The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders
Abstract
:1. Introduction
2. Medicinal Plants in the Management of Obesity
3. South African Medicinal Plants for Diabetes Mellitus
3.1. Diagnosis of Diabetes Mellitus in South African Traditional Medicine
3.2. Plants with Antidiabetic Activity
4. The Use of South African Medicinal Plants in the Management of Cardiovascular Disorders
5. South African Medicinal Plants for Non-alcoholic Fatty Liver Disease
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’neill, S.; O’driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017, 7, 211–215. [Google Scholar] [CrossRef]
- Boudreau, D.; Malone, D.C.; Raebel, M.; Fishman, P.; Nichols, G.; Feldstein, A.; Boscoe, A.; Ben-Joseph, R.; Magid, D.; Okamoto, L. Health care utilization and costs by metabolic syndrome risk factors. Metab. Syndr. Relat. Disord. 2009, 7, 305–314. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Buklijas, T.; Low, F.M.; Beedle, A.S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 2009, 5, 401. [Google Scholar] [CrossRef]
- Chen, A.K.; Roberts, C.K.; Barnard, R.J. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism 2006, 55, 871–878. [Google Scholar] [CrossRef]
- Church, T. Exercise in obesity, metabolic syndrome, and diabetes. Prog. Cardiovasc. Dis. 2011, 53, 412–418. [Google Scholar] [CrossRef]
- Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821. [Google Scholar] [CrossRef]
- Sofowora, A. Research on Medicinal Plants and Traditional Medicine in Africa. J. Altern. Complement. Med. 1996, 2, 365–372. [Google Scholar] [CrossRef]
- McGaw, L.; Jäger, A.; Grace, O.; Fennel, C.; van Staden, J. Medicinal plants. In Ethics in Agriculture—An African Perspective; Springer: Dordrecht, South Africa, 2005; pp. 67–83. [Google Scholar]
- Kanwar, P.; Sharma, N.; Rekha, A. Medicinal plants use in traditional healthcare systems prevalent in Western Himalayas. Ind. J. Trad. Know 2006, 5, 300–309. [Google Scholar]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Rodriguez-Casado, A. The health potential of fruits and vegetables phytochemicals: Notable examples. Crit. Rev. Food Sci. Nutr. 2016, 56, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, T.R.; Akerele, O. Medicinal Plants: Their Role in Health and Biodiversity; University of Pennsylvania press: Philadelphia, PA, USA, 2015. [Google Scholar]
- Tabasum, S.; Khare, S. Safety of medicinal plants: An important concern. Int. J. Pharm. Biol. Sci. 2016, 7, 237–243. [Google Scholar]
- Naghdi, N. Folklore medicinal plants used in liver disease: A review. Int. J. Green Pharm. (IJGP) 2018, 12, 463–472. [Google Scholar]
- WHO World Health Organisation: Obesity. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 April 2019).
- Caballero, B. The global epidemic of obesity: An overview. Epidemiol. Rev. 2007, 29, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Peeters, A.; Barenddregt, J.J.; Willekens, F.; Mackenbach, J.P.; Mamum, A.A.; Bonneux, L. Obesity in Adulthood and Its Consequences for Life Expectancy: Life-Table Analysis. Ann. Intern. Med. 2003, 138, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nishida, C.; Mucavele, P. Monitoring the rapidly emerging public health problem of overweight and obesity: The WHO Global Database on Body Mass Index. SCN News 2005, 29, 5–12. [Google Scholar]
- Van Der Merwe, M.T.; Pepper, M.S. Obesity in South Africa. Obes. Rev. 2006, 7, 315–322. [Google Scholar] [CrossRef]
- SSA Statistics South Africa. South Africa Demographic and Health Survey 2016: Key Indicator Report. Available online: https://www.statssa.gov.za/publications/Report%2003-00-09/Report%2003-00-092016.pdf (accessed on 22 April 2019).
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Jenning, C.L.; Lambertc, E.V. Chronic Diseases of Lifestyle in South Africa: 1995–2005. In Medical Research Council–Technical Report; Tygerberg: Western Cape, South Africa, 2006; pp. 65–79. [Google Scholar]
- Field, A.E.; Coakley, E.H.; Must, A.; Spadano, J.L.; Laird, N.; Dietz, W.H.; Rimm, E.; Colditz, G.A. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch. Intern. Med. 2001, 161, 1581–1586. [Google Scholar] [CrossRef]
- Bray, G. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2583–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McTigue, K.M.; Harris, R.; Hemphill, B.; Lux, L.; Sutton, S.; Bunton, A.J.; Lohr, K.N. Screening and interventions for obesity in adults: Summary of the evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2003, 139, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Howard, A. The historical development, efficacy and safety of very-low -calorie diets. Int. J. Obes. 1981, 5, 195–208. [Google Scholar]
- Lowe, M.R. Self-regulation of energy intake in the prevention and treatment of obesity: Is it feasible? Obes. Res. 2003, 11, 44S–59S. [Google Scholar] [CrossRef] [Green Version]
- Curioni, C.C.; Lourenco, P.M. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes. Vol. 2005, 29, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahi, M.; Afshar-Imani, B. A review on obesity and weight loss measures. Middle East Pharm. 2003, 11, 6–10. [Google Scholar]
- Yanovski, S.Z.; Yanovski, J.A. Long-term drug treatment for obesity: A systematic and clinical review. J. Am. Med Assoc. 2014, 311, 74–86. [Google Scholar] [CrossRef]
- IDF. IDF Diabetes Atlas. 2017, 8th Edition. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.html (accessed on 21 April 2020).
- Erasto, P.; Adebola, P.; Grierson, D.; Afolayan, A. An ethnobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. Afr. J. Biotechnol. 2005, 4, 1458–1460. [Google Scholar]
- Oyedemi, S.; Bradley, G.; Afolayan, A. Ethnobotanical survey of medicinal plants used for the management of diabetes mellitus in the Nkonkobe municipality of South Africa. J. Med. Plants Res. 2009, 3, 1040–1044. [Google Scholar]
- Elghazaly, N.A.; Radwan, E.H.; Zaatout, H.H.; Elghazaly, M.M.; Allam, N.E. Beneficial Effects of Fennel (Foeniculum Vulgare) in Treating Obesity in Rats. J. Obes. Manag. 2019, 1, 16–33. [Google Scholar] [CrossRef]
- Pothurraju, R.; Sharma, R.K.; Chagalamarii, J.; Jangra, S.; Kavadi, P.K. A systematic review of Gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric. 2014, 94, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Kanetkar, P.; Singhal, R.; Kamat, M. Gymnema sylvestre: A Memoir. J. Clin. Biochem. Nutr. 2007, 41, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Heerden, F.R. Hoodia gordonii: A natural appetite suppressant. J. Ethnopharmacol. 2008, 119, 434–437. [Google Scholar] [CrossRef]
- Sibuyi, N.; Katerere, D.; Boboyi, T.; Madiehe, A. Dietary supplementation with Aloe ferox extracts reverses obesity in rats. S. Afr. J. Bot. 2007, 73, 336. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.; Shim, K.S.; Kong, H.; Lee, S.; Shin, S.; Kwon, J.; Jo, T.H.; Park, Y.I.; Lee, C.K.; Kim, K. Dietary Aloe improves insulin sensitivity via the suppression of obesity-induced inflammation in obese mice. Immune Netw. 2011, 11, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Misawa, E.; Tanaka, M.; Nabeshima, K.; Nomaguchi, K.; Yamada, M.; Toida, T.; Iwatsuki, K. Administration of Dried Aloe vera Gel Powder Reduced Body Fat Mass in Diet-Induced Obesity (DIO) Rats. J. Nutr. Sci. Vitaminol. 2012, 58, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kang, M.J.; Kim, M.J.; Kim, M.E.; Song, J.H.; Lee, Y.M.; Kim, J.I. Pancreatic lipase inhibitory activity of Taraxacum officinale in vitro and in vivo. Nutr. Res. Pract. 2008, 4, 200–203. [Google Scholar] [CrossRef]
- González-Castejón, M.; García-Carrasco, B.; Fernández-Dacosta, R.; Dávalos, A.; Rodriguez-Casado, A. Reduction of Adipogenesis and Lipid Accumulation by Taraxacum officinale (Dandelion) Extracts in 3T3L1 Adipocytes: An in vitro Study. Phytother. Res. 2014, 28, 745–752. [Google Scholar] [CrossRef]
- Afolayan, A.; Mbaebie, B. Ethnobotanical study of medicinal plants used as anti-obesity remedies in Nkonkobe Municipality of South Africa. Pharmacogn. J. 2010, 2, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.B. Glucosinolates, structures and analysis in food. Anal. Chem. 2010, 9660, 310–325. [Google Scholar] [CrossRef]
- Sansone, R.A.; Sansone, L.A. Marijuana and body weight. Innov. Clin. Neurosci. 2014, 11, 50–54. [Google Scholar] [PubMed]
- Abifarin, T.O.; Afolayan, A.J.; Otunola, G.A. Phytochemical and Antioxidant Activities of Cucumis africanus L.f.: A Wild Vegetable of South Africa. J. Evid.-Based Integr. Med. 2019, 24, 2515690. [Google Scholar] [CrossRef] [Green Version]
- Vernarelli, J.A.; Lambert, J.D. Flavonoid intake is inversely associated with obesity and C-reactive protein, a marker for inflammation, in US adults. Nutr. Diabetes 2017, 7, e276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.) Cogn. Heliyon 2018, 4, e00810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsi De Wild. Mark: Tannin Determination and Biological Activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikarashi, N.; Toda, T.; Okaniwa, T.; Ito, K.; Ochiai, W.; Sugiyama, K. Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic KKAy mice fed high-fat diet. Evid. Based Complementary Altern. Medcine 2011, 2011, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, R.B.; Moskovitz, G. Herbal medicinal teas from South Africa. Fyton 2009, 78, 67–73. [Google Scholar]
- Metwally, F.M.; Rashad, H.M.; Ahmed, H.H.; Mahmoud, A.A.; Raouf, E.R.A.; Abdalla, A.M. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac. J. Trop. Med. 2017, 7, 214–221. [Google Scholar] [CrossRef]
- Bais, S.; Singh, G.S.; Sharma, R. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Adv. Biol. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants (BaselSwitz.) 2017, 6, 91. [Google Scholar]
- Choi, E.-K.; Cho, Y.J.; Yang, H.J.; Kim, K.-S.; Lee, I.-S.; Jang, J.-C.; Kim, K.-H.; Bang, J.H.; Kim, Y.; Kim, S.H.; et al. Coix seed extract attenuates the high-fat induced mouse obesity via PPARγ and C/EBPα a downregulation. Mol. Cell. Toxicol. 2015, 11, 213–221. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, B.; Oh, M.J.; Yoon, J.; Kim, H.Y.; Lee, K.J.; Lee, J.D.; Choi, K.Y. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phytother. Res. 2011, 25, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, S.W.; Afolayan, A.J. Identification of Antidiabetic Compounds from Polyphenolic-rich Fractions of Bulbine abyssinica A. Rich Leaves. Pharmacogn. Res. 2018, 10, 72. [Google Scholar]
- Deutschländer, M.; Lall, N.; Van de Venter, M.; Hussein, A.A. Hypoglycemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark. J. Ethnopharmacol. 2011, 133, 1091–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyedemi, S.; Bradley, G.; Afolayan, A. Antidiabetic activities of aqueous stem bark extract of Strychnoshenningsii Gilg in streptozotocin-nicotinamide type 2 diabetic rats. Iran. J. Pharm. Res. IJPR 2012, 11, 221. [Google Scholar] [PubMed]
- Tiong, S.; Looi, C.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.; Cheah, S.-C.; Mustafa, M.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013, 18, 9770–9784. [Google Scholar] [CrossRef] [Green Version]
- Oyedemi, S.; Koekemoer, T.; Bradley, G.; van de Venter, M.; Afolayan, A. In vitro anti-hyperglycemia properties of the aqueous stem bark extract from Strychnos henningsii (Gilg). Int. J. Diabetes Dev. Ctries. 2013, 33, 120–127. [Google Scholar] [CrossRef]
- Boaduo, N.K.K.; Katerere, D.; Eloff, J.N.; Naidoo, V. Evaluation of six plant species used traditionally in the treatment and control of diabetes mellitus in South Africa using in vitro methods. Pharm. Biol. 2014, 52, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Akinrinde, A.; Koekemoer, T.; Van De Venter, M.; Bradley, G. In vitro investigation of potential anti-diabetic activity of the corm extract of Hypoxis argentea Harv. Ex Baker. Acta Pharm. 2018, 68, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, S.; Sumathi, V.; Jegathambigai, N.R.; Latha, L.Y. Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin-induced diabetic mice. Nat. Prod. Res. 2011, 25, 1982–1987. [Google Scholar] [CrossRef]
- Semenya, S.; Potgieter, M.; Erasmus, L. Ethnobotanical survey of medicinal plants used by Bapedi healers to treat diabetes mellitus in the Limpopo Province, South Africa. J. Ethnopharmacol. 2012, 141, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.; Al-Amin, Z.M.; Al-Qattan, K.K.; Shaban, L.H.; Ali, M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int. J. Diabetes Metab. 2007, 15, 108–115. [Google Scholar]
- Chadwick, W.A.; Roux, S.; van de Venter, M.; Louw, J.; Oelofsen, W. Anti-diabetic effects of Sutherlandia frutescens in Wistar rats fed a diabetogenic diet. J. Ethnopharmacol. 2007, 109, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ojewole, J.A.; Olayiwola, G.; Adewole, S.O. Hypoglycaemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats: Cardiovascular topics. Cardiovasc. J. S. Afr. 2006, 17, 227–232. [Google Scholar]
- Al-Shaqha, W.M.; Khan, M.; Salam, N.; Azzi, A.; Chaudhary, A.A. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement. Altern. Med. 2015, 15, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.N.; Vats, P.; Suri, S.; Shyam, R.; Kumria, M.; Ranganathan, S.; Sridharan, K. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol. 2001, 76, 269–277. [Google Scholar] [CrossRef]
- Rasineni, K.; Bellamkonda, R.; Singareddy, S.R.; Desireddy, S. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn. Res. 2010, 2, 195. [Google Scholar]
- Ibrahim, M.; Mehjabeen, S.; Narsu, M.L. Pharmacological evaluation of Catharanthus roseus. Int. J. Pharm. Appl. 2011, 2, 165–173. [Google Scholar]
- Loots, D.T.; Pieters, M.; Shahidul Islam, M.; Botes, L. Antidiabetic effects of Aloe ferox and Aloe greatheadii var. davyana leaf gel extracts in a low-dose streptozotocin diabetes rat model. S. Afr. J. Sci. 2011, 107, 46–51. [Google Scholar] [CrossRef]
- Sunmonu, T.O.; Afolayan, A.J. Evaluation of antidiabetic activity and associated toxicity of Artemisia afra aqueous extract in wistar rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Van de Venter, M.; Roux, S.; Bungu, L.C.; Louw, J.; Crouch, N.R.; Grace, O.M.; Maharaj, V.; Pillay, P.; Sewnarian, P.; Bhagwandin, N. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J. Ethnopharmacol. 2008, 119, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Mellem, J.; Baijnath, H.; Odhav, B. Antidiabetic potential of Brachylaena discolor. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Van Huyssteen, M.; Milne, P.J.; Campbell, E.E.; van de Venter, M. Antidiabetic and cytotoxicity screening of five medicinal plants used by traditional African health practitioners in the Nelson Mandela Metropole, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 150–158. [Google Scholar]
- Frati, A.C.; Jiménez, E.; Ariza, C.R. Hypoglycemic effect of Opuntia ficus indica in non insulin-dependent diabetes mellitus patients. Phytother. Res. 1990, 4, 195–197. [Google Scholar] [CrossRef]
- Shin, J.-E.; Han, M.-J.; Lee, I.-K.; Moon, Y.-I.; Kim, D.-H. Hypoglycemic activity of Opuntia ficus-indica var. sabotan on alloxan-or streptozotocin-induced diabetic mice. Korean. J. Pharm. 2003, 2013, 1–8. [Google Scholar]
- Adeneye, A.; Olagunju, J. Preliminary hypoglycemic and hypolipidemic activities of the aqueous seed extract of Carica papaya Linn in Wistar rats. Biol. Med 2009, 1, 1–10. [Google Scholar]
- Omonkhua, A.A.; Onoagbe, I.O.; Ajileye, A.F.; Aladegboye, L.O.; Adetoboye, A.R. Long term anti-diabetic, anti-hyperlipidaemic and anti-atherogenic effects of Carica papaya leaves in streptozotocin diabetic rats. Eur. J. Med. Plants 2013, 3, 508–519. [Google Scholar]
- Ahmed, I.; Lakhani, M.; Gillett, M.; John, A.; Raza, H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 2001, 51, 155–161. [Google Scholar] [CrossRef]
- Ojewole, J.A. Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & CA Mey.(Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. J. Ethnopharmacol. 2006, 103, 126–134. [Google Scholar]
- Ojewole, J. Analgesic, antiinflammatory and hypoglycemic effects of Sutherlandia frutescens R. BR.(variety Incana E. MEY.)(Fabaceae) shoot aqueous extract. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 409–416. [Google Scholar]
- Zibula, S.M.; Ojewole, J.A. Hypoglycaemic Effects of Hypoxis Hemerocallidea (Fisch. and CA Mey.) Corm’African Potato’Methanolic Extract in Rats. Med J. Islamic World Acad. Sci. 2000, 13, 75–78. [Google Scholar]
- Mahomed, I.; Ojewole, J. Hypoglycemic effect of Hypoxis hemerocallidea corm (African potato) aqueous extract in rats. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Ojewole, J. Antinociceptive, antiinflammatory and antidiabetic effects of Leonotis leonurus (L.) R. BR.(Lamiaceae) leaf aqueous extract in mice and rats. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Oyedemi, S.; Yakubu, M.; Afolayan, A. Antidiabetic activities of aqueous leaves extract of Leonotis leonurus in streptozotocin induced diabetic rats. J. Med. Plants Res. 2011, 5, 119–125. [Google Scholar]
- Hu, G.; Qiao, Q.; Tuomilehto, J.; Balkau, B.; Borch-Johnsen, K.; Pyorala, K. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch. Intern. Med. 2004, 164, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Mayosi, B.M.; Flisher, A.J.; Lalloo, U.G.; Sitas, F.; Tollman, S.M.; Bradshaw, D. The burden of non-communicable diseases in South Africa. Lancet 2009, 374, 934–947. [Google Scholar] [CrossRef]
- Michalsky, M.P.; Inge, T.H.; Jenkins, T.M.; Xie, C.; Courcoulas, A.; Helmrath, M.; Brandt, M.L.; Harmon, C.M.; Chen, M.; Dixon, J.B. Cardiovascular risk factors after adolescent bariatric surgery. Pediatrics 2018, 141, e20172485. [Google Scholar] [CrossRef] [Green Version]
- Lawes, C.M.; Vander Hoorn, S.; Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 2008, 371, 1513–1518. [Google Scholar] [CrossRef]
- Alberts, M.; Urdal, P.; Steyn, K.; Stensvold, I.; Tverdal, A.; Nel, J.H.; Steyn, N.P. Prevalence of cardiovascular diseases and associated risk factors in a rural black population of South Africa. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 347–354. [Google Scholar] [CrossRef]
- Tasos, E.; Huang, A.; Timimi, L.J.; Wych, J.; Mander, A.P.; Chowienczyk, P.J.; Wilkinson, I.B.; Mukhtar, O. Randomised Controlled Trials of Anti-Hypertensive Therapy in Sub-Saharan Africa-A Systematic Review. Available SSRN 3327351 2019. [Google Scholar]
- Rastogi, S.; Pandey, M.M.; Rawat, A. Traditional herbs: A remedy for cardiovascular disorders. Phytomedicine 2016, 23, 1082–1089. [Google Scholar] [CrossRef]
- Rouhi-Boroujeni, H.; Heidarian, E.; Rouhi-Boroujeni, H.; Deris, F.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on cardiovascular diseases: A systematic review. Curr. Pharm. Des. 2017, 23, 999–1015. [Google Scholar] [CrossRef]
- Musabayane, C.T.; Kamadyaapa, D.R.; Gondwe, M.; Moodley, K.; Ojewole, J.A. Cardiovascular effects of Helichrysum ceres S Moore [Asteraceae] ethanolic leaf extract in some experimental animal paradigms. Cardiovasc. J. Afr. 2008, 19, 246. [Google Scholar]
- Musabayane, C. The effects of medicinal plants on renal function and blood pressure in diabetes mellitus. Cardiovasc. J. Afr. 2012, 23, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamadyaapa, D.R.; Gondwe, M.M.; Moodley, K.; Musabayane, C.T.; Ojewole, J.A. Cardiovascular effects of Ekebergia capensis Sparrm (Meliaceae) ethanolic leaf extract in experimental animal paradigms. Cardiovasc. J. Afr. 2009, 20, 162. [Google Scholar] [PubMed]
- Bwititi, P.; Musabayane, C.; Nhachi, C. Effects of Opuntia megacantha on blood glucose and kidney function in streptozotocin diabetic rats. J. Ethnopharmacol. 2000, 69, 247–252. [Google Scholar] [CrossRef]
- Al-Qattan, K.; Thomson, M.; Ali, M. Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats. e-SPENEur. E-J. Clin. Nutr. Metab. 2008, 3, e62–e71. [Google Scholar] [CrossRef] [Green Version]
- Braca, A.; Politi, M.; Sanogo, R.; Sanou, H.; Morelli, I.; Pizza, C.; De Tommasi, N. Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agric. Food Chem. 2003, 51, 6689–6695. [Google Scholar] [CrossRef]
- Musabayane, C.; Gondwe, M.; Kamadyaapa, D.; Chuturgoon, A.; Ojewole, J. Effects of Ficus thonningii (Blume)[Morarceae] stem-bark ethanolic extract on blood glucose, cardiovascular and kidney functions of rats, and on kidney cell lines of the proximal (LLC-PK1) and distal tubules (MDBK). Ren. Fail. 2007, 29, 389–397. [Google Scholar] [CrossRef]
- Bennani-Kabchi, N.; Fdhil, H.; Cherrah, Y.; El, F.B.; Kehel, L.; Marquie, G. Therapeutic effect of Olea europea var. oleaster leaves on carbohydrate and lipid metabolism in obese and prediabetic sand rats (Psammomys obesus). Ann. Pharm. Franc. 2000, 58, 271–277. [Google Scholar]
- Somova, L.; Shode, F.; Ramnanan, P.; Nadar, A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003, 84, 299–305. [Google Scholar] [CrossRef]
- Cooper, R.; McFarlane-Anderson, N.; Bennett, F.I.; Wilks, R.; Puras, A.; Tewksbury, D.; Ward, R.; Forrester, T. ACE angiotensinogen and obesity: a potential pathway leading to hypertension. J. Hum. Hypertens. 1997, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, T.O.; Anderson, A.I.; MacInnis, R.J. ACE inhibitors, beta-blockers, calcium blockers, and diuretics for the control of systolic hypertension. Am. J. Hypertens. 2001, 14, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Ramesar, S.; Baijnath, H.; Govender, T.; Mackraj, I. Angiotensin I-converting enzyme inhibitor activity of nutritive plants in KwaZulu-Natal. J. Med. Food 2008, 11, 331–336. [Google Scholar] [CrossRef]
- Duncan, A.C.; Jäger, A.K.; van Staden, J. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J. Ethnopharmacol. 1999, 68, 63–70. [Google Scholar] [CrossRef]
- Lonardo, A.; Ballestri, S.; Marchesini, G.; Angulo, P.; Loria, P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Dig. Liver Dis. 2015, 47, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Lembede, B.W. Effect of dietary Terminalia sericea aqueous leaf extracts on high-fructose diet fed growing Wistar rats. Master’s Thesis, University of Witwatersrand, Johannesburg, South Africa, 2014. [Google Scholar]
- Mazibuko, S.E.; Joubert, E.; Johnson, R.; Louw, J.; Opoku, A.R.; Muller, C.J. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol. Nutr. Food Res. 2015, 59, 2199–2208. [Google Scholar] [CrossRef]
- Mazibuko-Mbeje, S.E.; Dludla, P.V.; Roux, C.; Johnson, R.; Ghoor, S.; Joubert, E.; Louw, J.; Opoku, A.R.; Muller, C.J. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways. Int. J. Mol. Sci. 2019, 20, 633. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Krysman, A. Hoodia gordonii extract targets both adipose and muscle tissue to achieve weight loss in rats. J. Ethnopharmacol. 2014, 55, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, J.; Koekemoer, T.C.; Roux, S.; van de Venter, M.; Dealtry, G.B. Effect of Sutherlandia frutescens on the lipid metabolism in an insulin resistant rat model and 3T3-L1 adipocytes. Phytother. Res. 2012, 26, 1830–1837. [Google Scholar] [CrossRef]
- Bhalla, A.; Chauhan, U. Identification of antihyperlipidemic components in Aloe vera through reverse phase HPlC. J. Biol. Sci. Med. 2015, 1, 21–27. [Google Scholar]
- Muhammad, N.; Ibrahim, K.; Ndhlala, A.; Erlwanger, K. Moringa oleifera Lam. prevents the development of high fructose diet-induced fatty liver. S. Afr. J. Bot. 2019. [Google Scholar] [CrossRef]
- Joung, H.; Kim, B.; Park, H.; Lee, K.; Kim, H.-H.; Sim, H.-C.; Do, H.-J.; Hyun, C.-K.; Do, M.-S. Fermented Moringa oleifera decreases hepatic adiposity and ameliorates glucose intolerance in high-fat diet-induced obese mice. J. Med. Food 2017, 20, 439–447. [Google Scholar] [CrossRef]
- Kang, J.-W.; Shin, J.-K.; Koh, E.-J.; Ryu, H.; Kim, H.J.; Lee, S.-M. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet–fed mice. Nutr. Res. 2016, 36, 369–379. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Ramadan Hassanien, M.F. Hepatoprotective effect of cold-pressed Syzygium aromaticum oil against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Pharm. Biol. 2016, 54, 1364–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyakudya, T.; Mukwevho, E.; Nkomozepi, P.; Erlwanger, K. Neonatal intake of oleanolic acid attenuates the subsequent development of high fructose diet-induced non-alcoholic fatty liver disease in rats. J. Dev. Orig. Health Dis. 2018, 9, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [Green Version]
- Carrera-Quintanar, L.; López Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat. Inflamm. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Lai, Y.; Yang, Q.; Hu, H.; Wang, Y. Sustainable utilization of traditional chinese medicine resources: Systematic evaluation on different production modes. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
Family Name | Species Name | Common Name | Plant Part Used | Methods of Herbal Material Preparation | Mode of Action | Active Constituents | References |
---|---|---|---|---|---|---|---|
Apiacaea | Foeniculum vulgare Mill | Fennel | Seeds | The seeds are processed into powder which can be taken as an infusion | Reduces oxidative stress, inhibits serotonin reuptake, promotes a decrease in fat and sugar absorption | Phytoestrogens, dipentene | [36] |
Apocynaceae | Gymnema sylvestre R. Br | Gimena | Leaves | The leaves are used to make an infusion taken orally | Inhibits glucose absorption and fatty acid accumulation | Gymnemic acids | [37,38] |
Apocynaceae | Hoodia gordonii (Masson) | Kalahari cactus | Stem | Tender stems are eaten fresh or dried and milled. Often processed into capsules | Appetite suppressant targets adipose and muscle tissues reduces calorie intake | Oxypregnane steroidal glycoside P57 | [39] |
Asphodelaceae | Aloe ferox Miller | Cape Aloe | Leaves | Leaves are taken as decoctions | Combats water retention | [40] | |
Asphodelaceae | Aloe vera Mille | Aloe vera | Leaves | Leaves are taken as decoctions | Improves carbohydrate metabolism and reduces obesity-induced glucose intolerance | Aloe sterols | [41,42] |
Asteraceae | Taraxacum officinale F.H. Wigg. | Dandelion | Leaves | Leaves are taken as decoctions | Inhibits pancreatic lipase | Caffeic and chlorogenic acid | [43,44] |
Cannabaceae. | Cannabis sativa L. | Marijuana | Leaves | The leaves are used to make an infusion taken orally | Psychoactive rapid and long-lasting downregulation of CB1R causes reduction of energy storage and increases metabolic rates | Cannabinoids | [45,46,47] |
Cucurbitaceae | Cucumis africanus L.f. | Scarlet gourd | Whole plant | The plant is used to make an infusion taken orally | Weight loss | Flavonoids | [48,49] |
Cucurbitaceae | Kedrostis africana (L.) Cogn. | Baboon′s cucumber | tuber | The tuber is used to make a decoction which is taken orally | α-amylase, α-glucosidase, and lipase inhibitory activities | Luteolin and kaempferol | [50] |
Curtisiaceae | Curtisia dentata (Burm.f.) C.A. Sm. | Assega | Bark | The bark is used to make a decoction which is taken orally | Weight loss | [45] | |
Fabaceae | Acacia mearnsii De Wild | Black wattle | Bark | The bark is used to make a decoction which is taken orally | Increases energy expenditure in skeletal muscle and decreases fatty acid synthesis | Proanthocyanidins, | [51,52] |
Lamiaceae | Rosmarinus officinalis L. | Rosemary | Leaves | The leaves are used to make a decoction which is taken orally | Reduces body fluid | Carnosic acid | [53] |
Menispermaceae | Cissampelos capensis L.f. | David root | Roots | The root is used to make a decoction which is taken orally | Stimulates body energy | [45] | |
Moringaceae | Moringa oleifera Lam. | Moringa | Leaves | The leaves are used to make a decoction which is taken orally | Lowers body weight, total cholesterol, triglycerides, organ weight, and blood glucose level, promotes energy expenditure | Quercetin-3-O-β-dglucoside | [54,55,56] |
Poaceae | Coix lacryma-jobi L. | Job’s tears | Seeds | The seeds are used to make a decoction which is taken orally | Neuroendocrine activity downregulation of adipogenesis | [57] | |
Polygonaceae | Persicaria hydropiper (L.) Spach. | Water pepper | Leaves | The leaves are used to make infusions which are taken orally | Combats adipogenesis in 3T3-L1 cells | Isoquercitrin | [58] |
Family Name | Scientific Name | Local Name and Region Where Used | Plant Part Used | Methods of Herbal Material Preparation | Mechanisms | Scientific Model Used | Reference |
---|---|---|---|---|---|---|---|
Aizoaceae | Carpobrotus edulis (L.) N.E. Br | - | Leaves | The leaves are used to make an infusion which is taken orally | - | - | [67] |
Alliaceae | Allium sativum L. fam. | Garlic (English) Ivimbampunzi (IsiXhosa) Ikonofile (IsiZulu); Eastern Cape | Whole plants | The different parts are used to make a decoction which is taken orally | Hypoglycemic, hypolipidemic; reduces proteinuria | STZ-treated rats | [68] |
Amaryllidaceae | Gethyllis namaquensis (Schönland) Oberm. | Naka tsa tholo; Limpopo Province | Bulbs | Aqueous extract which is taken orally | - | - | [67] |
Anacampserotaceae | Anacampseros ustulata E.Mey. ex Fenzl | Igwele (IsiXhosa); Eastern Cape | Corms | - | - | [35] | |
Anacardiaceae | Sclerocarya birrea (A. Rich) Hochst. Subsp caffra | Cider/Marula (English) Maroela (Afrikaans) Umganu (Zulu) | Bark | The bark is used to make a decoction which is taken orally | Reduces blood glucose, increases insulin levels | STZ-treated rats | [69,70] |
Apocynaceae | Catharanthus roseus (L.) G.Don | Madagascar periwinkle | Leaves, whole plants | The leaves are used to make an infusion which is taken orally | Increased expression of GLUT-2 and GLUT4 transporter gene expression in the liver Hypoglycemic; hypolipidemic; increases the activity of glycolytic pathway enzymes; activates nuclear peroxisome proliferator and hence regulates gene expression in metabolic pathways; upregulates glucokinase activity | STZ-treated rats; alloxan-treated rats; in vitro enzyme assays; alloxan-treated rabbits cultured human cells | [71,72,73,74] |
Apocynaceae | Plumeria obtusa L. | Mohlare wa maswi wa sukiri; Limpopo Province | Leaves | The leaves are used to make an infusion which is taken orally | - | - | [67] |
Araliaceae | Cussonia spicata Thunb. | Limpopo Province | Roots | The root bark is used to make a decoction which is taken orally | - | - | [67] |
Asphodelaceae | Aloe ferox Mill | Ikhala (IsiXhosa) Bitter Aloe (English); Eastern Cape | Leaves | The leaves are used to make an infusion which is taken orally | Hypoglycemic; increases insulin secretion | STZ-treated rats | [40,75] |
Asphodelaceae | Aloe marlothii A. Berger subsp. Marlothii | - | - | - | [67] | ||
Asphodelaceae | Bulbine abyssinica A.Rich. | Whole plants | Different parts of the plant are used to make into a which is taken orally | - | - | [59] | |
Asphodelaceae | Bulbine frutescens (L.) Willd. | Ibhucu (IsiXhosa); Eastern Cape | Roots | The root is used to make a decoction which is taken orally | - | - | [34] |
Asphodelaceae | Bulbine natalensis (Syn. B. latifolia) Mill. (L.f.) Roem. et Schult. | Ibhucu (IsiXhosa); Eastern Cape | Roots | The root is used to make a decoction which is taken orally | - | - | [34] |
Asteraceae | Artemisia afra Jacq. ex Willd. | Umhlonyane (IsiXhosa) African wormwood | Leaves, roots | The roots are used to make a decoction; leaves are used to make a decoction which is taken orally | Hypoglycemic and hypolipidemic effects | STZ-treated Wistar rats | [76] |
Asteraceae | Brachylaena discolor DC. | Leaves, roots, and stems | The roots are made into a decoction which is taken orally | Inhibits α-amylase and α-glucosidase; increases glucose utilization in Chang liver cells, 3T3-L1, and C2C12 muscle cells | In vitro enzyme assays; in vitro cultures of preadipocytes, hepatocytes, and muscle cells | [77,78] | |
Asteraceae | Callilepis laureola DC. | Phela (Sepedi); Limpopo Province | Roots | The roots are used to make a decoction which is taken orally | - | - | [67] |
Asteraceae | Helichrysum caespititium (DC) Harv. | Bokgatha/Mabjana/Mmeetse; Limpopo Province | Whole plant | The different parts are used to make a decoction which is taken orally | - | - | [67] |
Asteraceae | Helichrysum gymnocomum DC. var. acuminatum DC. | Imphepho (Xhosa); Eastern Cape | Leaves | The leaves are used to make an infusion which is taken orally | - | - | [67] |
Asteraceae | Herichrysum odoratissimum L. | Imphepho; Eastern Cape | Whole plant | The different parts are used to make a decoction which is taken orally | - | - | [34] |
Asteraceae | Herichrysum nudifolium L. | Ichocholo; Eastern Cape | Leaves, roots | The leaves are used to make an infusion which is taken orally | - | - | [34] |
Asteraceae | - | - | Increases glucose uptake in Chang liver cells, 3T3-L1 pre-adipocytes | In vitro cultures of preadipocytes and hepatocytes | [60] | ||
Asteraceae | Tarchonanthus camphoratus L. | Limpopo Province, Eastern Cape | Roots, leaves/soft twigs | The leaves are used to make an infusion which is taken orally | Increases glucose utilization in Chang liver cells and C2C12 muscle cells | In vitro cultures of myocytes and hepatocytes | [79] |
Asteraceae | Herichrysum petiolare H & B.L. | Imphepho; Eastern Cape | Whole plant | The different parts are used to make a decoction which is taken orally | - | - | [34] |
Buddlejaceae | Chilianthus olearaceus Burch. | Umgeba (IsiXhosa); Eastern | Leaves, and twigs | The twigs are used to make a decoction which is taken orally | - | - | [34] |
Cactaceae Opuntia | ficusindica Mill. | Motloro; Limpopo Province | Roots | The roots are used to make a decoction which is taken orally | Hypoglycemic | Type 2 diabetic patients; STZ-treated mice; alloxan-treated mice | [80,81] |
Caricaceae | Carica papaya L. | Mophopho; Limpopo Province | Leaves, toots, seeds, pulp | The leaves are used to make an infusion which is taken orally | Hypoglycemic, hypolipidemic; increases the regeneration of pancreatic β-cells and renal cuboidal cells; anti-atherogenic | STZ-treated rats; alloxan-treated rats | [66,82,83] |
Caryophyllaceae | Dianthus thunbergii S.S.Hooper forma thunbergii. | Indlela-zimhlope | Roots | The roots are used to make a decoction which is taken orally | - | - | [35] |
Celastraceae | Elaeodendron transvaalense (Burtt Davy) R.H.Archer | Venda, Limpopo | Stembark | The stem barks are used to make a decoction which is taken orally | Increases glucose uptake in 3T3-L1 pre-adipocytes | In vitro cultures of preadipocytes | [60] |
Celastraceae | Lauridia tetragona (L.f.) R.H.Archer | Umdlavuza; Eastern Cape | Barks | - | - | [35] | |
Cucurbitaceae | Cucurbita pepo L. | Intsunga (pumpkin leaves) Newcastle KZN | Upper parts (leaves and stems) | α-glucosidase activity in vitro | In vitro enzyme assays | [64] | |
Cucurbitaceae | Momordica balsamina L. | Mothwatwa; Limpopo Province | Roots | - | - | [67] | |
Cucurbitaceae | Mormordica charantia L | Monamelala; Limpopo Province | Leaves, fruit | The leaves are used to make an infusion which is taken orally | Hypoglycemic, hypolipidemic | Diabetic patients; STZ-treated rodent models | [84,85] |
Ebenaceae | Euclea undulata Thunb. | Venda, Limpopo | Rootbark | The root bark is used to make a decoction which is taken orally | Increases glucose uptake in Chang liver cells, 3T3-L1 pre-adipocytes, and C2C12 myocytes; inhibits α-glucosidase activity | In vitro cultures of preadipocytes, myocytes, and hepatocytes; in vitro enzyme assays | [60] |
Fabaceae | Lessertia microphylla (Burch. Ex DC.)Goldblatt & J.C. Manning | Mosapelo; Limpopo Province | Roots | The roots are used to make a decoction which is taken orally | - | - | [67] |
Fabaceae | Senna alexandria Mill. | Senna leaves; Newcastle KwaZulu-Natal | Leaves | The leaves are used to make an infusion which is taken orally | Inhibits α-amylase and α-glucosidase activity in vitro | In vitro enzyme assays | [64] |
Fabaceae | Sutherlandia frutescens (L.) R.Br. | Leaves, shoots | Hypoglycemic, increases glucose uptake in muscle and adipose tissue | STZ-treated rats | [86] | ||
Hyacinthaceae | Albuca setosa Jacq. | Eastern Cape | Corms | [35] | |||
Hyacinthaceae | Hypoxis argentae L. | Corms | Increases glucose uptake in cultured L6 myotubes and HepG2 cells; increases pancreatic beta cell proliferation | In vitro cultures of rat skeletal muscle cells, human hepatocellular carcinoma cells, and | [65] | ||
Hyacinthaceae | Hypoxis colchicifolia Bak. | Inongwe; Eastern Cape | Corms | - | - | [34] | |
Hyacinthaceae | Hypoxis hemerocallidea Fisch. & C. A | African potato Inongwe; Eastern Cape | Corms | Hypoglycemic ethyl acetate extract inhibits α-amylase and α-glucosidase activity in vitro; acetone extract increases insulin release from cultured islet cells | STZ-treated rats, in vitro enzyme assays; cultured Sprague Dawley rat pancreatic islet cells | [64,85,87,88] | |
Hyacinthaceae | Hypoxis iridifolia Baker Monna maledu; Limpopo Province | Monna maledu; Limpopo Province | - | - | [67] | ||
Lamiaceae | Leonotis leonorus (L.) R.Br. | wild dagga, lion′s ear, leonotis (Eng.); wildedagga, duiwelstabak (Afr); umfincafincane, umcwili, imunyane, utshwalabezinyoni (isiZulu) | Whole plants | The different parts are used to make a decoction which is taken orally | Hypoglycemic, hypolipidemic | STZ-treated rats | [89,90] |
Loganiaceae | Strychnos henningsii Gilg | Hypoglycemic, hypolipidemic; increases insulin sensitivity in 3T3- L1 cells | STZ-treated rats; in vitro cultures of rat pre-adipocytes | [35,61] | |||
Menispermaceae | Cissampelo capensis L. | Umayisake (IsiXhosa)/David root (English); Eastern Cape | Roots | The roots are used to make a decoction which is taken orally | Improves glucose utilisation in 3T3- L1 cells | In vitro cultures of preadipocytes | [45,77] |
Poaceae | Cymbopogon citrutus Stapf | Isiqunga (lemon grass); Newcastle KZN | Whole plant | The different parts are used to make a decoction which is taken orally | Inhibits α-amylase and α-glucosidase activity in vitro | In vitro enzyme assays | [64] |
Sapotaceae | Mimusops zeyheri Sond. | Mmupudu; Limpopo Province | - | - | [67] | ||
Solanaceae | Solanum aculeastrum Dunal | Umtuma; Eastern Cape | Roots | The roots are used to make a decoction which is taken orally | [61] | ||
Stilbaceae | Nuxia floribunda Benth. | Umlulama (forest elder) Newcastle KZN | Whole plant | The different parts are used to make a decoction which is taken orally | α-glucosidase activity in vitro | In vitro enzyme assays | [64] |
Family Name | Scientific Name | Local Name and Region Where Used | Plant Part Used | Methods of Herbal Material Preparation | Mechanisms | Scientific Model Used | Reference |
---|---|---|---|---|---|---|---|
Asteraceae | Helichrysum ceres | Blombos straw flower (English); Izangume (Zulu) Northern Cape, Western Cape | Leaves | The leaves are used to make an infusion which is taken orally | Hypotensive | Dahl salt-sensitive genetically hypertensive rats | [99] |
Meliaceae | Ekebergia capensis | Cape ash, dogplum (English) Essenhout (Afrikaans); Mmidibidi (Nothern Sotho). Eastern Cape, KwaZulu-Natal, Limpopo, Mpumalanga | Leaves | The leaves are used to make an infusion which is taken orally | Hypotensive | Streptozotocin- induced diabetic rats | [101] |
Cactaceae | Opuntia megacantha | Sweet prickly-pear (English); turksvy (Afrikaans); itolofiya (Xhosa). Widely distributed in South Africa | Fruit | The leaves are used to make an infusion which is taken orally | Hypotensive | Streptozotocin- induced diabetic rats | [102] |
Amaryllidaceae | Allium sativum | Garlic (English), Knoffelhuisies (Afrikaans). Non-indigenous | Cloves | Cold-pressed extract | Attenuation of structural nephropathy progression | Streptozotocin-induced diabetic rats | [103] |
Anacardiaceae | Sclerocarya birrea | Marula (English); Morula (Southern Sotho). KwaZulu-Natal, Limpopo, Mpumalanga | Leaves | The leaves are used to make an infusion which is taken orally | Phenolic compounds hypotensive | In vitro analyses | [104] |
Moraceae | Ficus thonningii | Giant-leaved fig (English); Reuseblaarvy (Afrikaans); Umvubu, Omkhulu (Zulu); Umthombe, uluzi (Xhosa), KwaZulu-Natal | Stem bark | Stem–bark aqueous extract | Decrease in mean arterial pressure | Anesthetized rat model | [105] |
Oleaceae | Olea europea | Wild olive (English), Olienhout (Afrikaans); Mohlware (Nothern Sotho, Southern Sotho), Umnquma (Zulu, Xhosa, Swati). Widely distributed in South Africa | Leaves | The leaves are used to make a decoction which is taken orally | Diuretic, anti-atherosclerotic, and anti-hypertensive effects | Insulin-resistant genetic rodent models | [106,107] |
Amaryllidaceae | Tulbaghia violacea | Wild garlic or society garlic (English), Wildeknoflok (Afrikaans); Utswelane (Xhosa); Incinsini (Zulu). Eastern Cape, KwaZulu-Natal, Limpopo | Leaves and flowers | The leaves are used to make a decoction which is taken orally | ACE inhibitors | In vitro assays | [110,111] |
Family Name | Scientific Name | Local Name and Region Where Used | Plant Part Used | Methods of Herbal Material Preparation | Mechanisms | Scientific Model Used | Reference |
---|---|---|---|---|---|---|---|
Moringaceae | Moringa oleifera | Moringa, Drum stick tree (English) Limpopo province and Gauteng | Aerial | Leaf extracts | Upregulation of hepatic lipid metabolism genes, suppression of pro-inflammatory pathways | Diet-induced obesity models in rats, | [119,120] |
Fabaceae | Aspalathus linearis (Burm.f.) R.Dahlgren | Rooibos, red bush (English) Rooibostee, bossietee (Afrikaans) Fynbos, Northern and Western cape | Aerial parts | Aerial parts as tea, green or fermented | Improved lipid metabolism in adipocytesinhibit hepatic insulin resistanceregulation of AMPK | 3T3-L adipocyte cell culture, obese insulin-resistant rats | [114,115] |
Apocynaceae | Hoodia gordonii | Bitter ghaap (English); Muishondghaap, wolweghaap, bergghaap, bokhorings (Afrikaans); khobab (Khoi) | Aerial | Appetite suppression, decrease adipocytes | Obese rats | [116] | |
Fabaceae | Sutherlandia frutescens | Cancer bush (English), kankerbos (Afrikaans) Western cape | Leaves | Decoction, aqueous extracts | Regulation of adipocytes and lipid metabolism | 3T3 cells and obese rats | [46,117] |
Asphodelaceae | Aloe vera | Aloe (English); Aalwyn (Afrikaans); Hlaba, Lekhala (Southern Sotho); Icena (Ndebele); Imboma (Zulu). Widely distributed in South Africa | Leaves | Gel extract | Phytosterols, decrease hepatic lipid accumulation | Zucker obese rats | [42] |
Cactaceae | Opuntia ficus-indica (L) Mill | Prickly pear (English), Limpopo province | Fruit | Seed extracts | Decrease inflammation, prevent steatosis | High-fat fed rats | [121] |
Myrtaceae | Syzigium aromaticum | Clove (English), Naeltjies (Afrikaans). Non-indigenous, grown as ornamental tree | Cloves | Cold-pressed extract (oleanolic acid) | Developmental programming Regulation of hepatic lipid metabolism pathways | High-fructose-fed rats | [123] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules 2020, 25, 2669. https://doi.org/10.3390/molecules25112669
Nyakudya TT, Tshabalala T, Dangarembizi R, Erlwanger KH, Ndhlala AR. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules. 2020; 25(11):2669. https://doi.org/10.3390/molecules25112669
Chicago/Turabian StyleNyakudya, Trevor T., Thulani Tshabalala, Rachael Dangarembizi, Kennedy H. Erlwanger, and Ashwell R. Ndhlala. 2020. "The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders" Molecules 25, no. 11: 2669. https://doi.org/10.3390/molecules25112669
APA StyleNyakudya, T. T., Tshabalala, T., Dangarembizi, R., Erlwanger, K. H., & Ndhlala, A. R. (2020). The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules, 25(11), 2669. https://doi.org/10.3390/molecules25112669