High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Preparation of Mealworm Samples
2.2. Proximate Composition of Mealworm Meals
2.3. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis of Mealworm Proteins
2.4. Analysis
2.4.1. Determination of the Degree of Hydrolysis
2.4.2. Digestion Profiles of Mealworm Proteins
2.4.3. Protein Identification by Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. Mealworm Protein Degradation during Enzymatic Hydrolysis
3.2. Effect of High Hydrostatic Pressure Coupled to Enzymatic Digestion on the Degree of Hydrolysis of Mealworm Proteins
3.3. Determination of Mealworm Allergenic Protein Precursors from Hydrolysates
4. Discussion
4.1. Effects of High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis on Protein Degradation and Degree of Hydrolysis
4.2. Digestion of Mealworm Allergenic Proteins by Pressurization Treatments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yi, L.; Lakemond, C.; Sagis, L.M.; Eisner-Schadler, V.; Van Huis, A.; Van Boekel, M. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Meinlschmidt, P.; Horn, C.; Rieder, O.; Jäger, H. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur. Food Res. Technol. 2017, 244, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Mintah, B.K.; He, R.; Dabbour, M.; Xiang, J.; Agyekum, A.A.; Ma, H. Techno-functional attribute and antioxidative capacity of edible insect protein preparations and hydrolysates thereof: Effect of multiple mode sonochemical action. Ultrason. Sonochem. 2019, 58, 104676. [Google Scholar] [CrossRef] [PubMed]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodríguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jäger, H. Edible insects: Cross-recognition of IgE from crustacean- and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef] [Green Version]
- Van Broekhoven, S.; Bastiaan-Net, S.; De Jong, N.W.; Wichers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016, 196, 1075–1083. [Google Scholar] [CrossRef]
- Barre, A.; Caze-Subra, S.; Gironde, C.; Bienvenu, F.; Bienvenu, J.; Rougé, P. Entomophagie et risque allergique. Rev. Française d’Allergol. 2014, 54, 315–321. [Google Scholar] [CrossRef]
- Ozawa, H.; Umezawa, K.; Takano, M.; Ishizaki, S.; Watabe, S.; Ochiai, Y. Structural and dynamical characteristics of tropomyosin epitopes as the major allergens in shrimp. Biochem. Biophys. Res. Commun. 2018, 498, 119–124. [Google Scholar] [CrossRef]
- Broekman, H.C.; Knulst, A.; Jager, S.D.H.; Monteleone, F.; Gaspari, M.; De Jong, G.; Houben, G.F.; Verhoeckx, K. Effect of thermal processing on mealworm allergenicity. Mol. Nutr. Food Res. 2015, 59, 1855–1864. [Google Scholar] [CrossRef]
- Liu, G.-M.; Cheng, H.; Nesbit, J.B.; Su, W.-J.; Cao, M.-J.; Maleki, S. Effects of boiling on the IgE-Binding properties of tropomyosin of shrimp (Litopenaeus vannamei). J. Food Sci. 2010, 75, T1–T5. [Google Scholar] [CrossRef]
- De Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Villa, C.; Moura, M.B.M.V.; Costa, J.; Mafra, I. Immunoreactivity of lupine and soybean allergens in foods as affected by thermal processing. Foods 2020, 9, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Phillips, R.D. Effects of twin-screw extrusion of peanut flour on in vitro digestion of potentially allergenic peanut proteins. J. Food Prot. 2005, 68, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Liceaga, A.M. Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bioprocess Technol. 2016, 10, 582–591. [Google Scholar] [CrossRef]
- Yang, W.; Tu, Z.; Wang, H.; Zhang, L.; Gao, Y.; Li, X.; Tian, M. Immunogenic and structural properties of ovalbumin treated by pulsed electric fields. Int. J. Food Prop. 2017, 20, S3164–S3176. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Q.; Wang, Y.; Fu, L. Effect of ultrasound treatment on allergenicity reduction of milk casein via colloid formation. J. Agric. Food Chem. 2020, 68, 4678–4686. [Google Scholar] [CrossRef]
- Kato, T.; Katayama, E.; Matsubara, S.; Omi, Y.; Matsuda, T. Release of allergenic proteins from rice grains induced by high hydrostatic pressure. J. Agric. Food Chem. 2000, 48, 3124–3129. [Google Scholar] [CrossRef]
- Li, H.; Zhu, K.; Zhou, H.; Peng, W. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chem. 2012, 132, 808–814. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef]
- Hall, F.; Johnson, P.; Liceaga, A.M. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem. 2018, 262, 39–47. [Google Scholar] [CrossRef]
- Hall, F.; Liceaga, A.M. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J. Funct. Foods 2020, 64, 103634. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.-P.; Broek, L.A.V.D.; Fogliano, V.; Lakemond, C. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, J.; Lehman, L.; Wieg, D. Composition, Processing, and utilization of red crab (Pleuroncodes planipes) as an aquacultural feed ingredient. J. Fish. Res. Board Can. 1974, 31, 1025–1029. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, B.; Miao, M.; Mu, W.; Li, Y. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chem. 2012, 135, 904–912. [Google Scholar] [CrossRef]
- Curl, A.L.; Jansen, E.F. Effect of high pressures on trypsin and chymotrypsin. J. Biol. Chem. 1950, 184, 45–54. [Google Scholar]
- Le Roux, K.; Berge, J.P.; Baron, R.; Leroy, E.; Arhaliass, A. Extraction of Chitins in a Single Step by Enzymatic Hydrolysis in an Acid Medium. U.S. Patent Application No. 14/122,427, 10 April 2014. [Google Scholar]
- De Holanda, H.D.; Netto, F.M. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci. 2006, 71, C298–C303. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Hall, F.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Lundgren, D.H.; Hwang, S.; Wu, L.; Han, D.K. Role of spectral counting in quantitative proteomics. Expert Rev. Proteom. 2010, 7, 39–53. [Google Scholar] [CrossRef]
- Liu, H.; Sadygov, R.G.; Yates, J.R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193–4201. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.-J.; Jacobs, J.M.; Camp, D.G.; Monroe, M.E.; Moore, R.J.; Gritsenko, M.A.; Calvano, S.E.; Lowry, S.F.; Xiao, W.; Moldawer, L.L.; et al. Comparative proteome analyses of human plasma followingin vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics 2005, 5, 572–584. [Google Scholar] [CrossRef]
- Old, W.M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K.G.; Mendoza, A.; Sevinsky, J.R.; Resing, K.A.; Ahn, N.G. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteom. 2005, 4, 1487–1502. [Google Scholar] [CrossRef] [PubMed]
- Barre, A.; Simplicien, M.; Cassan, G.; Benoist, H.; Rougé, P. Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity. Rev. Française d’Allergol. 2018, 58, 581–593. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Peñas, E.; Frias, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem. 2015, 171, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Res. Int. 2019, 115, 467–473. [Google Scholar] [CrossRef]
- Nazir, M.A.; Mu, T.; Zhang, M. Preparation and identification of angiotensin I-converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. Int. J. Food Sci. Technol. 2019, 55, 482–489. [Google Scholar] [CrossRef]
- Boukil, A.; Suwal, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. J. Membr. Sci. 2018, 556, 42–53. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Al-Ruwaih, N.; Arfat, Y.A. Effect of high-pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legum. Sci. 2019, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Al-Ruwaih, N.; Ahmed, J.; Mulla, M.F.; Arfat, Y.A. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT 2019, 100, 231–236. [Google Scholar] [CrossRef]
- Stone, A.K.; Tanaka, T.; Nickerson, M. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Womeni, H.M.; Tiencheu, B.; Linder, M.; Nabayo, C.; Martial, E.; Tenyang, N.; Tchouanguep Mbiapo, F.; Villeneuve, P.; Fanni, J.; Parmentier, M. Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. Int. J. Life Pharma Res. 2012, 2, 203–219. [Google Scholar]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Mulvihill, D.; Fox, P. Proteolysis of α s1-casein by chymosin: Influence of pH and urea. J. Dairy Res. 1977, 44, 533–540. [Google Scholar] [CrossRef]
- Agboola, S.O.; Dalgleish, D.G. Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. J. Agric. Food Chem. 1996, 44, 3631–3636. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; Luo, L.; Yin, X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur. Food Res. Technol. 2013, 236, 681–689. [Google Scholar] [CrossRef]
- Leni, G.; Tedeschi, T.; Faccini, A.; Pratesi, F.; Folli, C.; Puxeddu, I.; Migliorini, P.; Gianotten, N.; Jacobs, J.; Depraetere, S.; et al. Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Chicón, R.; Belloque, J.; Alonso, E.; Martín-Álvarez, P.J.; López-Fandiño, R. Hydrolysis under high hydrostatic pressure as a means to reduce the binding of β-lactoglobulin to immunoglobulin E from human sera. J. Food Prot. 2008, 71, 1453–1459. [Google Scholar] [CrossRef]
- Peñas, E.; Préstamo, G.; Polo, F.; Gomez, R. Enzymatic proteolysis, under high pressure of soybean whey: Analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chem. 2006, 99, 569–573. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Ye, J.; Tao, R.; Chen, H.; Cao, F. Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food Bioprocess Technol. 2016, 9, 839–848. [Google Scholar] [CrossRef]
- Long, F.; Yang, X.; Wang, R.; Hu, X.; Chen, F. Effects of combined high pressure and thermal treatments on the allergenic potential of shrimp (Litopenaeus vannamei) tropomyosin in a mouse model of allergy. Innov. Food Sci. Emerg. Technol. 2015, 29, 119–124. [Google Scholar] [CrossRef]
- Palmer, L. Edible Insects as a Source of Food Allergens. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2016. [Google Scholar]
- Mejrhit, N.; Azdad, O.; Chda, A.; El Kabbaoui, M.; Bousfiha, A.; Bencheikh, R.; Tazi, A.; Aarab, L. Evaluation of the sensitivity of Moroccans to shrimp tropomyosin and effect of heating and enzymatic treatments. Food Agric. Immunol. 2017, 28, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.-G.; Lutema, P.C.; Gwekwe, B.; Li, Y.; Akida, J.S.; Pang, Z.; Huang, Y.; Dang, Y.; Wang, S.; Chen, M.; et al. Bitter peptides increase engulf of phagocytes in vitro and inhibit oxidation of myofibrillar protein in peeled shrimp (Litopenaeus vannamei) during chilled storage. Aquac. Rep. 2019, 15, 100234. [Google Scholar] [CrossRef]
- Muguruma, M.; Ahhmed, A.M.; Katayama, K.; Kawahara, S.; Maruyama, M.; Nakamura, T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chem. 2009, 114, 516–522. [Google Scholar] [CrossRef]
Protein # | Identified Proteins * | MW (kDa) | UniProt ID | Number of Unique Peptides | Coverage (%) | Total Spectrum Count (TSC) ** | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Alcalase® | Pepsin | ||||||||||
C 1 | P 2 | S 3 | C | P | S | ||||||
1 | Myosin heavy chain | 123 | A0A139WDZ4 | 15 | 7 | 2 | 4 | 4 | 21 | 31 | 19 |
2 | Myosin heavy chain | 141 | A0A139WE70 | 8 | 6 | 2 | 4 | 6 | 9 | 22 | 10 |
3 | Myosin heavy chain | 103 | A0A139WE10 | 2 | 9 | 0 | 0 | 0 | 20 | 0 | 21 |
4 | Tropomyosin-1 | 40 | A0A139WAN8 | 3 | 9 | 0 | 0 | 0 | 3 | 2 | 1 |
5 | Actin-87E | 42 | D6WF19 | 28 | 39 | 24 | 31 | 51 | 42 | 106 | 71 |
6 | Hexamerin 2 | 84 | A0A288EPS5 | 7 | 9 | 4 | 6 | 7 | 11 | 28 | 22 |
7 | Hexamerin 1 | 86 | A0A288EIN5 | 7 | 11 | 0 | 0 | 8 | 7 | 13 | 11 |
8 | Arginine kinase 1 | 40 | A0A139WNX9 | 7 | 17 | 10 | 14 | 12 | 9 | 28 | 18 |
9 | Troponin T | 46 | D6W953 | 3 | 3 | 0 | 1 | 0 | 3 | 6 | 7 |
10 | Troponin C | 17 | D6WZP8 | 1 | 7 | 1 | 1 | 0 | 1 | 2 | 1 |
11 | Tubulin beta chain | 50 | D6WSV2 | 10 | 16 | 1 | 1 | 1 | 10 | 15 | 17 |
12 | Tubulin alpha chain | 50 | D6WBN7 | 5 | 13 | 1 | 0 | 1 | 5 | 10 | 10 |
13 | Alpha-amylase | 51 | P56634 | 6 | 13 | 2 | 1 | 7 | 6 | 21 | 15 |
14 | Larval cuticle protein A2B | 12 | P80682 | 21 | 70 | 13 | 10 | 16 | 23 | 58 | 52 |
15 | Larval cuticle protein F1 | 15 | Q9TXD9 | 13 | 48 | 13 | 9 | 27 | 18 | 42 | 26 |
16 | Larval cuticle protein A1A | 18 | P80681 | 5 | 33 | 6 | 6 | 18 | 14 | 58 | 54 |
17 | Larval cuticle protein A3A | 14 | P80683 | 8 | 58 | 16 | 9 | 21 | 17 | 55 | 59 |
18 | Larval cuticle protein 8 | 11 | D6WMB1 | 2 | 15 | 1 | 0 | 4 | 4 | 6 | 2 |
19 | Larval / pupal cuticle protein H1C | 21 | P80686 | 10 | 33 | 0 | 0 | 2 | 14 | 29 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. Molecules 2020, 25, 2685. https://doi.org/10.3390/molecules25112685
Boukil A, Perreault V, Chamberland J, Mezdour S, Pouliot Y, Doyen A. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. Molecules. 2020; 25(11):2685. https://doi.org/10.3390/molecules25112685
Chicago/Turabian StyleBoukil, Abir, Véronique Perreault, Julien Chamberland, Samir Mezdour, Yves Pouliot, and Alain Doyen. 2020. "High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins" Molecules 25, no. 11: 2685. https://doi.org/10.3390/molecules25112685
APA StyleBoukil, A., Perreault, V., Chamberland, J., Mezdour, S., Pouliot, Y., & Doyen, A. (2020). High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. Molecules, 25(11), 2685. https://doi.org/10.3390/molecules25112685