“On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Instrumenttion
3.2. Preparation of Starting Compounds 1–4
3.3. General Experimental Procedure for the Synthesis of Products 1a–h, 2a–f, 3a–b and 4a–d
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gutekunst, W.R.; Baran, P.S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 2011, 40, 1976–1991. [Google Scholar] [CrossRef] [PubMed]
- McMurray, L.; O’Hara, F.; Gaunt, M.J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalization. Chem. Soc. Rev. 2011, 40, 1885–1898. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.K.; Youn, S.W. C–H activation: A complementary tool in the total synthesis of complex natural products. Chem. Eur. J. 2012, 18, 9452–9474. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C–H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960–9009. [Google Scholar] [CrossRef]
- Noisier, A.F.M.; Brimble, M.A. C–H Functionalization in the Synthesis of Amino Acids and Peptides. Chem. Rev. 2014, 114, 8775–8806. [Google Scholar] [CrossRef]
- Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979, 20, 3437–3440. [Google Scholar] [CrossRef] [Green Version]
- Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc., Chem. Commun. 1979, 866–867. [Google Scholar] [CrossRef]
- Milstein, D.; Stille, J.K. Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism. J. Am. Chem. Soc. 1979, 101, 4992–4998. [Google Scholar] [CrossRef]
- King, A.O.; Okukado, N.; Negishi, E. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun. 1977, 683–684. [Google Scholar] [CrossRef]
- Negishi, E.; King, A.O.; Okukado, N. Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J. Org. Chem. 1977, 42, 1821–1823. [Google Scholar] [CrossRef]
- Sharma, A.; Vacchani, D.; Van Der Eycken, E. Developments in Direct C–H Arylation of (Hetero)Arenes under Microwave Irradiation. Chem. Eur. J. 2013, 19, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Naas, M.; El Kazzouli, S.; Essassi, E.M.; Bousmina, M.; Guillaumet, G. Palladium-Catalyzed Direct C7-Arylation of Substituted Indazoles. J. Org. Chem. 2014, 79, 7286–7293. [Google Scholar] [CrossRef] [PubMed]
- El Kazzouli, S.; Koubachi, J.; El Brahmi, N.; Guillaumet, G. Advances in direct C–H arylation of 5,5- 6,5- and 6,6-fused-heterocycles containing heteroatoms (N, O, S). RSC Adv. 2015, 5, 15292–15327. [Google Scholar] [CrossRef]
- Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Transition Metal-Free Direct C-H (Hetero)arylation of Heteroarenes: A Sustainable Methodology to Access (Hetero)aryl-Substituted Heteroarenes. Adv. Synth. Catal. 2015, 357, 3777–3814. [Google Scholar] [CrossRef]
- Basu, K.; Poirier, T.; Ruck, R.T. Solution to the C3–Arylation of Indazoles: Development of a Scalable Method. Org. Lett. 2016, 18, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Hameury, S.; Kunz, S.; Sommer, M. Expanding the Scope of Electron-Deficient C−H Building Blocks: Direct Arylation of Pyromellitic Acid Diimide. ACS Omega. 2017, 2, 2483–2488. [Google Scholar] [CrossRef]
- Kim, J.; Hong, S.H. Ligand-Promoted Direct C–H Arylation of Simple Arenes: Evidence for a Cooperative Bimetallic Mechanism. ACS Catal. 2017, 7, 3336–3343. [Google Scholar] [CrossRef]
- Shoji, T.; Araki, T.; Sugiyama, S.; Ohta, A.; Sekiguchi, R.; Ito, S.; Okujima, T.; Toyota, K. Synthesis of 2-Azulenyltetrathiafulvalenes by Palladium-Catalyzed Direct Arylation of 2-Chloroazulenes with Tetrathiafulvalene and Their Optical and Electrochemical Properties. J. Org. Chem. 2017, 82, 1657–1665. [Google Scholar] [CrossRef]
- Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C-H activation/functionalization: The fundamentals. J. Mol. Catal. A Chem. 2017, 426, 275–296. [Google Scholar] [CrossRef]
- Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. On water: Unique reactivity of organic compounds in aqueous suspension. Angew. Chem., Int. Ed. 2005, 44, 3275–3279. [Google Scholar] [CrossRef]
- Li, C.J.; Chan, T.H. Organic reactions in aqueous media. J. Chem. Educ. 2000, 77, 707–708. [Google Scholar]
- Grieco, P.A. Organic Synthesis in Water; Blackie Academic & Professional: London, UK, 1998. [Google Scholar]
- Ferrer Flegeau, E.F.; Popkin, M.E.; Greaney, M.F. Direct arylation of oxazoles at C2. A concise approach to consecutively linked oxazoles. Org. Lett. 2008, 10, 2717–2720. [Google Scholar] [CrossRef] [PubMed]
- Ohnmacht, S.A.; Mamone, P.; Culshaw, A.J.; Greaney, M.F. Direct arylations on water: Synthesis of 2,5-disubstituted oxazolesbalsoxin and texaline. Chem. Commun. 2008, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.L.; Morris, J.A.; Greaney, M.F. Direct arylation of thiazoles on water. Angew. Chem., Int. Ed. 2007, 46, 7996–8000. [Google Scholar] [CrossRef]
- Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem. 2008, 24, 4073–4095. [Google Scholar] [CrossRef]
- Stadlbauer, W. Houben-Weyl, Methoden der Organischen Chemie: Indazole (Benzopyrazole); Schaumann, E., Ed.; Georg-Thieme-Verlag Stuttgart: New York, NY, USA, 1994; Volume 3, pp. 764–864. [Google Scholar]
- Elguero, J. Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Pergamon: Oxford, UK, 1996; Volume 3, pp. 1–75. [Google Scholar]
- Elguero, J. Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Pergamon: Oxford, UK, 1984; Volume 5, pp. 167–303. [Google Scholar]
- Behr, L.C. The Chemistry of Heterocyclic Compounds; Weissberger, A., Taylor, E.C., Eds.; Wiley-Interscience: New York, NY, USA, 1967; Volume 22, pp. 289–382. [Google Scholar]
- Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.J.; Ochoa de Ocáriz, C. Pharmacological properties of indazole derivatives: Recent developments. Mini-Rev. Med. Chem. 2005, 5, 869–878. [Google Scholar] [CrossRef]
- Ohnmacht, A.S.; Culshaw, A.J.; Greaney, M.F. Direct Arylations of 2H-Indazoles On Water. Org. Lett. 2010, 12, 224–226. [Google Scholar] [CrossRef]
- Ben-Yahia, A.; Naas, M.; El Kazzouli, S.; Essassi, E.M.; Guillaumet, G. Direct C-3-arylations of 1H-indazoles. Eur. J. Org. Chem 2012, 2012, 7075–7081. [Google Scholar] [CrossRef]
- Hattori, K.; Yamaguchi, K.; Yamaguchi, J.; Itami, K. Pd- and Cu- catalyzed C-H arylation of indazoles. Tetrahedron 2012, 68, 7605–7612. [Google Scholar] [CrossRef]
- Ye, M.; Edmunds, A.J.; Morris, J.A.F.; Sale, D.; Zhang, Y.; Yu, J.Q. A robust protocol for Pd(II)-catalyzed C-3 arylation of (1H) indazoles and pyrazoles: Total synthesis of nigellidinehydrobromide. Chem. Sci. 2013, 4, 2374–2379. [Google Scholar] [CrossRef]
- Faarasse, S.; El Kazzouli, S.; Naas, M.; Jouha, J.; Suzenet, F.; Guillaumet, G. “On water” direct C-3 arylation of 2H-pyrazolo[3,4-b]pyridines. J. Org. Chem. 2017, 82, 12300–12306. [Google Scholar] [CrossRef]
- Faarasse, S.; El Kazzouli, S.; Suzenet, F.; Guillaumet, G. Palladium-catalyzed C3 arylations of 1H and 2H pyrazolo[4,3-b]pyridines on water. J. Org. Chem. 2018, 83, 12847–12854. [Google Scholar] [CrossRef]
- Lavrard, H.; Popowycz, F. Regioselective late-stage C-3 functionalization of pyrazolo[3,4-b]pyridines. Synthesis 2018, 50, 998–1006. [Google Scholar]
- Belkessam, F.; Aidene, M.; Soule, J.F.; Doucet, H. Direct C3-Arylation of 2H-Indazole Derivatives with Aryl Bromides by using Low Loading of a Phosphine-free Palladium Catalyst. ChemCatChem 2017, 9, 2239–2249. [Google Scholar] [CrossRef]
- Unsinn, A.; Knochel, P. Regioselective zincation of indazoles using TMP2Zn and Negishi cross-coupling with aryl and heteroaryl iodides. Chem. Commun. 2012, 48, 2680–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, B.A.; Burton, P.M. Synthesis of 3-aryl-1H-indazoles via iridium-catalysed C–H borylation and Suzuki–Miyaura coupling. RSC Adv. 2014, 4, 27726–27729. [Google Scholar] [CrossRef]
- Nishida, M.; Uehata, Y. Method for Producing Arylpyrazole. Japan Patent JP2006342127A, 21 December 2006. [Google Scholar]
- Zhai, M.; Liu, S.; Gao, M.; Wang, L.; Sun, J.; Du, J.; Guan, Q.; Bao, K.; Zuo, D.; Wu, Y.; et al. 3,5-Diaryl-1H-pyrazolo[3,4-b]pyridines as potent tubulin polymerization inhibitors: Rational design, synthesis and biological evaluation. Euro. J. Med. Chem. 2019, 168, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Liu, Y.P.; Xu, B.H.; Wang, X.H.; Jiang, B.; Tu, S.J. Microwave-assisted chemoselective reaction: A divergent synthesis of pyrazolopyridine derivatives with different substituted patterns. Tetrahedron. 2011, 67, 9417–9425. [Google Scholar] [CrossRef]
- Bharate, S.B.; Mahajan, T.R.; Gole, Y.R.; Nambiar, M.; Matan, T.T.; Kulkarni-Almeida, A.; Balachandran, S.; Junjappa, H.; Balakrishnan, A.; Vishwakarma, R.A. Synthesis and evaluation of pyrazolo[3,4-b]pyridines and its structural analogues as TNF-α and IL-6 inhibitors. Bioorg. Med. Chem. 2008, 16, 7167–7176. [Google Scholar] [CrossRef]
- Sharma, P.K.; Singh, K.; Kumar, S.; Dhawan, S.N.; Lal, S.; Ulbrich, H.; Dannhardt, G. Synthesis and anti-inflammatory evaluation of some pyrazolo[3,4-b]pyridines. Med. Chem. Res. 2011, 20, 239–244. [Google Scholar] [CrossRef]
- Oe, T.; Kawasaki, K.; Terasawa, M.; Imayoshi, T.; Yasunaga, Y. Pyrazolopyridine compounds, their preparation and use as platelet aggregation inhibitors. U.S. Patent US4808620A, 28 February 1989. [Google Scholar]
- Straub, A.S.; Alonso-Alija, J.P.C. NO-independent Stimulators of Soluble Guanylate Cyclase. Bioorg. Med. Chem. Lett. 2001, 11, 781–784. [Google Scholar] [CrossRef]
- Cappelli, A.; Nannicini, C.; Gallelli, A.; Giuliani, G.; Valenti, S.; Mohr, G.P.; Anzini, M.; Mennuni, L.; Ferrari, F.; Caselli, G.; et al. Design, Synthesis, and Biological Evaluation of AT1 Angiotensin II Receptor Antagonists Based on the Pyrazolo[3,4-b]pyridine and Related Heteroaromatic Bicyclic Systems. J. Med. Chem. 2008, 51, 2137–2146. [Google Scholar] [CrossRef] [PubMed]
- Höhn, H.; Polacek, I.; Schulze, E. Potential antidiabetic agents. Pyrazolo[3,4-b]pyridines. J. Med. Chem. 1973, 16, 1340–1346. [Google Scholar] [CrossRef]
- Lin, R.; Connolly, P.J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel, S.L.; Middleton, S.A.; et al. Synthesis and evaluation of pyrazolo[3,4-b]pyridine CDK1 inhibitors as anti-tumor agents. Bioorg. Med. Chem. Lett. 2007, 17, 4297. [Google Scholar] [CrossRef] [PubMed]
- Bare, T.M.; McLaren, C.D.; Campbell, D.J.B.; Firor, J.W.; Resch, J.F.; Walters, C.P.; Salama, A.I.; Meiners, B.A.; Patel, J.B. Synthesis and structure-activity relationships of a series of anxioselective pyrazolopyridine ester and amide anxiolytic agents. J. Med. Chem. 1989, 32, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Leal, B.; Afonso, I.F.; Rodrigues, C.R.; Abreu, P.A.; Garrett, R.; Pinheiro, L.C.; Azevedo, A.R.; Borges, J.C.; Vegi, P.F.; Santos, C.C.C.; et al. Antibacterial profile against drug-resistant Staphylococcus epidermidis clinical strain and structure–activity relationship studies of 1H-pyrazolo[3,4-b]pyridine and thieno[2,3-b]pyridine derivatives. Bioorg. Med. Chem. 2008, 16, 8196–8204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Balan, G.; Barreiro, G.; Boscoe, B.P.; Chenard, L.K.; Cianfrogna, J.; Claffey, M.M.; Chen, L.; Coffman, K.J.; Drozda, S.E.; et al. Discovery and Preclinical Characterization of 1-Methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo-[3,4-b]pyrazine (PF470): A Highly Potent, Selective, and Efficacious Metabotropic Glutamate Receptor 5 (mGluR5) Negative Allosteric Modulator. J. Med. Chem. 2014, 57, 861–877. [Google Scholar] [PubMed]
- Halank, M.; Tausche, K.; Grünig, E.; Ewert, R.; Preston, I.R. Practical management of riociguat in patients with pulmonary arterial hypertension. Ther. Adv. Respir. Dis. 2019, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandarage, U.K.; Clark, M.P.; Perola, E.; Gao, H.; Jacobs, M.D.; Tsai, A.; Gillespie, J.; Kennedy, J.M.; Maltais, F.; Ledeboer, M.W.; et al. Novel 2-Substituted 7-Azaindole and 7-Azaindazole Analogues as Potential Antiviral Agents for the Treatment of Influenza. ACS Med. Chem. Lett. 2017, 8, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, D.; Yadav, P.K.; Patel, O.P.S.; Parmar, N.; Maurya, R.K.; Vishwakarma, P.; Raju, K.S.R.; Taneja, I.; Wahajuddin, M.; Kar, S.; et al. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J. Med. Chem. 2017, 60, 1041–1059. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Entry | X | X (equiv) | Cat (equiv) | Ligand (equiv) | T °C | Time (h) | Solvent | Yield (%) |
---|---|---|---|---|---|---|---|---|
1 | I | 1.1 | 5% Pd(dppf)Cl2·DCM | 10% PPh3 | 50 | 16 | Water | 0 [a] (85) [b] |
2 | I | 1.1 | 20% Pd(OAc)2 | 40% Phen | 70 | 48 | Water | 0(80) |
3 | I | 1.1 | 20% Pd(OAc)2 | 40% PPh3 | 70 | 48 | Water | 40 [c] (32) |
4 | I | 1.1 | 20% Pd(OAc)2 | 40% PPh3 | Reflux | 48 | Water | 37 (29) |
5 | I | 1.1 | 20% Pd(OAc)2 | 40% PPh3 | Sealed tube 140 °C | 48 | Water | 45 (28) |
6 | I | 1.1 | 20% Pd(OAc)2 | 40% PPh3 | Sealed tube 140 °C | 48 | Water | 47 [d] (26) |
7 | I | 1.1 | 20% Pd(OAc)2 | 40% PPh3 | Sealed tube 140 °C | 48 | Water/EtOH 1:1 | 17(25) |
8 | I | 2 | 20% Pd(OAc)2 | 40% PPh3 | Sealed tube 140 °C | 48 | Water | 50 (21) |
9 | I | 3 | 20% Pd(OAc)2 | 40% PPh3 | Sealed tube 140 °C | 48 | Water | 86 (0) |
10 | I | 3 | 10% Pd(OAc)2 | 10% PPh3 | Sealed tube 140 °C | 48 | Water | 84 (0) |
11 | I | 3 | 5% Pd(OAc)2 | 10% PPh3 | Sealed tube 140 °C | 48 | Water | 81 (traces) |
12 | I | 3 | 5% Pd(OAc)2 | 10% PPh3 | Sealed tube 140 °C | 24 | Water | 37 (58) |
13 | I | 3 | 5% Pd(OAc)2 | 10% PPh3 | Sealed tube 100 °C | 48 | Water | 80 (traces) |
14 | I | 3 | 5% Pd(OAc)2 | 10% Phen | Sealed tube 100 °C | 48 | Water | Traces (83) |
15 | I | 3 | 5% Pd(OAc)2 | 10% PPh3 | Reflux | 48 | Water | 76 (10) |
16 | Br | 3 | 5% Pd(OAc)2 | 10% PPh3 | Sealed tube 100 °C | 48 | Water | 0 (98) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambouz, K.; El Abbouchi, A.; Nassiri, S.; Suzenet, F.; Bousmina, M.; Akssira, M.; Guillaumet, G.; El Kazzouli, S. “On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole. Molecules 2020, 25, 2820. https://doi.org/10.3390/molecules25122820
Gambouz K, El Abbouchi A, Nassiri S, Suzenet F, Bousmina M, Akssira M, Guillaumet G, El Kazzouli S. “On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole. Molecules. 2020; 25(12):2820. https://doi.org/10.3390/molecules25122820
Chicago/Turabian StyleGambouz, Khadija, Abdelmoula El Abbouchi, Sarah Nassiri, Franck Suzenet, Mostapha Bousmina, Mohamed Akssira, Gérald Guillaumet, and Saïd El Kazzouli. 2020. "“On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole" Molecules 25, no. 12: 2820. https://doi.org/10.3390/molecules25122820
APA StyleGambouz, K., El Abbouchi, A., Nassiri, S., Suzenet, F., Bousmina, M., Akssira, M., Guillaumet, G., & El Kazzouli, S. (2020). “On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole. Molecules, 25(12), 2820. https://doi.org/10.3390/molecules25122820