; Zhang, J.; Gao, Q.; Li, J. Developing a stable high-performance soybean meal-based adhesive using a simple high-pressure homogenization technology. J. Clean. Prod. 2020, 256, 120336. [Google Scholar] [CrossRef]
- Zhou, L. High-Pressure Homogenization Effect on the Stability and Bioaccessibility of Bioactive Phytochemicals and Vitamins in the Food Matrix. In Reference Module in Food Science; Elsevier BV: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Sentandreu, E.; Stinco, C.M.; Vicario, I.M.; Mapelli-Brahm, P.; Navarro, J.L.; Meléndez-Martínez, A.J. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. J. Clean. Prod. 2020, 262, 121325. [Google Scholar] [CrossRef]
- Quan, W.; Tao, Y.; Qie, X.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. J. Funct. Foods 2020, 64, 103633. [Google Scholar] [CrossRef]
- Alongi, M.; Calligaris, S.; Anese, M. Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. J. Funct. Foods 2019, 58, 130–137. [Google Scholar] [CrossRef]
- Betoret, E.; Jiménez, L.C.; Patrignani, F.; Lanciotti, R.; Rosa, M.D. Effect of high-pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT 2017, 85, 418–422. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, P.K.; Roohinejad, S.; Lorenzo, J.M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Influence of Ultra-High-Pressure Homogenization Treatment on the Phytosterols, Tocopherols, and Polyamines of Almond Beverage. J. Agric. Food Chem. 2014, 62, 9539–9543. [Google Scholar] [CrossRef] [PubMed]
- Atalar, I. Functional kefir production from high pressure homogenized hazelnut milk. LWT 2019, 107, 256–263. [Google Scholar] [CrossRef]
- Kapoor, R.; Pathak, S.; Najmi, A.K.; Aeri, V.; Panda, B.P. Processing of soy functional food using high pressure homogenization for improved nutritional and therapeutic benefits. Innov. Food Sci. Emerg. Technol. 2014, 26, 490–497. [Google Scholar] [CrossRef]
- Jiang, T.; Liao, W.; Charcosset, C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 2020, 132, 109035. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Köhler, K.; Karbstein, H.P. Stability of anthocyanins in high pressure homogenisation. Food Chem. 2012, 130, 716–719. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Braschi, G.; Betoret, E.; Reinheimer, J.A.; Lanciotti, R. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res. Int. 2017, 97, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, L.C.; Ester, B.; Betoret, N.; Patrignani, F.; Barrera, C.; Seguí, L.; Lanciotti, R.; Rosa, M.D. High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. J. Food Eng. 2019, 240, 43–48. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.; Lim, L.-T.; Xu, W.; Xu, G. Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters. Molecules 2018, 23, 2525. [Google Scholar] [CrossRef] [Green Version]
- Tatar, B.C.; Sumnu, G.; Oztop, M. Microcapsule characterization of phenolic powder obtained from strawberry pomace. J. Food Process. Preserv. 2019, 43, e13892. [Google Scholar] [CrossRef]
- Ester, B.; Noelia, B.; Laura, C.-J.; Patrignani, F.; Cristina, B.; Lanciotti, R.; Marco, D.R. Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT 2019, 111, 883–888. [Google Scholar] [CrossRef]
- Muramalla, T.; Aryana, K. Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K. J. Dairy Sci. 2011, 94, 3725–3738. [Google Scholar] [CrossRef] [Green Version]
- Tabanelli, G.; Burns, P.; Patrignani, F.; Gardini, F.; Lanciotti, R.; Reinheimer, J.; Vinderola, G. Effect of a non-lethal High-Pressure Homogenization treatment on the in vivo response of probiotic lactobacilli. Food Microbiol. 2012, 32, 302–307. [Google Scholar] [CrossRef]
- Patrignani, F.; Serrazanetti, D.I.; Mathara, J.M.; Siroli, L.; Gardini, F.; Holzapfel, W.; Lanciotti, R. Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containing Lactobacillus rhamnosus BFE 5264. Int. J. Dairy Technol. 2015, 69, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Burns, P.; Patrignani, F.; Tabanelli, G.; Vinderola, G.C.; Siroli, L.; Reinheimer, J.A.; Gardini, F.; Lanciotti, R. Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. J. Funct. Foods 2015, 13, 126–136. [Google Scholar] [CrossRef]
- Barrera, C.; Burca, C.; Betoret, E.; García-Hernández, J.; Hernández, M.; Betoret, N. Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or sublethal homogenisation. Int. J. Food Sci. Technol. 2019, 54, 2109–2122. [Google Scholar] [CrossRef]
- Siroli, L.; Braschi, G.; Rossi, S.; Gottardi, D.; Patrignani, F.; Lanciotti, R. Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms 2020, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Lanciotti, R.; Patrignani, F.; Iucci, L.; Saracino, P.; E Guerzoni, M. Potential of high-pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chem. 2007, 102, 542–550. [Google Scholar] [CrossRef]
Product | Treatment | Terms | Microbiologic Control | Results | Reference |
---|---|---|---|---|---|
Fruit juices (apricot and carrot) | HPH + rapid cooling | 100 MPa (1–8 passes) | Zygosaccharomyces bailii 45 | The juice type affected the yeast fate (growth or death) and viscosity change after HPH treatment. | [8] |
Mango nectar | HPH + thermal shock | 200 MPa 10–20 s at 60–85 °C | A. niger (COI 4573) | The combination of HPH with subsequent thermal shock was efficient in inactivating heat resistant mold in mango nectar. | [10] |
Banana juice | HPH + rapid cooling | 0, 150, 200, 300 and 400 MPa | Total mesophilic bacteria | Pressures greater than 200 MPa were required to obtain a reduction of four logarithmic units. | [11] |
Apricot juice | HPH + citral + rapid cooling | 100 MPa (1,3,5 and 8 passes) | Saccharomyces cerevisiae SPA | Decrease of the viability of the yeasts following a linear tendency with pressure. Improvement of the antimicrobial effect by adding citral. | [12] |
Mango juice (Mangifera indica L.) | HPH + heat treatment | 40–190 MPa (1–5 passes) | Total plate count, molds and yeasts | Complete inactivation of molds and yeasts was achieved by one and three passes at 190 MPa and 60 °C, while the total plate count was less than 2.0 log CFU/mL. | [13] |
Mulberry juice (Morus atropurpurea Roxb.) | HPH + heat treatment + Addition of Dimethyl Dicarbonate (DMDC) | 200 MPa (1–3 passes) | Total count, yeast, mold and lactic acid bacteria | Combination treatment with three passes at 200 MPa and 250 mg DMDC/L decreased total count to the level reached by heat treatment at 95 °C. | [14] |
Lupine based drinks | HPH + refrigeration | 50, 100 and 175 MPa (2,4,6 passes) | Total bacterial count, molds and yeasts. Bacillus cereuses and coliform bacteria | At 175 MPa, yeasts, molds and coliforms were completely eliminated with two and four passes | [15] |
Granada juice | HPH + low temperature pasteurization | 100, 150 MPa (10 passes) 55 or 65 °C for 15 s | Escherichia coli (ATCC 26) and Saccharomyces pastorianus (ATCC 42376) | HPH at 150 MPa followed by a low heat intensity at 65 °C for 15 s showed a reduction of 3 log CFU/ mL. | [16] |
Skim milk | Heat treatment + HPH | 100–300 MPa | Bacillus stearothermophilus ATCC 7953 and Clostridium sporogenes PA 3679 | The efficacy of HPH is similar to pasteurization and must be combined with other conservation techniques. | [17] |
Milk | Heat treatment + HPH | 300 MPa | Spores of B. cereus, B. lincheniformis, B. sporothermodurans, B. coagulans, B. stearothermophilus, and B. subtilis | Sterility at 300 MPa can be achieved with an initial milk temperature of 85 °C. | [18] |
Skim and whole milk concentrates | Heat treatment + HPH | Skim milk: 0,20,50,70, 100,120 and 150 MPa. Whole milk: 0,20,30,35 and 40 MPa. | Total count, coliforms, enterobacteriaceae, molds and yeasts and Staphylococco | HPH at 120 MPa completely inactivates the microbial load of milk concentrates. | [19] |
Almond beverages | Heat treatment + HPH | 200, 300 MPa (1,2 passes) | Micrococcaceae, Bacillus cereus and Mesophilic aerobic bacteria | Complete elimination of microbial growth when working with the highest pressure and with an inlet temperature of 65–75 °C. | [20] |
Rice drink | HPH+ sonication | 50–100 MPa (1–3 passes) | Lactobacillus Plantarum, Lactobacillus Casei, y Bifidobacterium Animalis | Reduction and elimination of postacidification by lactic acid bacteria. | [21] |
Tiger nuts’ milk beverage | HPH + refrigeration | 200 and 300 MPa | Psychotropic bacteria, Lactobacilli, Enterobacteriaceae and fecal coliforms | Improved shelf life and microbial inactivation compared to other heat treatments. | [22] |
Lager beer | HPH + lysozyme addition | 0–300 MPa | Lactobacillus brevis (CCT 3745) | The inhibitory concentration of lysozyme against L. brevis was 100 mg/ L. HPH at 100, 140 and 150 MPa promoted decimal reductions of 1, 3, and 6 in microbial counts. | [23] |
Pilsen beer | Heat treatment + HPH | 100, 150, 200 and 250 MPa (1–3 passes) | Lactobacillus del brueckii | It is possible to inactivate the most common microorganisms that cause beer deterioration at 250 MPa. The effect increases with increasing the number of passes. | [24] |
Wine | Chemical treatment + HPH | 0, 50, 100 and 150 MPa | Saccharomyces bayanus | HPH at 150 MPa was the best treatment, inducing yeast autolysis; also suitable for the acceleration of sur lie maturation. | [25] |
Product | Enzymes | Treatment | Effect | Reference |
---|---|---|---|---|
Commercial enzymes | Glucose oxidase | 50, 100, 150 MPa | Decrease in enzyme activity at 50 MPa. Improvement in activity and stability at 100 and 150 MPa | [33] |
Commercial enzymes | Amyloglucosidase, Glucose oxidase, Neutral protease | Amyloglucosidase, neutral protease: 150, 200 MPa (3 passes). Glucose oxidase: 100, 150 MPa (3 passes) | Improvement of enzymatic activity | [24] |
Fruit juices | α-amilase | 0, 40, 80, 120 and 150 MPa | Stability of the enzyme | [31] |
Apple juice | Polyphenoloxidase | 150 MPa (10 passes) | Inactivation | [29] |
Lettuce waste juice | Polyphenoloxidase | 80 MPa (1 pass) and 150 MPa (1–10 passes) | Inactivation | [30] |
Peanut protein | Alcalase | 0, 1, 40 and 80 MPa | Increased enzymatic hydrolysis. | [34] |
Chicken egg white | Lysozyme muramidase | 40, 80, 120, 160 and 190 MPa | Activation and increase of enzymatic activity. | [35] |
Raw skim milk | Alkaline phosphatase and lactoperoxidase | 100, 150, 200, 250 and 300 MPa | Decrease and inactivation of alkaline phosphatase. Increased activity of lactoperoxidase. | [17] |
Milk | Protease Pseudomonas fluorescens | 100 and 150 MPa | Decreased proteolytic rate | [32] |
Substrate | Component | Treatment | Objective | Reference |
---|---|---|---|---|
Sweet potato leaves | Flavonoids | 100 MPa (2 passes) | Strengthens the antioxidant activities of the flavonoid. | [48] |
Potato peel | Biopolymer film | 150 MPa | Extraction | [49] |
Peach pomace | Soluble fibers | 140 MPa (4 passes) | Significantly improved the efficiency of cellulase hydrolysis in the preparation of soluble fibers and a high binding capacity for sodium cholate and cholesterol. | [45] |
Potato peel | Phenolic acids | 159 MPa (2 passes) + NaOH treatment | Improved extraction and release of total phenolic content and total flavonoid content. | [37] |
Desmodesmus sp. F51 | Carotenoids | 69–276 MPa (1–4 passes) | Extraction | [50] |
Dry tomato residue waste | Fibers | 100 MPa (10 passes) | Improved the soluble fiber content and its oil holding capacity. | [44] |
Citrus peel | Fibers | 90, 160 MPa (2 passes) | Improvement of physical, chemical and functional properties including surface area, water holding capacity, texture and viscosity. | [51] |
Lemon peels fiber | Pectin | 20 and 80 MPa | Extraction | [46] |
Soybean | Protein | 100 MPa | Extraction | [52] |
Hazelnut oil industry by-products | Hazelnut meal proteins | 0, 25, 50, 75, 100 and 150 MPa | Improves functional (solubility, emulsifying and foaming properties) and rheological properties of proteins. | [53] |
Black cherry tomato waste | Pectin | 0, 40, 80, 120 and 160 MPa (2 passes) | Increase the esterification degree of pectins. | [54] |
Carrot processing waste | Biodegradable composite films were prepared | 138 MPa (7 passes) | Extraction | [55] |
Lettuce waste | Polyphenols | 50, 100 MPa | Extraction | [47] |
Potato peel | Pectin | 200 MPa | Increased galacturonic acid content, viscosity and emulsifying properties. Decreased esterification degree and molecular weight. | [39] |
Broccoli seeds | Sulforaphane | 20–160 MPa (1–5 passes) | Increases the extraction yield. | [56] |
Agri-food waste (tomato peel, coffee beans) | Application for structuring peanut oil | 70 MPa (3 passes) | Replacing part of the lipids with water and low calorie fibers. | [57] |
Edible mushroom by-products | Biodegradable edible film | 100 MPa (3 passes) | Improve tensile strength, elongation at break, water vapor permeability, oxygen barrier and thermal stability. | [41] |
Grape seeds, tomato stem, walnut shells, coffee | Polyphenolic compounds and antioxidants | 20, 50, 100, 120 MPa | Extraction | [58] |
Soybean okara | Proteins and soluble fibers | 50, 100, 150 MPa (1 pass) 150 MPa (5 pases) | Extraction | [40] |
Sugar palm | nanofibrillated cellulose | 50 MPa (3 passes) | Extraction | [59] |
Tomato peels | Bioactive compounds: proteins, polyphenols, lycopene | 100 MPa (1–10 passes) | Increased release of intracellular compounds (proteins, sugars, antioxidants) | [60] |
Pomelo peel | Biopolymer film | 20, 40, 60 and 80 MPa (10 passes) | Improved mechanical properties, microstructure, optical and barrier properties. | [42] |
Soybean meal | Resins | 20 MPa | Extraction | [61] |
Component Encapsulated | Matrix | Conditions | Results | Reference |
---|---|---|---|---|
Lactobacillus paracasei A13 and Lactobacillus salivarius subsp. salivarius CET 4063 | Fermented milk | 50 MPa (5 passes) | The microcapsules presented high yields in terms of trapped viable cells and acceptable sizes. Furthermore, microencapsulation caused a decrease in acidity in fermented milk. | [73] |
Phenolic compounds and anthocyanins from blueberry pomace | - | 50–200 MPa | The encapsulation efficiency, size and charge characteristics of the emulsion droplets were affected by HPH. | [75] |
Lactobacillus salivarius spp. Salivarius | Mandarin Juice | 70 MPa (2 passes) | Improving the survival of probiotics with the use of alginate as a coating. | [74] |
Phenolic powder from strawberry pomace | - | 50 and 70 MPa (3, 5, 7 passes) | High encapsulation efficiency | [76] |
L. salivarius spp. Salivarius | Mandarin juice impregnated in apple | 70 MPa (2 passes) | The final count of L. salivarius spp. Salivarius encapsulation was high enough to exert a potential beneficial effect. | [77] |
Food Matrix | Microbial Strain | Conditions | Results | References |
---|---|---|---|---|
Yogurt | L. Delbrueckii ssp. bulgaricus LB- 12, S. Salivarius ssp. thermophilus ST-M5 and L. acidophilus LA-K | 0, 3.45, 6.90, 10.34 and 13.80 MPa | Improved tolerance to acid and bile | [78] |
- | L. acidophilus Dru y L. paracasei A13 | 0.1 and 50 MPa | Increased probiotic characteristics in vivo; no modification in the interaction of lactobacilli with the small intestine. | [79] |
- | Lactobacillus paracasei A13, Lactobacillus acidophilus 08 and Dru, Lactobacillus delbrueckii spp. lactis 200 | 50 MPa | Increased functional characteristics depending on the type of strain. | [12] |
Fermented milks | Lactobacillus rhamnosus BFE5264, L. delbrueckii spp. bulgaricus FP1 and Streptococcus thermophilus LI3 | 60 MPa | Reduced product clotting time and increased viability of the probiotic strain. | [80] |
Cacciotta cheese | Lactobacillus paracasei A13 | 50 MPa | Increase in quality and decrease in cheese maturation time. | [81] |
Mandarin juice | L. salivarius spp. Salivarius | 0, 20 and 100 MPa | Improvement of cellular hydrophobicity. | [66] |
Clementine juice | L. salivarius spp. Salivarius | 25, 50, 100 and 150 MPa | Improvement of the antioxidant properties of the juice. | [82] |
Fresh Culture (1% v/v) | Lactobacillus paracasei A13 | 50, 150, 200 MPa | Increase in the unsaturation in membrane fatty acids. | [83] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesa, J.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. https://doi.org/10.3390/molecules25143305
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules. 2020; 25(14):3305. https://doi.org/10.3390/molecules25143305
Chicago/Turabian StyleMesa, José, Leidy Indira Hinestroza-Córdoba, Cristina Barrera, Lucía Seguí, Ester Betoret, and Noelia Betoret. 2020. "High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability" Molecules 25, no. 14: 3305. https://doi.org/10.3390/molecules25143305