Next Article in Journal
Propionic Acid and Fasudil as Treatment against Rotenone Toxicity in an In Vitro Model of Parkinson’s Disease
Next Article in Special Issue
Synthesis and Anthelmintic Activity of New Thiosemicarbazide Derivatives—A Preliminary Study
Previous Article in Journal
New Methyl Threonolactones and Pyroglutamates of Spilanthes acmella (L.) L. and Their Bone Formation Activities
Previous Article in Special Issue
N-Acetylation of Amines in Continuous-Flow with Acetonitrile—No Need for Hazardous and Toxic Carboxylic Acid Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Efficient Greener Approach for N-acylation of Amines in Water Using Benzotriazole Chemistry

by
Tarek S. Ibrahim
1,2,
Israa A. Seliem
2,3,
Siva S. Panda
3,*,
Amany M. M. Al-Mahmoudy
2,
Zakaria K. M. Abdel-Samii
2,
Nabil A. Alhakamy
4,
Hani Z. Asfour
5 and
Mohamed Elagawany
6
1
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
3
Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
4
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5
Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6
Department of Pharmaceutical Chemistry, faculty of pharmacy, Damanhour University, Damanhour 22511, Egypt
*
Author to whom correspondence should be addressed.
Molecules 2020, 25(11), 2501; https://doi.org/10.3390/molecules25112501
Submission received: 28 April 2020 / Revised: 25 May 2020 / Accepted: 26 May 2020 / Published: 28 May 2020

Abstract

:
A straightforward, mild and cost-efficient synthesis of various arylamides in water was accomplished using versatile benzotriazole chemistry. Acylation of various amines was achieved in water at room temperature as well as under microwave irradiation. The developed protocol unfolds the synthesis of amino acid aryl amides, drug conjugates and benzimidazoles. The environmentally friendly synthesis, short reaction time, simple workup, high yields, mild conditions and free of racemization are the key advantages of this protocol.

Graphical Abstract

1. Introduction

N-Acylation reactions are widely used in the organic chemistry, biology, pharmaceutical and agricultural industries [1,2,3]. Chemically, they are a straightforward and powerful tool for the protection of amino groups in multistep organic syntheses, for their convenient activation towards further chemical transformations, or as widespread amide building blocks in biologically active targets, natural products and pharmaceuticals [4,5].
The amide bond is exceptionally imperative in medicinal chemistry [6,7,8]. Amide groups contribute to the unique properties of peptides, proteins, and numerous other natural and synthetic compounds. Most of the natural products and clinically used drugs contain an amide bond [9,10,11,12,13,14]. Approximately 25% of the pharmaceuticals present on the market contain at least one amide unit [15], and the functional group was present in 2/3 of the drug candidates surveyed by three leading pharmaceutical companies in 2006 [16]. A survey of the literature reveals that many drugs available in the market, such as Penicillin (antibacterial), pyrazinamide (antitubercular), atorvastatin (antihyperlipidemic) [17] and valsartan (angiotensin receptor), possess their specific capabilities due to presence of amide linkage in their structures [18].
Acylation using acetyl chloride and acetic anhydride is common among various reported strategies. However, N-acylation through acyl chloride and/or acid anhydride has been associated with many inherited disadvantages [19,20]. Further, for amino acid acylation, different coupling reagents are used, which are mostly nonselective, hazardous and difficult to handle [21].
To overcome the challenges of acyl chloride- and acid anhydride-mediated N-acylation reactions using acyl chlorides and/or acid anhydrides, numerous strategies have been investigated. Among them, the metal-catalyzed or direct coupling of unactivated carboxylic acids [22,23,24], acylation through N-acyl 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) tetraphenylborate salts [25], Beckman rearrangements using mercury and ruthenium catalysts [26,27], copper-catalyzed oxidative amidation of aldehydes [28,29], triazole- and imidazole-mediated acyl transfer reactions [30,31,32], and acylation method through acylbenzotriazoles [33,34,35] are common. Benzotriazole chemistry has been explored, by the Katritzky group [19,21,36,37,38,39,40] and others [41,42], in various types of reactions, including in the synthesis of amides.
On the other hand, benzimidazoles are crucial core structures used to develop pharmaceuticals and materials. Substituted benzimidazoles exhibit biological activities such as antitumor [43], antihypertensive [44], antiulcer [45] and enzyme inhibition [46]. Some commonly employed synthetic methods for benzimidazoles include: (i) reaction of 1,2-phenylenediamines with carboxylic acids or their derivatives, like amidates, nitriles or orthoesters, in the presence of polyphosphoric acid [47] or mineral acids [48]; (ii) cyclization of N-(N-arylbenzimidoyl)-1,4-benzoquinoneimines under a thermal or acidic environment [49]; (iii) utilizing o-nitroanilines as intermediates [50]; (iv) oxidative cyclocondensation of o-phenylenediamine with aldehydes [51].
Recently, the development of green synthetic methods has become an important strategy in organic synthesis. Water has experienced increasing popularity due to being inexpensive, readily available, and environmentally benign. In addition, water: (i) is cheap, nonflammable, non-toxic and safe for use; (ii) eliminates additional efforts required to dry the substrates/reagents before use; (iii) offers unique physical and chemical properties that often achieve the reactivity or selectivity unattainable in organic solvents; and (iv) allows easy product isolation by filtration [52,53].
Benzotriazole chemistry has been practiced extensively in our group, and has often been found to be superior to conventional routes for acylation [21]. Earlier, we reported the acylation of mesalazine [54] and the synthesis of benzothiazole [52] in water under microwave conditions. In this communication, we extend the efficient synthetic protocol for the N-acylation of amines, which could be an important tool for conjugate chemistry and also for the synthesis of 2-substituted benzimidazoles without any catalyst, organic solvent or additional reagent. This protocol runs under both microwave and room temperature and gives quantitative yields. To the best of our knowledge, this is the first environmentally benign, catalyst- and organic solvent-free synthesis of N-acylated products of amines in water.

2. Results and Discussion

Carboxamines are important key intermediates, scaffolds for polymers, dendrimers and bioactive molecules [55]. Among arylamines, amino acid arylamides are often used as substrates in fluorogenic, chromogenic and amperogenic enzymatic assays [56]. For these applications, chirality is an important factor. Several methods have been reported for arylamides, including the use of enzymes and flow chemistry [57,58,59,60,61,62,63,64,65,66,67,68,69,70,71], and we believe we are reporting, for the first time, the synthesis of amino acid arylamides in water.
We investigated the reaction conditions for the N-acylation of anilines with our in-house prepared, protected aminoacylbenzotriazoles in water. Optimization of the reaction conditions showed the best outcomes under microwave irradiation at 50 °C for 15–20 min, over conventional heating (Table 1). We were also able to get the desired product by stirring the reactants at room temperature for 1–2 h.
There was no significant change in reaction time and yield when the above reaction was carried out both in tap water and saturated brine solution separately. Furthermore, we also tried the reaction in deionized water, to rule out the possibility of any metallic impurities from tap water catalyzing the reaction. The results obtained were comparable in tap and deionized water, so to avoid the effort and energy consumption needed to prepare deionized water, we chose tap water for our reactions.
Even though room temperature works for the N-acylation reactions, at a larger-scale, the reactions proceed nearly to completion as some of the reactants are left unreacted. We carried out the above reaction in both conventional heating and microwave irradiation conditions on a large scale. We got a better yield with high purity under microwave conditions, in comparison with conventional heating.
We therefore ran the reactions of aromatic amines with benzotriazolides of protected amino acids in water, under microwave irradiation for 15 to 20 min (Scheme 1). Our reaction condition yields pure N-acylated products for all three types of protected amino acids (Boc, Cbz and Fmoc) with various substituted anilines (Table 2). We believe the driving force of the reaction is controlled by diffusion, since both of the reactants are water insoluble and form a heterogeneous reaction mixture. To justify our hypothesis, we used hexanes, a non-polar solvent, as a reaction medium in which both reactants are insoluble, and we found an equivalent outcome. We thus preferred nonflammable water over hexanes in our reactions. To explore the use of our reaction condition, we used different amines with various benzotriazolides. Our optimized reaction condition retains the chirality of the products, which was confirmed by performing reactions with both the DL and L forms of amino acids. High-performance liquid chromatography (HPLC) analysis of compound 9 (contains L-alanine) showed a single peak, with nearly the same retention time (16.290 min) as that of one of the two peaks (16.813 and 18.407 min) obtained from the mixture of the racemic compound 9+9′ (contains DL-alanine) with the enantiopure compound 9. The increase in height of one peak supports the retention of chiral integrity in our reaction protocol (Supplementary Material).
In addition to the primary amines, we also tried our optimized reaction condition with secondary amines. We were able to get the N-acylated secondary amines in good yields with high purity (Scheme 2). Earlier, we reported these conjugates, which were synthesized by treating benzotriazolide of boc-protected amino acids with secondary amines in the presence of triethylamine in tetrahydrofuran (THF) [35].
Despite tremendous success in the synthesis of 2-substituted benzimidazoles, many of the methodologies suffer from one or more limitations, such as long reaction times, the formation of several side products, harsh reaction conditions, low yields, complicated work-up procedures and the generation of acidic and metallic wastes. As a consequence, the development of a new method, or technical improvement of the existing methods, is still an important experimental challenge. To expand the range of applicability of our optimized greener protocol, we treated benzotriazole-activated substituted benzoic acids with o-phenylenediamine in water, under microwave conditions. We obtained our desired product in 1 h (Scheme 3).
To elucidate the use of water in our reaction protocol, we added 5 mol% of a phase-transfer catalyst (Aliquat 336), which lowered the yields of the products, again supporting our proposed reaction mechanism of diffusion. The physical state of the reactants is also important: the use of microwave irradiation over conventional heating significantly improved the yields and purity, with retention of the chiral integrity. All the synthesized compounds were fully characterized by spectral studies (Supplementary Material).

3. Conclusions

In conclusion, we report mild, fast, efficient, facile and green conditions for the N-acylation of amines in water, without the use of catalyst or reagent. The heterogeneous reaction runs in water and forms the N-acylated products without loss of chirality and with high yields. The optimized reaction conditions work well at room temperature as well as under microwave irradiation for small-scale reactions, but for large-scale reactions microwave conditions are preferred. The application of microwaves and the concept of a heterogeneous reaction mixture expands the use of the reaction condition for the synthesis of 2-substituted benzimidazoles. Given its qualities of being racemization-free, high yield, catalyst- and solvent-free and ecofriendly, as well as the possibility of it scaling-up, the reaction has substantial potential for implementation by the pharmaceutical and agriculture industries.

4. Experimental Section

Melting points were determined on a capillary point apparatus equipped with a digital thermometer. NMR spectra were recorded in (DMSO-d6) on Bruker NMR spectrometers operating at 500 MHz for 1H [with tetramethysilane (TMS) as an internal standard] and 125 MHz for 13C. All microwave-assisted reactions were carried out with a single mode cavity Discover Microwave Synthesizer (CEM Corporation, Charlotte, NC, USA). The reaction mixtures were transferred into a 10 mL glass pressure microwave tube equipped with a magnetic stirrer bar. The tube was closed with a silicon septum and the reaction mixture was subjected to microwave irradiation (Discover mode; run time: 60 s; Power Max-cooling mode). HPLC analysis was carried out on Agilent 6120 LCMS instrument with Chirobiotic T column.

4.1. General Methods for N-acylation

In a typical procedure, a mixture of amine (1 equiv.) and N-protected aminoacylbenzotriazole or arylylbenzotriazole (1 equiv.) was subjected to microwave irradiation (20 W, 50 °C) in water (3 mL) for 15–20 min. After completion of the reaction, aqueous Na2CO3 or 4N HCl was added and the mixture was extracted with ethyl acetate or filter the precipitates, followed by washing with water. In most of the cases the isolated products were in pure form, and some were recrystallized in ethanol. Benzotriazoles could be recovered from the aqueous layer by pH-controlled acidification.
tert-Butyl (S)-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)carbamate(3). White microcrystals (94%); m.p. 137–139 °C (Lit. m.p. 138–139 °C [57]). 1H NMR (500 MHz, DMSO-d6) δ: 10.01 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.44–6.90 (m, 10H), 4.32 (s, 1H), 3.49–1.79 (m, 2H), 2.01–0.59 (m, 9H). 13C NMR (125 MHz, DMSO-d6) δ: 171.2, 155.9, 139.4, 138.4, 129.9, 129.7, 129.6, 129.3, 129.2, 128.6, 128.5, 126.7, 126.7, 123.8, 119.9, 119.8, 78.6, 57.0, 37.9, 28.6. HRMS m/z calcd for C20H24N2O3 [M + H]+ 341.1787, found 341.1789.
tert-Butyl (S)-(3-methyl-1-oxo-1-(phenylamino)butan-2-yl)carbamate(4). White microcrystals (93%); m.p. 123–125 °C (Lit. m.p. 120–121 °C [58]). 1H NMR (500 MHz, DMSO-d6) δ 9.95 (s, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.2 Hz, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 6.7 Hz, 1H), 3.94 (t, J = 8.6 Hz, 1H), 2.06–1.94 (m, 1H), 1.39 (s, 9H), 0.90 (d, J = 5.1 Hz, 6H); 13C NMR (125 MHz, DMSO-d6) δ 171.2, 156.1, 139.3, 129.2, 123.8, 119.7, 78.5, 61.0, 30.9, 28.7, 19.7. HRMS m/z calcd for C16H24N2O3 [M + H]+ 293.1787, found 293.1786.
Benzyl (2-oxo-2-(phenylamino)ethyl)carbamate(5). White microcrystals (95%); m.p. 145–146 °C (Lit. m.p. 148–149 °C [59]). 1H NMR (500 MHz, DMSO-d6) δ 9.99 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 6.8 Hz, 1H), 7.43–7.23 (m, 7H), 7.05 (t, J = 6.8 Hz, 1H), 5.07 (s, 2H), 3.84 (d, J = 5.7 Hz, 2H); 13C NMR (125 MHz, DMSO-d6) δ 168.4, 157.1, 139.4, 137.5, 129.2, 128.8, 128.3, 128.2, 123.7, 119.6, 66.0, 44.6. HRMS m/z calcd for C16H16N2O3 [M + H]+ 285.1161, found 285.1169.
(9H-Fluoren-9-yl)methyl (2-oxo-2-(phenylamino)ethyl)carbamate(6). White microcrystals (91%); m.p. 165–167 °C [60]. 1H NMR (500 MHz, DMSO-d6) δ 10.02 (s, 1H), 7.89 (d, J = 7.4 Hz, 2H), 7.74 (d, J = 7.3 Hz, 2H), 7.66–7.58 (m, 3H), 7.42 (t, J = 7.2 Hz, 2H), 7.36–7.29 (m, 4H), 7.05 (t, J = 6.4 Hz, 1H), 4.33 (d, J = 6.7 Hz, 2H), 4.25 (t, J = 6.5 Hz, 1H), 3.84 (d, J = 5.7 Hz, 2H).; 13C NMR (125 MHz, DMSO-d6) δ 168.4, 157.1, 144.3, 141.2, 139.4, 129.9, 129.2, 128.1, 127.6, 125.7, 123.7, 120.6, 119.6, 66.2, 47.1, 44.5. HRMS m/z calcd for C23H20N2O3 [M + H]+ 373.1474, found 373.1477.
tert-Butyl (R)-(3-methyl-1-oxo-1-(p-tolylamino)butan-2-yl)carbamate(7). Yellow microcrystals (95%); m.p. 118–120 °C (Lit. m.p. 115–117 °C [58]). 1H NMR (500 MHz, DMSO-d6) δ 9.05 (s, 1H), 7.39 (d, J = 7.6 Hz, 2H), 6.99 (d, J = 5.0 Hz, 2H), 5.79 (d, J = 9.2 Hz, 1H), 4.25 (t, J = 7.9 Hz, 1H), 2.28 (s, 3H), 2.21–2.13 (m, 1H), 1.43 (s, 9H), 1.05 (d, J = 7.1 Hz, 6H); 13C NMR (125 MHz, DMSO-d6) δ 170.8, 156.6, 135.4, 133.5, 129.2, 120.2, 80.0, 60.8, 31.3, 28.4, 20.8, 19.3. HRMS m/z calcd for C17H26N2O3 [M + H]+ 307.1943, found 307.1944.
Benzyl (2-oxo-2-(p-tolylamino)ethyl)carbamate(8). White microcrystals (88%); m.p. 152–154 °C (Lit. m.p. 153–154 °C [61]). 1H NMR (500 MHz, DMSO-d6) δ: 9.86 (s, 1H), 7.52 (t, J = 5.8 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.40–7.29 (m, 6H), 7.10 (d, J = 8.2 Hz, 2H), 5.05 (s, 2H), 3.79 (d, J = 6.1 Hz, 2H), 2.24 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 167.6, 156.6, 137.0, 136.4, 132.1, 129.1, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 126.4, 119.1, 65.5, 43.9, 20.4. HRMS m/z calcd for C17H18N2O3 [M + H]+ 299.1317, found 299.1319.
Benzyl (S)-(1-oxo-1-(p-tolylamino) propan-2-yl) carbamate(9). White microcrystals (96%); m.p. 158–160 °C (Lit. m.p. 160–162 °C [59]). 1H NMR (500 MHz, DMSO-d6) δ: 9.86 (s, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.41–7.24 (m, 6H), 7.10 (d, J = 8.1 Hz, 2H), 5.02 (q, J = 12.6 Hz, 2H), 4.37–3.96 (m, 1H), 2.25 (s, 3H), 1.28 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.2, 155.7, 136.9, 136.5, 132.1, 129.0, 129.0, 128.4, 128.3, 127.8, 127.7, 127.5, 119.2, 118.4, 65.4, 50.7, 20.4, 18.1. HRMS m/z calcd for C18H20N2O3 [M + H]+ 313.1474, found 313.1481.
Benzyl (RS)-(1-oxo-1-(p-tolylamino) propan-2-yl) carbamate(9+9′). White solid (92%), m.p. 152–154 °C. 1H NMR (500 MHz, DMSO-d6) δ: 9.86 (s, 1H), 7.56 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.39–7.26 (m, 5H), 7.10 (d, J = 8.2 Hz, 2H), 5.02 (q, J = 12.6 Hz, 2H), 4.34–4.01 (m, 1H), 2.25 (s, 3H), 1.28 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.2, 155.7, 136.9, 136.5, 132.1, 129.1, 129.0, 128.4, 128.3, 127.8, 127.8, 127.7, 119.2, 119.2, 65.3, 50.7, 20.4, 18.1. HRMS m/z calcd for C18H20N2O3 [M + H]+ 313.1474, found 313.1488.
Benzyl (S)-(3-methyl-1-oxo-1-(p-tolylamino)butan-2-yl)carbamate(10). White microcrystals (97%); m.p. 183–185 °C [62]. 1H NMR (500 MHz, DMSO-d6) δ 9.98 (s, 1H), 7.60–7.25 (m, 8H), 7.15 (d, J = 6.4 Hz, 2H), 5.09 (s, 2H), 4.03 (t, J = 6.4 Hz, 1H), 2.29 (s, 3H), 2.15–1.94 (m, 1H), 0.95 (d, J = 3.9 Hz, 6H); 13C NMR (125 MHz, DMSO-d6) δ 170.7, 156.8, 137.5, 136.8, 132.8, 129.6, 128.9, 128.3, 128.2, 119.8, 66.0, 61.5, 30.9, 20.9, 19.7. HRMS m/z calcd for C20H24N2O3 [M + H]+ 341.1787, found 341.1788.
Benzyl (S)-(4-(methylthio)-1-oxo-1-(p-tolylamino)butan-2-yl)carbamate(11). White microcrystals (79%); m.p. 185–187 °C. 1H NMR (500 MHz, DMSO-d6) δ: 9.94 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.42–7.25 (m, 5H), 7.11 (d, J = 8.2 Hz, 2H), 5.07–4.99 (m, 2H), 4.22 (dd, J = 13.2, 8.5 Hz, 1H), 2.66–2.32 (m, 2H), 2.25 (s, 3H), 2.04 (s, 3H), 2.05–1.69 (m, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 170.2, 156.1, 136.9, 136.3, 132.2, 129.1, 129.0, 128.3, 128.3, 127.8, 127.8, 127.7, 119.3, 119.3, 65.4, 54.6, 31.6, 29.7, 20.4, 14.6. HRMS m/z calcd for C20H24N2O3S [M + H]+ 372.1508, found 372.1512.
(9H-Fluoren-9-yl)methyl (S)-(1-oxo-3-phenyl-1-(p-tolylamino)propan-2-yl)carbamate(12). White microcrystals (94%); m.p. 193–195 °C. 1H NMR (500 MHz, DMSO-d6) δ 10.03 (s, 1H), 7.86 (d, J = 7.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 1H), 7.64 (t, J = 7.5 Hz, 2H), 7.47 (d, J = 7.8 Hz, 2H), 7.42–7.24 (m, 9H), 7.11 (d, J = 7.7 Hz, 2H), 4.48–4.35 (m, 1H), 4.23–4.14 (m, 3H), 3.08–3.00 (m, 1H), 2.96–2.84 (m, 1H), 2.24 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 170.7, 156.4, 144.1, 141.1, 138.3, 136.7, 133.0, 129.7, 129.6, 128.6, 128.1, 127.5, 126.9, 125.7, 120.5, 119.9, 66.2, 57.3, 47.0, 38.0, 20.9. HRMS m/z calcd for C31H28N2O3 [M + H]+ 477.2100, found 477.2109.
(9H-Fluoren-9-yl)methyl (1-oxo-1-(p-tolylamino)propan-2-yl)carbamate(13). White microcrystals (75%); m.p. 172–174 °C. 1H NMR (500 MHz, DMSO-d6) δ: 9.87 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.76–7.54 (m, 3H), 7.51–7.43 (m, 2H), 7.44–7.29 (m, 4H), 7.10 (d, J = 8.2 Hz, 2H), 4.39–4.09 (m, 4H), 2.25 (s, 3H), 1.43–1.21 (m, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.3, 155.8, 143.9, 140.7, 136.5, 132.1, 129.0, 127.6, 127.0, 125.3, 120.1, 119.1, 65.6, 50.7, 46.6, 20.4, 18.1. HRMS m/z calcd for C25H24N2O3 [M + H]+ 401.1787, found 401.1785.
Benzyl (S)-(1-((4-methoxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate(14). White microcrystals (80%); m.p. 164–166 °C [Lit. m.p. 167 °C [63]]. 1H NMR (500 MHz, DMSO-d6) δ: 9.94 (s, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.9 Hz, 2H), 7.36–7.20 (m, 10H), 6.88 (d, J = 9.0 Hz, 2H), 4.96 (s, 2H), 4.38 (td, J = 9.7, 4.8 Hz, 1H), 3.72 (s, 3H), 3.02 (dd, J = 13.6, 4.6 Hz, 1H), 2.85 (dd, J = 15.5, 8.2 Hz, 1H). 13C NMR (125 MHz, DMSO-d6) δ: 169.9, 155.9, 155.3, 137.9, 136.9, 131.9, 129.8, 129.21, 129.1, 128.3, 128.2, 128.0, 127.7, 127.5, 127.4, 126.5, 126.3, 124.9, 120.9, 113.8, 65.3, 56.8, 55.1, 37.6. HRMS m/z calcd for C24H24N2O4 [M + H]+ 405.1736, found 405.1737.
Benzyl (S)-(1-((4-methoxyphenyl)amino)-1-oxopropan-2-yl)carbamate(15). White microcrystals (85%); m.p. 160–162 °C (Lit. m.p. 161.5–162.5 °C [64]). 1H NMR (500 MHz, DMSO-d6) δ: 9.88 (s, 1H), 7.63–7.45 (m, 3H), 7.42–7.27 (m, 5H), 6.88 (d, J = 9.0 Hz, 2H), 5.03 (q, J = 12.6 Hz, 2H), 4.35–4.04 (m, 1H), 3.72 (s, 3H), 1.29 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.0, 155.7, 154.8, 137.0, 132.2, 132.1, 128.4, 128.3, 127.8, 127.7, 125.4, 125.3, 120.7, 113.8, 65.4, 55.2, 50.7, 18.2. HRMS m/z calcd for C18H20N2O4 [M + H]+ 329.1423, found 329.1431.
Benzyl (S)-(1-((2-methoxyphenyl)amino)-1-oxopropan-2-yl)carbamate(16). White microcrystals (98%); m.p. 185–187 °C [65]. 1H NMR (500 MHz, DMSO-d6) δ: 9.04 (s, 1H), 8.03 (d, J = 7.4 Hz, 1H), 7.75 (d, J = 6.7 Hz, 1H), 7.47–7.21 (m, 5H), 7.16–6.97 (m, 2H), 6.91 (t, J = 8.2 Hz, 1H), 5.06 (q, J = 12.4 Hz, 2H), 4.45–4.18 (m, 1H), 3.81 (s, 3H), 1.29 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.3, 155.9, 148.9, 136.9, 128.4, 128.4, 127.8, 127.7, 127.1, 124.2, 124.2, 120.6, 120.3, 111.1, 65.5, 55.8, 50.9, 17.8. HRMS m/z calcd for C18H20N2O4 [M + H]+ 329.1423, found 329.1422.
tert-Butyl (S)-(1-((4-fluorophenyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate(17). Yellow microcrystals (94%); m.p. 138–140 °C (Lit. m.p. 141–142 °C [58]). 1H NMR (500 MHz, DMSO-d6) δ 10.02 (s, 1H), 7.62 (dd, J = 7.9, 5.1 Hz, 2H), 7.13 (t, J = 8.7 Hz, 2H), 6.83 (d, J = 8.2 Hz, 1H), 3.91 (t, J = 7.6 Hz, 1H), 2.04–1.94 (m, 1H), 1.39 (s, 9H), 0.90 (d, J = 6.3 Hz, 6H); 13C NMR (125 MHz, DMSO-d6) δ 171.1, 159.4, 157.5, 156.1, 135.7, 121.5, 121.4, 115.8, 115.6, 78.5, 61.0, 30.8, 28.6, 19.6. HRMS m/z calcd for C16H23FN2O3 [M + H]+ 311.1693, found 311.1699.
Benzyl (S)-(1-((4-fluorophenyl) amino)-1-oxo-3-phenylpropan-2-yl) carbamate(18). White microcrystals (77%); m.p. 191–193 °C (Lit. m.p. 195 °C [63]). 1H NMR (500 MHz, DMSO-d6) δ: 9.94 (s, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.9 Hz, 2H), 7.36–7.20 (m, 10H), 6.88 (d, J = 9.0 Hz, 2H), 4.96 (s, 2H), 4.38 (td, J = 9.7, 4.8 Hz, 1H), 3.72 (s, 3H), 3.02 (dd, J = 13.6, 4.6 Hz, 1H), 2.85 (dd, J = 15.5, 8.2 Hz, 1H). 13C NMR (125 MHz, DMSO-d6) δ: 169.9, 155.9, 155.3, 137.9, 136.9, 131.9, 129.8, 129.21, 129.1, 128.3, 128.2, 128.0, 127.7, 127.5, 127.4, 126.5, 126.3, 124.9, 120.9, 113.8, 65.3, 56.8, 55.1, 37.6. HRMS m/z calcd for C23H21FN2O3 [M + H]+ 393.1536, found 393.1533.
Benzyl (2-((4-fluorophenyl)amino)-2-oxoethyl)carbamate(19). White microcrystals (84%); m.p. 174–176 °C. 1H NMR (500 MHz, DMSO-d6) δ: 10.02 (s, 1H), 7.61 (dd, J = 8.8, 5.0 Hz, 2H), 7.56 (t, J = 6.0 Hz, 1H), 7.41–7.32 (m, 6H), 7.15 (t, J = 8.9 Hz, 1H), 5.06 (s, 2H), 3.80 (d, J = 6.1 Hz, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 167.8, 158.9, 156.6, 137.0, 135.3, 128.4, 128.3, 128.2, 127.8, 127.7, 120.8, 120.8, 115.4, 115.2, 65.5, 43.9. HRMS m/z calcd for C16H15FN2O3 [M + H]+ 303.1067, found 303.1066.
Benzyl (S)-(1-((4-fluorophenyl)amino)-1-oxopropan-2-yl)carbamate(20). White microcrystals (90%); m.p. 192–194 °C [65]. 1H NMR (500 MHz, DMSO-d6) δ: 10.03 (s, 1H), 7.69–7.51 (m, 3H), 7.44–7.25 (m, 5H), 7.23–7.04 (m, 2H), 5.03 (q, J = 12.7 Hz, 2H), 4.32–3.96 (m, 1H), 1.29 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.4, 158.9, 155.8, 136.9, 135.4, 128.3, 128.30, 127.8, 127.71, 127.7, 120.9, 120.9, 115.3, 115.1, 65.4, 50.7, 17.9. HRMS m/z calcd for C17H17FN2O3 [M + H]+ 317.1223, found 317.1228.
(9H-Fluoren-9-yl)methyl (2-((4-fluorophenyl)amino)-2-oxoethyl)carbamate(21). Yellow microcrystals (90%); m.p. 142–143 °C. 1H NMR (500 MHz, DMSO-d6) δ 10.20 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.64–7.54 (m, 2H), 7.36–7.19 (m, 10H), 7.15 (t, J = 8.4 Hz, 2H), 4.97 (s, 2H), 4.45–4.36 (m, 1H), 3.07–3.00 (m, 1H), 2.90–2.82 (m, 1H); 13C NMR (125 MHz, DMSO-d6) δ 170.9, 159.6, 157.6, 156.5, 138.1, 137.4, 135.6, 129.7, 128.8, 128.6, 128.2, 128.0, 126.9, 121.7, 121.7, 115.8, 115.7, 65.8, 57.4, 37.9. HRMS m/z calcd for C23H19FN2O3 [M + H]+ 391.1380, found 391.1393.
tert-Butyl (S)-(1-((4-chlorophenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate(22). White microcrystals (98%); m.p. 152–154 °C [66]. 1H NMR (500 MHz, DMSO-d6) δ: 10.17 (s, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.50–7.00 (m, 8H), 4.31 (dd, J = 12.8, 9.2 Hz, 1H), 3.26–2.65 (m, 2H), 1.59–1.11 (m, 9H). 13C NMR (125 MHz, DMSO-d6) δ: 170.9, 155.4, 138.0, 137.8, 129.3, 129.2, 129.0, 128.8, 128.6, 128.1, 128.0, 126.8, 126.3, 126.3, 120.8, 78.1, 56.6, 55.1, 37.3, 28.1. HRMS m/z calcd for C20H23ClN2O3 [M + H]+ 375.1397, found 375.1389.
Benzyl (2-((4-chlorophenyl)amino)-2-oxoethyl)carbamate(23). White microcrystals (95%); m.p. 160–162 °C. 1H NMR (500 MHz, DMSO-d6) δ: 10.10 (s, 1H), 7.62 (d, J = 8.7 Hz, 2H), 7.56 (t, J = 5.9 Hz, 1H), 7.42–7.29 (m, 7H), 5.05 (s, 2H), 3.81 (d, J = 6.1 Hz, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 168.6, 157.1, 138.3, 137.5, 131.5, 129.1, 128.9, 128.8, 128.7, 128.3, 128.2, 127.2, 127.1, 121.1, 65.9, 44.6. HRMS m/z calcd for C16H15ClN2O3 [M + H]+ 319.0771, found 319.0777.
Benzyl (S)-(1-((4-chlorophenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate(24). White microcrystal (90%); m.p. 182–184 °C. 1H NMR (500 MHz, DMSO-d6) δ: 10.29 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.44–7.23 (m, 11H), 7.21 (d, J = 7.2 Hz, 1H), 4.96 (s, 2H), 4.80–3.81 (m, 1H), 3.02 (dd, J = 13.7, 4.6 Hz, 1H), 2.86 (dd, J = 13.6, 10.3 Hz, 1H). 13C NMR (125 MHz, DMSO-d6) δ: 171.2, 156.4, 138.3, 138.2, 137.4, 130.0, 129.8, 129.7, 129.1, 128.8, 128.8, 128.7, 128.6, 128.2, 128.0, 127.8, 127.4, 127.3, 126.9, 121.3, 65.8, 57.5, 37.9. HRMS m/z calcd for C23H21ClN2O3 [M + H]+ 409.1241, found 409.1244.
Benzyl (S)-(1-((4-chlorophenyl)amino)-1-oxopropan-2-yl)carbamate(25). White microcrystal (73%); m.p. 163–165 °C (Lit. m.p. 165–166 °C [67]). 1H NMR (500 MHz, DMSO-d6) δ: 10.11 (s, 1H), 7.72–7.55 (m, 3H), 7.42–7.28 (m, 7H), 5.53–4.69 (m, 2H), 4.50–3.73 (m, 1H), 1.29 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.7, 155.78, 137.9, 136.9, 128.6, 128.6, 128.3, 128.3, 127.8, 127.7, 126.8, 126.7, 120.8, 120.7, 65.4, 50.8, 17.9. HRMS m/z calcd for C17H17ClN2O3 [M + H]+ 333.0928, found 333.0923.
Benzyl (S)-(1-((4-chlorophenyl)amino)-4-(methylthio)-1-oxobutan-2-yl)carbamate(26). White microcrystal (82%); m.p. 150–152 °C [68]. 1H NMR (500 MHz, DMSO-d6) δ: 10.20 (s, 1H), 8.28–7.57 (m, 3H), 7.47–7.27 (m, 7H), 5.11–4.97 (m, 2H), 4.24 (dd, J = 12.9, 8.5 Hz, 1H), 2.84–2.29 (m, 2H), 2.06 (s, 3H), 1.98–1.82 (m, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 170.7, 156.1, 137.8, 136.9, 131.7, 128.6, 128.3, 128.3, 127.8, 127.7, 127.7 126.9, 120.9, 119.7, 65.5, 54.7, 31.4, 29.7, 14.6. HRMS m/z calcd for C19H21ClN2O3S [M + H]+ 393.0961, found 393.0969.
(9H-Fluoren-9-yl)methyl (1-((4-chlorophenyl)amino)-1-oxopropan-2-yl)carbamate(27). White microcrystal (90%); m.p. 197–199 °C. 1H NMR (500 MHz, DMSO-d6) δ: 10.13 (s, 1H), 7.89 (d, J = 7.4 Hz, 2H), 7.82–7.54 (m, 5H), 7.48–7.25 (m, 6H), 4.65–3.89 (m, 4H), 1.30 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.7, 155.8, 143.8, 143.8, 140.7, 137.9, 128.6, 127.6, 127.0, 126.7, 125.3, 125.3, 125.2, 120.7, 120.1, 65.6, 50.8, 46.6, 17.9. HRMS m/z calcd for C24H21ClN2O3 [M + H]+ 421.1241, found 421.1235.
(9H-Fluoren-9-yl)methyl (S)-(1-((4-chlorophenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate(28). White microcrystal; (98%); m.p. 210–212 °C. 1H NMR (500 MHz, DMSO-d6) δ: 7.92–7.80 (m, 4H), 7.75–7.59 (m, 2H), 7.41 (dd, J = 11.1, 4.6 Hz, 3H), 7.37–7.02 (m, 10H), 6.27 (s, 1H), 4.64–3.86 (m, 3H), 3.48–2.68 (m, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 172.2, 143.9, 142.6, 139.40, 137.4, 135.4, 133.2, 129.5, 129.4, 129.2, 128.9, 128.5, 128.0, 127.8, 127.3, 126.1, 125.7, 123.9, 122.3, 122.2, 121.4, 121.2, 120.7, 120.0, 115.3, 109.7, 79.2, 57.2, 53.8, 37.9. HRMS m/z calcd for C30H25ClN2O3 [M + H]+ 497.1554, found 497.1553.
Benzyl (S)-(1-((2-chlorophenyl)amino)-1-oxopropan-2-yl)carbamate(29). White microcrystal (70%); m.p. 162–164 °C. 1H NMR (500 MHz, DMSO-d6) δ: 9.43 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 6.8 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.42–7.28 (m, 6H), 7.19 (t, J = 7.5 Hz, 1H), 5.05 (s, 2H), 4.45–4.14 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 171.72, 155.9, 136.9, 134.56, 129.4, 129.4, 128.3, 128.3, 127.8, 127.7, 127.5, 126.2, 126.0, 125.3, 65.5, 50.6, 17.8. HRMS m/z calcd for C17H17ClN2O3 [M + H]+ 333.0928, found 333.0941.
Benzyl (S)-(1-((4-nitrophenyl)amino)-1-oxopropan-2-yl)carbamate(30). White microcrystal (70%); m.p. 95–97 °C (Lit. m.p. 99 °C [69]). 1H NMR (500 MHz, DMSO-d6) δ: 8.93–8.01 (m, 3H), 7.82 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.54–7.20 (m, 4H), 7.16–6.81 (m, 1H), 5.59–5.38 (m, 1H), 5.12–4.95 (m, 2H), 1.54 (d, J = 7.2 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 172.4, 156.0, 145.3, 136.7, 131.2, 130.7, 128.4, 128.3, 127.9, 127.8, 127.7, 126.8, 120.2, 113.9, 65.8, 50.1, 16.8. HRMS m/z calcd for C17H17N3O5 [M + H]+ 344.1168, found 344.1160.
Benzyl (2-((2-hydroxyphenyl)amino)-2-oxoethyl)carbamate(31). White microcrystals (90%); m.p. 180–182 °C (Lit. m.p. 174–176 °C [65]). 1H NMR (500 MHz, DMSO-d6) δ 9.93 (s, 1H), 9.11 (s, 1H), 7.98–7.83 (m, 1H), 7.82–7.64 (m, 1H), 7.52–7.23 (m, 5H), 6.98–6.73 (m, 2H), 5.08 (s, 2H), 3.88 (d, J = 4.7 Hz, 2H); 13C NMR (125 MHz, DMSO-d6) δ 168.6, 157.2, 147.7, 137.4, 128.9, 128.3, 128.1, 126.5, 124.8, 121.6, 119.5, 115.7, 66.1, 44.9. HRMS m/z calcd for C16H16N2O4 [M + H]+ 301.1110, found 301.1117.
Benzyl (S)-(1-oxo-1-(pyridin-4-ylamino)propan-2-yl)carbamate(32). White microcrystals (89%); m.p. 152–154 °C [70]. 1H NMR (500 MHz, DMSO-d6) δ: 8.43–8.14 (m, 4H), 7.82 (t, J = 7.7 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.47–7.22 (m, 5H), 5.51–5.49 (m, 1H), 5.07–5.02 (m, 2H), 1.54 (d, J = 7.2 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 172.4, 156.0, 145.3, 136.7, 131.1, 130.6, 128.4, 128.3, 127.9, 127.8, 126.7, 120.2, 113.9, 65.8, 50.1, 16.8. HRMS m/z calcd for C16H17N3O3 [M + H]+ 300.1270, found 300.1274.
Benzyl (S)-(1-oxo-1-(pyridin-3-ylamino)propan-2-yl)carbamate(33). White microcrystals (97%); m.p.155–157 °C. 1H NMR (500 MHz, DMSO-d6) δ: 8.39–8.13 (m, 4H), 7.82 (t, J = 7.7 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.46–7.24 (m, 5H), 5.53–5.47 (m, 1H), 5.07–5.02 (m, 2H), 1.54 (d, J = 7.3 Hz, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 172.4, 156.0, 145.3, 137.0, 136.7, 131.1, 130.6, 128.4, 127.9, 127.8, 126.8, 120.2, 113.9, 65.8, 50.1, 16.8. HRMS m/z calcd for C16H17N3O3 [M + H]+ 300.1270, found 300.1265.
N-(p-Tolyl)pyrazine-2-carboxamide(35). White microcrystals (71%); m.p. 138–140 °C (Lit. m.p. 148 °C [72]). 1H NMR (500 MHz, DMSO-d6) δ: 10.62 (s, 1H), 9.28 (d, J = 1.4 Hz, 1H), 8.92 (d, J = 2.5 Hz, 1H), 8.80 (dd, J = 2.5, 1.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 2.29 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 161.4, 147.6, 145.1, 143.9, 143.2, 135.6, 133.2, 129.04, 120.5, 20.5. HRMS m/z calcd for C12H11N3O [M + H]+ 214.0902, found 214.0913.
N-(4-Methoxyphenyl)pyrazine-2-carboxamide(36). White microcrystals (81%); m.p. 147–149 °C (Lit. m.p. 149–150 °C [73]). 1H NMR (500 MHz, DMSO-d6) δ: 10.62 (s, 1H), 9.28 (d, J = 1.4 Hz, 1H), 8.92 (d, J = 2.5 Hz, 1H), 8.80 (dd, J = 2.5, 1.4 Hz, 1H), 7.80 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 161.2, 155.9, 147.5, 145.2, 143.9, 143.2, 131.2, 122.0, 113.8, 55.2. HRMS m/z calcd for C12H11N3O2 [M + H]+ 230.0851, found 230.0843.
N-(4-Fluorophenyl)pyrazine-2-carboxamide(37). White microcrystals (98%); m.p. 155–157 °C (Lit. m.p. 154–155 °C [72]). 1H NMR (500 MHz, DMSO-d6) δ: 10.82 (s, 1H), 9.30 (d, J = 1.4 Hz, 1H), 8.97 (d, J = 2.5 Hz, 1H), 8.81 (dd, J = 2.5, 1.4 Hz, 1H), 8.14–7.69 (m, 2H), 7.24–7.19 (m, 2H). 13C NMR (125 MHz, DMSO-d6) δ: 161.6, 159.5, 157.6, 147.7, 144.9, 144.0, 143.2, 134.6, 122.5, 115.3, 115.2. HRMS m/z calcd for C11H8FN3O [M + H]+ 218.0651, found 218.0664.
2,2-Dichloro-N-(p-tolyl) acetamide(39). White microcrystals (85%); m.p. 157–159 °C (Lit. m.p. 159–160 °C [74]). 1H NMR (500 MHz, DMSO-d6) δ: 10.56 (s, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.58 (s, 1H), 2.27 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ: 161.5, 135.0, 133.8, 129.4, 129.4, 119.8, 119.8, 67.3, 20.5. HRMS m/z calcd for C9H9Cl2NO [M + H]+ 218.0061, found 218.0057.
2,2-Dichloro-N-(4-fluorophenyl) acetamide(40). White microcrystals (80%); m.p. 130–132 °C (Lit. m.p. 134–135 °C [74]). 1H NMR (500 MHz, DMSO-d6) δ: 10.71 (s, 1H), 7.71–7.55 (m, 2H), 7.24–7.19 (m, 2H), 6.59 (s, 1H). 13C NMR (126 MHz, DMSO-d6) δ: 161.7, 159.7, 133.9, 121.8, 121.7, 115.8, 115.6, 67.3. HRMS m/z calcd for C8H6Cl2FNO [M + H]+ 221.9810, found 221.9813.
2,2-Dichloro-N-(4-chlorophenyl) acetamide(41). White microcrystals (80%); m.p. 143–145 °C (Lit. m.p. 141–142 °C [74]). 1H NMR (500 MHz, DMSO-d6) δ: 10.79 (s, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 6.59 (s, 1H). 13C NMR (125 MHz, DMSO-d6) δ: 161.8, 136.5, 128.9, 128.3, 128.3, 121.4, 121.4, 67.2. HRMS m/z calcd for C8H6Cl3NO [M + H]+ 237.9515, found 237.9550.

4.2. General Methods for Preparation of 2-Substituted Benzimidazoles

In a typical procedure, a mixture of o-phenylenediamine (1 equiv.) and acylbenzotriazole (1 equiv.) was subjected to microwave irradiation (20 W, 50 °C) in water (3 mL) for 1 h. After completion of the reaction, aqueous 4N HCl was added and the precipitates were filtered, followed by washing with water. The isolated products were recrystallized in ethanol to get the desired benzimidazoles in pure form. Benzotriazoles could be recovered from the aqueous layer by pH-controlled acidification.
2-Phenyl-1H-benzo[d]imidazole(52). White microcrystals (82%); m.p. 295–296 °C (lit. m.p. 295 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 8.32–8.30 (m, 2H), 7.85–7.82 (m, 2H), 7.75–7.70 (m, 3H), 7.54–7.52 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ 151.2, 143.8, 134.9, 130.2, 129.5, 128.9, 126.4, 122.5, 121.6, 118.9, 111.3. HRMS m/z calcd for C13H10N2 [M + H]+ 195.0844, found 195.0856.
2-(4-Fluorophenyl)-1H-benzo[d]imidazole(53). White microcrystals (90%); m.p. 249–251 °C (lit. m.p. 248 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 8.24–8.21 (m, 2H), 7.60–7.59 (m, 2H), 7.22–7.17 (m, 4H); 13C NMR (125 MHz, DMSO-d6) δ 150.2, 147.7, 135.1, 134.5, 129.1, 129.0, 128.2, 122.8, 121.9, 116.9, 111.4. HRMS m/z calcd for C13H9FN2 [M + H]+ 213.0750, found 312.0746.
2-(4-Chlorophenyl)-1H-benzo[d]imidazole(54). White crystalline solid (88%); m.p. 299–301 °C (lit. m.p. 302 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 12.72 (s, 1H, D2O exchangable, > NH), 8.11–7.93 (m, 2H), 7.46–7.43 (m, 4H), 7.16–7.14 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ 150.1, 146.9, 135.0, 134.6, 129.1, 128.7, 128.6, 127.8, 121.8, 122.0, 117.2. HRMS m/z calcd for C13H9ClN2 [M + H]+ 229.0454, found 229.0458.
4-(1H-Benzo[d]imidazol-2-yl)phenol(55). Yellow microcrystals (86%); m.p. 280–282 °C (lit. m.p. 280 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 10.03 (s, 1H, D2O exchangable, > NH), 7.98 (d, J = 8.1 Hz, 2H), 7.55–7.48 (m, 2H), 7.20–7.14 (m, 2H), 6.91(d, J = 8.1 Hz, 2H); 13C NMR (125 MHz, DMSO-d6) δ 165.0, 157.1, 144.2, 133.3, 127.5, 125.9, 123.7, 121.4, 120.1, 115.5. HRMS m/z calcd for C13H10N2O [M + H]+ 211.0793, found 211.0792.
2-(4-Nitrophenyl)-1H-benzo[d]imidazole(56). Light yellow microcrystals (94%); m.p. 318–320 °C (lit. m.p. 317 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 13.05 (br s, 1H, D2O exchangable, > NH), 8.00 (dd, J = 15.4, 7.8 Hz, 2H), 7.87 (td, J = 7.8, 1.2 Hz, 1H), 7.76 (td J = 7.8, 1.4 Hz, 1H), 7.65–7.42 (m, 2H), 7.25 (d, J = 5.5 Hz, 2H); 13C NMR (125 MHz, DMSO-d6) δ 149.0, 147.6, 143.3, 134.6, 132.5, 130.7, 123.9, 123.1, 121.9, 119.2, 111.5. HRMS m/z calcd for C13H9N3O2 [M + H]+ 240.0695, found 240.0677.
2-(4-Methylphenyl)-1H-benzo[d]imidazole(57). White microcrystals (92%); m.p. 274–276 °C (lit. m.p. 275 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 12.59 (s, 1H, D2O exchangable, > NH), 8.08 (d, J = 8.1 Hz, 2H), 7.58–7.44 (m, 2H), 7.35 (d, J = 7.8 Hz, 2H), 7.12–7.11 (m, 2H), 2.35 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 151.4, 139.4, 129.4, 127.4, 126.4, 121.9, 116.3, 21.0. HRMS m/z calcd for C14H12N2 [M + H]+ 209.1000, found 209.1018.
2-(4-Trifluoromethylphenyl)-1H-benzo[d]imidazole(58). White microcrystals (83%); m.p. 264–265 °C (lit. m.p. 263 °C [75]); 1H NMR (500 MHz, DMSO-d6) δ 12.79 (s, 1H, D2O exchangable, > NH), 8.34 (d, J = 8.8 Hz, 2H), 7.79–7.68 (m, 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.04–6.96 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ 160.3, 151.3, 138.2, 127.7, 126.1, 124.5, 122.4, 121.4, 115.1. HRMS m/z calcd for C14H9F3N2 [M + H]+ 263.0718, found 263.0722.
2-(4-Methoxyphenyl)-1H-benzo[d]imidazole(59). White microcrystals (94%); m.p. 227–229 °C (lit. m.p. 228 °C [75]); 1H NMR (500 MHz, DMSO-d6) δ 12.74 (s, 1H, D2O exchangable, > NH), 8.17 (d, J = 8.8 Hz, 2H), 7.59–7.57 (m, 2H), 7.20–7.17 (m, 2H), 7.04 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 160.3, 151.3, 127.7, 130.1, 122.4, 121.4, 116.5, 114.3, 54.8. HRMS m/z calcd for C14H12N2O [M + H]+ 225.0950, found 225.0976.
2-(3,4,5-Trimethoxyphenyl)-1H-benzo[d]imidazole(60). Light yellow microcrystals (92%); m.p. 259–260 °C (lit. m.p. 259 °C [75]). 1H NMR (500 MHz, DMSO-d6) δ 7.78 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.01 (s, 2H), 4.04 (s, 6H), 3.88 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 155.1, 153.1, 142.2, 138.4, 124.7, 123.2, 121.9, 108.8, 60.1, 57.4. HRMS m/z calcd for C16H16N2O3 [M + H]+ 285.1161, found 285.1168.

Supplementary Materials

The following are available online at https://www.mdpi.com/1420-3049/25/11/2501/s1, general experimental data and NMR spectra.

Author Contributions

Conceptualization, S.S.P. and M.E.; Investigation, T.S.I., I.A.S., S.S.P. and M.E.; Supervision, T.S.I., S.S.P., A.M.M.A.-M. and Z.K.M.A.-S.; Writing—Original draft, T.S.I. and S.S.P.; Writing—Review & editing, T.S.I., I.A.S., S.S.P., A.M.M.A.-M., Z.K.M.A.-S., N.A.A. and H.Z.A.; Funding acquisition, T.S.I., S.S.P., N.A.A and H.Z.A. All authors have read and agreed to the published version of the manuscript.

Funding

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No.(RG-8-166-41). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Savanur, H.M.; Malunavar, S.S.; Prabhala, P.; Sutar, S.M.; Kalkhambkar, R.G.; Laali, K.K. Synthesis of diverse libraries of carboxamides via chemoselective N-acylation of amines by carboxylic acids employing Brønsted acidic IL [BMIM(SO3H)][OTf]. Tetrahedron Lett. 2019, 60, 151159. [Google Scholar] [CrossRef]
  2. Humphrey, J.M.; Chamberlin, A.R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chem. Rev. 1997, 97, 2243–2266. [Google Scholar] [CrossRef] [PubMed]
  3. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925–953. [Google Scholar] [CrossRef] [PubMed]
  4. Pace, V.; Holzer, W.; Olofsson, B. Increasing the Reactivity of Amides towards Organometallic Reagents: An Overview. Adv. Synth. Catal. 2014, 356, 3697–3736. [Google Scholar] [CrossRef]
  5. Greenberg, A.; Breneman, C.M.; Liebman, J.F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Material Science; Wiley- Interscience: New York, NY, USA, 2000. [Google Scholar]
  6. Panda, S.S.; Girgis, A.S.; Mishra, B.B.; Elagawany, M.; Devarapalli, V.; Littlefield, W.F.; Samir, A.; Fayad, W.; Fawzy, N.G.; Srour, A.M.; et al. Synthesis, computational studies, antimycobacterial and antibacterial properties of pyrazinoic acid–isoniazid hybrid conjugates. RSC Adv. 2019, 9, 20450–20462. [Google Scholar] [CrossRef] [Green Version]
  7. Alcaide, B.; Almendros, P.; Aragoncillo, C. β-Lactams: Versatile building blocks for the stereoselective synthesis of non-β-Lactam products. Chem. Rev. 2007, 107, 4437–4492. [Google Scholar] [CrossRef] [PubMed]
  8. Roughley, S.D.; Jordan, A.M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 2011, 54, 3451–3479. [Google Scholar] [CrossRef]
  9. Ishihara, K. Dehydrative condensation catalyses. Tetrahedron 2009, 65, 1085–1109. [Google Scholar] [CrossRef]
  10. Lanigan, R.M.; Sheppard, T.D. Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem. 2013, 2013, 7453–7465. [Google Scholar] [CrossRef] [Green Version]
  11. Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 2014, 43, 2714–2742. [Google Scholar] [CrossRef] [Green Version]
  12. Sabatini, M.T.; Boulton, L.T.; Sneddon, H.F.; Sheppard, T.D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2019, 2, 10–17. [Google Scholar] [CrossRef]
  13. Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019, 2, 98–102. [Google Scholar] [CrossRef]
  14. Rathi, J.O.; Shankarling, G.S. Concentrated solar radiation aided energy efficient and chemoselective protocol for N-acylation and N-formylation reactions in aqueous medium. Sol. Energy 2019, 189, 471–479. [Google Scholar] [CrossRef]
  15. Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
  16. Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006, 4, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
  17. Wolf, R.; Brenner, S. An active amide group in the molecule of drugs that induce pemphigus: A casual or causal relationship? Dermatology 1994, 189, 1–4. [Google Scholar] [CrossRef] [PubMed]
  18. Rajput, P.; Sharma, A. Synthesis and biological importance of amide analogues. J. Pharmacol. Med. Chem. 2018, 2, 22–31. [Google Scholar]
  19. Katritzky, A.R.; He, H.-Y.; Suzuki, K. N-Acylbenzotriazoles:  Neutral Acylating Reagents for the Preparation of Primary, Secondary, and Tertiary Amides. J. Org. Chem. 2000, 65, 8210–8213. [Google Scholar] [CrossRef]
  20. Mali, S.M.; Bhaisare, R.D.; Gopi, H.N. Thioacids Mediated Selective and Mild N-Acylation of Amines. J. Org. Chem. 2013, 78, 5550–5555. [Google Scholar] [CrossRef]
  21. Panda, S.S.; Dennis Hall, C.; Scriven, E.; Katritzky, A.R. Aminoacyl benzotriazolides: Versatile reagents for the preparation of peptides, their mimetics and conjugates. Aldrichimica Acta. 2013, 46, 43–55. [Google Scholar]
  22. Allen, C.L.; Williams, J.M.J. Metal-catalyzed approaches to amide bond formation. Chem. Soc. Rev. 2011, 40, 3405–3415. [Google Scholar] [CrossRef] [PubMed]
  23. Cossy, J.; Palegrosdemange, C. Convenient synthesis of amides from carboxylic acids and primary amines. Tetrahedron Lett. 1989, 30, 2771–2774. [Google Scholar] [CrossRef]
  24. Spivey, A.C.; Arseniyadis, S. Nucleophilic catalysis by 4-(dialkylamino)pyridines revisited - The search for optimal reactivity and selectivity. Chem. Int. Ed. 2004, 43, 5436–5441. [Google Scholar] [CrossRef]
  25. Taylor, J.E.; Jones, M.D.; Williams, J.M.J.; Bull, S.D. N-Acyl DBN tetraphenylborate salts as N-acylating agents. J. Org. Chem. 2012, 77, 2808–2818. [Google Scholar] [CrossRef] [PubMed]
  26. Owston, N.A.; Parker, A.J.; Williams, J.M.J. Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org. Lett. 2007, 9, 3599–3601. [Google Scholar] [CrossRef]
  27. Ramalingan, C.; Park, Y.-T. Mercury-Catalyzed Rearrangement of Ketoximes into Amides and Lactams in Acetonitrile. J. Org. Chem. 2007, 72, 4536–4538. [Google Scholar] [CrossRef]
  28. Yoo, W.J.; Li, C.J. Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts. J. Am. Chem. Soc. 2006, 128, 13064–13065. [Google Scholar] [CrossRef]
  29. Ekoue-Kovi, K.; Wolf, C. One-pot oxidative esterification and amidation of aldehydes. Chem. Eur. J. 2008, 14, 6302–6315. [Google Scholar] [CrossRef]
  30. Yang, X.; Birman, V.B. Acyl Transfer Catalysis with 1,2,4-Triazole Anion. Org. Lett. 2009, 11, 1499–1502. [Google Scholar] [CrossRef] [Green Version]
  31. Miller, S.J. In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Acc. Chem. Res. 2004, 37, 601–610. [Google Scholar] [CrossRef]
  32. Ishihara, K.; Kosugi, Y.; Akakura, M. Rational design of an L-histidine-derived minimal artificial acylase for the kinetic resolution of racemic alcohols. J. Am. Chem. Soc. 2004, 126, 12212–12213. [Google Scholar] [CrossRef] [PubMed]
  33. Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Nagy, Y.I.; George, R.F.; Fayad, W.; Fawzy, N.G.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Sakhuja, R.; et al. Design, synthesis, antimicrobial, and DNA gyrase inhibitory properties of fluoroquinolone–dichloroacetic acid hybrids. Chem. Biol. Drug Des. 2020, 95, 248–259. [Google Scholar] [CrossRef] [PubMed]
  34. Panda, S.S.; Girgis, A.S.; Mishra, B.B.; Elagawany, M.; Devarapalli, V.; Littlefield, W.F.; Samir, A.; Fawzy, N.G.; Srour, A.M. Novel pyrazinoic acid-isoniazid conjugates with amino acid linker: Microwave assisted synthesis, anti-infective properties, and molecular modeling studies. RSC Adv. 2019, 9, 20450–20462. [Google Scholar]
  35. Panda, S.S.; Asiri, A.M.; Elagawany, M.; Buchanan, D.D.; Torkian, B.; Bathala, K.; Thomas, S.J.; Capito, J.E.; Arshad, M.N.; Al-Romaizan, A.N. Efficient synthesis of pyrazinoic acid hybrid conjugates. SynOpen 2017, 1, 50–58. [Google Scholar] [CrossRef] [Green Version]
  36. Katritzky, A.R.; Rachwal, S. Synthesis of Heterocycles Mediated by Benzotriazole. 1. Monocyclic Systems. Chem. Rev. 2010, 110, 1564–1610. [Google Scholar] [CrossRef]
  37. Katritzky, A.R.; Rachwal, S. Synthesis of Heterocycles Mediated by Benzotriazole. 2. Bicyclic Systems. Chem. Rev. 2011, 111, 7063–7120. [Google Scholar] [CrossRef] [PubMed]
  38. Katritzky, A.R.; Yao, G.; Lan, X.; Zhao, X. The conversion of secondary into tertiary amides using benzotriazole methodology. J. Org. Chem. 1993, 58, 2086–2093. [Google Scholar] [CrossRef]
  39. Katritzky, A.R.; Strah, S.; Belyakov, S.A. The preparation of functionalized amines and amides using benzotriazole derivatives and organozinc reagents. Tetrahedron 1998, 54, 7167–7178. [Google Scholar] [CrossRef]
  40. Katritzky, A.R.; El Khatib, M.; Bol’shakov, O.; Khelashvili, L.; Steel, P.J. Benzotriazol-1-yl-sulfonyl Azide for Diazotransfer and Preparation of Azidoacylbenzotriazoles. J. Org. Chem. 2010, 75, 6532–6539. [Google Scholar] [CrossRef]
  41. Küçükbay, F.Z.; Küçükbay, H.; Tanc, M.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of amino acid–coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties. J. Enzyme Inhib. Med. Chem. 2016, 31, 1198–1202. [Google Scholar] [CrossRef] [Green Version]
  42. Laconde, G.; Amblard, M.; Martinez, J. Unexpected Reactivity of N-Acyl-Benzotriazoles with Aromatic Amines in Acidic Medium (ABAA Reaction). Eur. J. Org. Chem. 2019, 2019, 85–90. [Google Scholar] [CrossRef]
  43. Denny, W.A.; Rewcastle, G.W.; Bauley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem. 1990, 33, 814–819. [Google Scholar] [CrossRef] [PubMed]
  44. Seyhan, E.; Sultan, N.; Nilgun, A.; Noyanalpan, N. Synthesis and antimicrobial activity of 5-substituted 1-dialkylaminomethyl-2-arylbenzimidazole derivatives. Arzneim.-Forsch. 1997, 47, 410–412. [Google Scholar]
  45. Gungor, T.; Fouquet, A.; Eulon, J.-M.; Provost, D.; Cazes, M.; Cloarec, A. Cardiotonic agents. Synthesis and cardiovascular properties of novel 2-arylbenzimidazoles and azabenzimidazoles. J. Med. Chem. 1992, 35, 4455–4463. [Google Scholar] [CrossRef] [PubMed]
  46. Schiffmann, R.; Neugebauer, A.; Klein, C.D. Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: Structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J. Med. Chem. 2006, 49, 511–522. [Google Scholar] [CrossRef] [PubMed]
  47. Preston, P.N. Benzimidazoles and congeneric tricyclic compounds. In The Chemistry of Heterocyclic Compounds; Weissberger, A., Taylor, E.C., Eds.; Wiley: New York, NY, USA, 1981; Volume 40, pp. 6–60. [Google Scholar]
  48. Grimmett, M.R. Imidazoles and their benzo derivatives. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Pergamon: Oxford, England, 1984; Volume 5, pp. 457–487. [Google Scholar]
  49. Benincori, T.; Sannicolo, F. New benzimidazole synthesis. J. Heterocycl. Chem. 1988, 25, 1029–1033. [Google Scholar] [CrossRef]
  50. Tumelty, D.; Cao, K.; Holmes, C.P. Traceless solid-phase synthesis of substituted benzimidazoles via a base-cleavable linker. Org. Lett. 2001, 3, 83–86. [Google Scholar] [CrossRef] [PubMed]
  51. Bahrami, K.; Khodaei, M.M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem. 2008, 73, 6835–6837. [Google Scholar] [CrossRef] [PubMed]
  52. Panda, S.S.; Ibrahim, M.A.; Oliferenko, A.A.; Asiri, A.M.; Katritzky, A.R. Catalyst-free facile synthesis of 2-substituted benzothiazoles. Green Chem. 2013, 15, 2709–2712. [Google Scholar] [CrossRef]
  53. Panda, S.S.; Jain, S.C. A greener protocol for the highly efficient synthesis of spiro-indoles via Schiff’s bases. Monatsh. Chem. 2012, 143, 1187–1194. [Google Scholar] [CrossRef]
  54. Ibrahim, M.A.; Panda, S.S.; Alamry, K.A.; Katritzky, A.R. Green, Catalyst-Free Synthesis of Mesalazine Conjugates. Synthesis 2013, 45, 3255–3258. [Google Scholar]
  55. Meegalla, S.K.; Wall, M.J.; Chen, J.; Wilson, K.J.; Ballentine, S.K.; Desjarlais, R.L.; Schubert, C.; Crysler, C.S.; Chen, Y.; Molloy, C.J.; et al. Structure-based optimization of a potent class of arylamide FMS inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3632–3637. [Google Scholar] [CrossRef]
  56. Talanian, R.V.; Quinlan, C.; Trautz, S.; Hackett, M.C.; Mankovich, J.A.; Banach, D.; Ghayur, T.; Brady, K.D.; Wong, W.W. Substrate specificities of caspase family proteas. J. Biol. Chem. 1997, 272, 9677–9682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. Fujita, Y.; Tsuda, Y.; Li, T.; Motoyama, T.; Takahashi, M.; Shimizu, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Kita, A.; et al. Development of Potent Bifunctional Endomorphin-2 Analogues with Mixed μ-/δ-Opioid Agonist and δ-Opioid Antagonist Properties. J. Med. Chem. 2004, 47, 3591–3599. [Google Scholar] [CrossRef] [PubMed]
  58. Pelagatti, P.; Carcelli, M.; Calbiani, F.; Cassi, C.; Elviri, L.; Pelizzi, C.; Rizzotti, U.; Rogolino, D. Transfer Hydrogenation of Acetophenone Catalyzed by Half-Sandwich Ruthenium(II) Complexes Containing Amino Amide Ligands. Detection of the Catalytic Intermediates by Electrospray Ionization Mass Spectrometry. Organometallics 2005, 24, 5836–5844. [Google Scholar] [CrossRef]
  59. Geurts, M.; Poupaert, J.H.; Scriba, G.K.E.; Lambert, D.M. N-(Benzyloxycarbonyl)Glycine Esters and Amides as New Anticonvulsants. J. Med. Chem. 1998, 41, 24–30. [Google Scholar] [CrossRef] [PubMed]
  60. Song, W.; Dong, K.; Li, M. Visible Light-Induced Amide Bond Formation. Org. Lett. 2020, 22, 371–375. [Google Scholar] [CrossRef] [PubMed]
  61. Elmore, D.T.; Toseland, P.A. Degradative Studies on Peptides and Proteins. IV. Formation of Salts of 2-Acylaminothiazol-5-Ones by Acid-Catalyzed Degradation of N-Acylthiocarbamoylpeptides and Their Behavior towards Nucleophilic Reagents. J. Chem. Soc. 1957, 2460–2466. [Google Scholar] [CrossRef]
  62. Tortorella, V.; Bettoni, G. Optical Rotatory Dispersion Curves of N-(N-Oxido-2-Pyridyl)Amino Compounds. IV. Amino Amides. Gazz. Chim. Ital. 1968, 98, 324–330. [Google Scholar]
  63. Nuijens, T.; Cusan, C.; Kruijtzer, J.A.W.; Rijkers, D.T.S.; Liskamp, R.M.J.; Quaedflieg, P.J.L.M. Enzymatic Synthesis of C-Terminal Arylamides of Amino Acids and Peptides. J. Org. Chem. 2009, 74, 5145–5150. [Google Scholar] [CrossRef] [PubMed]
  64. Maekawa, K.; Kubo, K.; Igarashi, T.; Sakurai, T. Electron Transfer-Initiated Asymmetric Photocyclization of Chiral Auxiliary-Substituted N-Acyl-α-Dehydro(1-Naphthyl)Alaninamides to the Corresponding 3,4-Dihydrobenzo[f]Quinolinone Derivatives. Tetrahedron 2005, 61, 11211–11224. [Google Scholar] [CrossRef]
  65. Abernethy, J.L.; Howell, F.G.; Ledesma, A.; Doose, D.; Everett, R. Behavior of Amides of N-Acylamino Acids toward Aniline and Substituted Anilines under Papain Catalysis. Tetrahedron 1975, 31, 2659–2662. [Google Scholar] [CrossRef]
  66. Pettit, G.R.; Srirangam, J.K.; Barkoczy, J.; Williams, M.D.; Boyd, M.R.; Hamel, E.; Pettit, R.K.; Hogan, F.; Bai, R.; Chapuis, J.-C.; et al. Antineoplastic agents 365. Dolastatin 10 SAR probes. Anticancer. Drug Des. 1998, 13, 243–277. [Google Scholar] [PubMed]
  67. Lampariello, L.R.; Peruzzi, D.; Sega, A.; Taddei, M. Some Observations on the Preparation of Amides and Their Reduction to Amines in Ionic Liquids. Lett. Org. Chem. 2005, 2, 265–270. [Google Scholar] [CrossRef]
  68. Elzein, E.; Ibrahim, P.; Palle, V.; Rehder, K.; Zablocki, J.A. 1-akan-2-ol substituted piperazine and piperidine compounds. PCT Int Appl. Patent WO2005061470A1, 7 July 2005. [Google Scholar]
  69. Pfleiderer, G.; Celliers, P.G.; Stanulovic, M.; Wachsmuth, E.D.; Determann, H.; Braunitzer, G. Properties and Analytical Application of the Kidney-Particle Aminopeptidase. Biochem. Z. 1964, 340, 552–564. [Google Scholar]
  70. Antoine, M.; Marchand, P.; Le Baut, G.; Czech, M.; Baasner, S.; Gunther, E. Side Chain Modifications of (Indol-3-Yl)Glyoxamides as Antitumor Agents. J. Enzyme Inhib. Med. Chem. 2008, 23, 686–695. [Google Scholar] [CrossRef] [Green Version]
  71. Orsy, G.; Fülöp, F.; Mándity, I.M. N-Acetylation of Amines in Continuous-Flow with Acetonitrile—No Need for Hazardous and Toxic Carboxylic Acid Derivatives. Molecules 2020, 25, 1985. [Google Scholar] [CrossRef]
  72. Dolezal, M.; Cmedlova, P.; Palek, L.; Vinsova, J.; Kunes, J.; Buchta, V.; Jampilek, J.; Kralova, K. Synthesis and Antimycobacterial Evaluation of Substituted Pyrazinecarboxamides. Eur. J. Med. Chem. 2008, 43, 1105–1113. [Google Scholar] [CrossRef]
  73. Robba, M. Certain Derivatives of Diazines. I. Synthesis of Nitriles of Diazines. Ann. Chim. 1960, 5, 351–379. [Google Scholar]
  74. Yang, Y.; Shang, P.; Cheng, C.; Wang, D.; Yang, P.; Zhang, F.; Li, T.; Lu, A.; Zhao, Y. Novel N-Phenyl Dichloroacetamide Derivatives as Anticancer Reagents: Design, Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2010, 45, 4300–4306. [Google Scholar] [CrossRef]
  75. Panda, S.S.; Jain, S.C. Synthesis of 2-Arylbenzimidazoles in Water. Synth. Commun. 2011, 41, 729–735. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors.
Scheme 1. Synthesis of N-acylated amines.
Scheme 1. Synthesis of N-acylated amines.
Molecules 25 02501 sch001
Scheme 2. Synthesis of Boc-protected amino acid with secondary heterocyclic amine conjugates.
Scheme 2. Synthesis of Boc-protected amino acid with secondary heterocyclic amine conjugates.
Molecules 25 02501 sch002
Scheme 3. Synthesis of 2-substituted benzimidazoles.
Scheme 3. Synthesis of 2-substituted benzimidazoles.
Molecules 25 02501 sch003
Table 1. Optimization of reaction condition.
Table 1. Optimization of reaction condition.
Molecules 25 02501 i001
EntryReaction Temp. (°C)Reaction TimeYield a (%)
120 (Room temp.)1 h74
220 (Room temp.)2 h86
350 (Conv.)30 min77
450 (Conv.)1 h82
570 (MW)15 min96
a Isolated yield.
Table 2. Preparation of N-acylated amines.
Table 2. Preparation of N-acylated amines.
EntryR-NH2ProductYield (%)Mp (°C)
1 Molecules 25 02501 i002 Molecules 25 02501 i00394137–139
2 Molecules 25 02501 i004 Molecules 25 02501 i00593123–125
3 Molecules 25 02501 i006 Molecules 25 02501 i00795145–146
4 Molecules 25 02501 i008 Molecules 25 02501 i00991165–167
5 Molecules 25 02501 i010 Molecules 25 02501 i01195118–120
6 Molecules 25 02501 i012 Molecules 25 02501 i01388152–154
7 Molecules 25 02501 i014 Molecules 25 02501 i01596158–160
8 Molecules 25 02501 i016 Molecules 25 02501 i01792152–154
9 Molecules 25 02501 i018 Molecules 25 02501 i01997183–185
10 Molecules 25 02501 i020 Molecules 25 02501 i02179185–187
11 Molecules 25 02501 i022 Molecules 25 02501 i02394193–195
12 Molecules 25 02501 i024 Molecules 25 02501 i02575172–174
13 Molecules 25 02501 i026 Molecules 25 02501 i02780164–166
14 Molecules 25 02501 i028 Molecules 25 02501 i02985160–162
15 Molecules 25 02501 i030 Molecules 25 02501 i03198185–187
16 Molecules 25 02501 i032 Molecules 25 02501 i03394138–140
17 Molecules 25 02501 i034 Molecules 25 02501 i03577191–193
18 Molecules 25 02501 i036 Molecules 25 02501 i03784174–176
19 Molecules 25 02501 i038 Molecules 25 02501 i03990192–194
20 Molecules 25 02501 i040 Molecules 25 02501 i04190142–143
21 Molecules 25 02501 i042 Molecules 25 02501 i04398152–154
22 Molecules 25 02501 i044 Molecules 25 02501 i04595160–162
23 Molecules 25 02501 i046 Molecules 25 02501 i04790182–184
24 Molecules 25 02501 i048 Molecules 25 02501 i04973163–165
25 Molecules 25 02501 i050 Molecules 25 02501 i05182150–152
26 Molecules 25 02501 i052 Molecules 25 02501 i05390197–199
27 Molecules 25 02501 i054 Molecules 25 02501 i05598210–212
28 Molecules 25 02501 i056 Molecules 25 02501 i05770162–164
29 Molecules 25 02501 i058 Molecules 25 02501 i0597095–97
30 Molecules 25 02501 i060 Molecules 25 02501 i06190180–182
31 Molecules 25 02501 i062 Molecules 25 02501 i06389152–154
32 Molecules 25 02501 i064 Molecules 25 02501 i06597155–157
33 Molecules 25 02501 i066 Molecules 25 02501 i06771138–140
34 Molecules 25 02501 i068 Molecules 25 02501 i06981147–149
35 Molecules 25 02501 i070 Molecules 25 02501 i07198155–157
36 Molecules 25 02501 i072 Molecules 25 02501 i07385157–159
37 Molecules 25 02501 i074 Molecules 25 02501 i07580130–132
38 Molecules 25 02501 i076 Molecules 25 02501 i07780143–145

Share and Cite

MDPI and ACS Style

Ibrahim, T.S.; Seliem, I.A.; Panda, S.S.; Al-Mahmoudy, A.M.M.; Abdel-Samii, Z.K.M.; Alhakamy, N.A.; Asfour, H.Z.; Elagawany, M. An Efficient Greener Approach for N-acylation of Amines in Water Using Benzotriazole Chemistry. Molecules 2020, 25, 2501. https://doi.org/10.3390/molecules25112501

AMA Style

Ibrahim TS, Seliem IA, Panda SS, Al-Mahmoudy AMM, Abdel-Samii ZKM, Alhakamy NA, Asfour HZ, Elagawany M. An Efficient Greener Approach for N-acylation of Amines in Water Using Benzotriazole Chemistry. Molecules. 2020; 25(11):2501. https://doi.org/10.3390/molecules25112501

Chicago/Turabian Style

Ibrahim, Tarek S., Israa A. Seliem, Siva S. Panda, Amany M. M. Al-Mahmoudy, Zakaria K. M. Abdel-Samii, Nabil A. Alhakamy, Hani Z. Asfour, and Mohamed Elagawany. 2020. "An Efficient Greener Approach for N-acylation of Amines in Water Using Benzotriazole Chemistry" Molecules 25, no. 11: 2501. https://doi.org/10.3390/molecules25112501

Article Metrics

Back to TopTop