Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. 2D Peak Patterns Complexity and Information Dimensions
2.2. Targeted Features Distribution according to Processing
2.3. Targeted Features Distribution according to Climate Events and Elevation
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reference Solutions
4.2. Tea Samples
- Yunnan (YUN) is a post-fermented pu′erh tea collected in the spring (S) and summer (monsoon, M) at 1180 m height (low elevation, L) and 1790 m (high elevation, H).
- Fujian tea (FUJ) is a semi-oxidized oolong tea collected in the spring and monsoon seasons at 112 m (L) and 690 m (H).
- Bigelow (BIG) is an oxidized black tea from a farm in South Carolina (USA). Teas were harvested in 2015 in May, July, August, and October. Rainfall and temperature were 21 ± 3 °C and 105 mm, 28 ± 2 °C and 97 mm, 28 ± 2 °C and 188 mm, and 23 ± 3 °C and 453 mm, respectively. Note that the amount of rainfall is similar to that experienced by plants in China during the monsoon season. The elevation of the farm, located on Wadmalaw Island, South Carolina, is 7 m.
4.3. Primary Metabolites Extraction and Derivatization
4.3.1. Extraction
4.3.2. Derivatization
4.4. GC×GC-TOF MS: Instrument Set-Up and Experimental Conditions
4.5. GC×GC Columns and Settings
4.6. Method Performance Parameters: Retention Times and Response Repeatability
4.7. Data Acquisition and 2D Data Processing Software
4.8. Combined Untargeted and Targeted (UT) Fingerprinting: Principles and Operative Steps
- Chromatograms preprocessing for background subtraction and 2D-peaks detection.
- Untargeted feature template generation by cross-matching samples 2D-peaks templates. Re-alignment of 2D-peaks patterns and generation of a 2D peak-region features template.
- Refining of the untargeted feature template by eliminating solvent, bleeding, and interfering peaks. Identification of target compounds by spectral similarity direct and reverse match factors (NIST similarity algorithm [59]–threshold values DMF 900–RMF 930) with commercial databases and 1D IT coherence (IT ± 10 units). Creation of a UT template with both untargeted and targeted features.
- Application of the UT feature template to each sample and export metadata in the excel file for further data elaboration. The output is a data matrix of aligned 2D peaks and/or peak-regions and related metadata (1D and 2D retention times, compound names for target analytes, fragmentation pattern, single ions, or total ions response) available for comparative purposes and further processing [60,61,62].
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tranchida, P.Q.; Donato, P.A.E.; Cacciola, F.; Beccaria, M.; Dugo, P.; Mondello, L. Potential of comprehensive chromatography in food analysis. TrAC Trends Anal. Chem. 2013, 52, 186–205. [Google Scholar] [CrossRef]
- Cordero, C.E.I.; Kiefl, J.; Reichenbach, S.E.; Bicchi, C. Characterization of odorant patterns by comprehensive two-dimensional gas chromatography: A challenge in omic studies. TrAC Trends Anal. Chem. 2019, 113, 364–378. [Google Scholar] [CrossRef]
- Ulaszewska, M.; Weinert, C.; Trimigno, A.; Portmann, R.; Andres-Lacueva, C.; Badertscher, R.; Brennan, L.; Brunius, C.; Bub, A.; Capozzi, F.; et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol. Nutr. Food Res. 2018, 63, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, J.; Rosso, M.C.; Kfoury, N.; Bicchi, C.; Cordero, C.E.I.; Robbat, A.J. Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome. Molecules 2019, 24, 3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Ros, A.; Masuero, D.; Riccadonna, S.; Bubola, K.B.; Mulinacci, N.; Mattivi, F.; Lukić, I.; Vrhovsek, U. Complementary Untargeted and Targeted Metabolomics for Differentiation of Extra Virgin Olive Oils of Different Origin of Purchase Based on Volatile and Phenolic Composition and Sensory Quality. Molecules 2019, 24, 2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Solid-Phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin oils from two distinct geographical areas of northern Italy. J. Agric. Food Chem. 2003, 51, 6577. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, S.E.; Tian, X.; Cordero, C.E.I.; Tao, Q. Features for non-targeted cross-sample analysis with comprehensive two-dimensional chromatography. J. Chromatogr. A 2012, 1226, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, S.E.; Tian, X.; Tao, Q.; Ledford, E.B.; Wu, Z.; Fiehn, O. Informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry (GCxGC–HRMS). Talanta 2011, 83, 1279–1288. [Google Scholar] [CrossRef]
- Ellis, D.I.; Harrigan, G.G.; Goodacre, R. Metabolic Profiling: Its Role In Biomarker Discovery And Gene Function Analysis; Harrigan, G.G., Goodacre, R., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2003. [Google Scholar]
- Venkatramani, C.J.; Xu, J.; Phillips, J.B. Separation Orthogonality in Temperature-Programmed Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 1996, 68, 1486–1492. [Google Scholar] [CrossRef]
- Cordero, C.E.I.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberle, P.; Reichenbach, S.E.; Tao, Q. Profiling food volatiles by comprehensive two-dimensional ga schromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. J. Chromatogr. A 2010, 1217, 5848–5858. [Google Scholar] [CrossRef]
- Kiefl, J.; Schieberle, P. Evaluation of Process Parameters Governing the Aroma Generation in Three Hazelnut Cultivars (Corylus avellana L.) by Correlating Quantitative Key Odorant Profiling with Sensory Evaluation. J. Agric. Food Chem. 2013, 61, 5236–5244. [Google Scholar] [CrossRef] [PubMed]
- Magagna, F.; Valverde-Som, L.; Samblas, C.R.; Cuadros-Rodríguez, L.; Reichenbach, S.E.; Bicchi, C.; Cordero, C.E.I. Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil. Anal. Chim. Acta 2016, 936, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Stilo, F.; Liberto, E.; Reichenbach, S.E.; Tao, Q.; Bicchi, C.; Cordero, C.E.I. Untargeted and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometry: Challenges in Long-Term Studies. J. Agric. Food Chem. 2019, 67, 5289–5302. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.J.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; et al. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China. PLoS ONE 2014, 9, e109126. [Google Scholar] [CrossRef] [Green Version]
- Kfoury, N.; Scott, E.R.; Orians, C.M.; Ahmed, S.; Cash, S.B.; Griffin, T.; Matyas, C.J.; Stepp, J.R.; Han, W.; Xue, D.; et al. Plant-Climate Interaction Effects: Changes in the Relative Distribution and Concentration of the Volatile Tea Leaf Metabolome in 2014-2016. Front. Plant Sci. 2019, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Kfoury, N.; Orians, C.M.; Griffin, T.; Ahmed, S.; Cash, S.B.; Stepp, J.R.; Xue, D.; Long, C.; Robbat, A.J. 2014–2016 seasonal rainfall effects on metals in tea (Camelia sinensis (L.) Kuntze). Chemosphere 2019, 219, 796–803. [Google Scholar] [CrossRef]
- Alcazar, A.; Ballesteros, O.; Jurado, J.M.; Pablos, F.; Martin, M.J.; Vilches, J.L.; Navalón, A. Differentiation of Green, White, Black, Oolong, and Pu-erh Teas According to Their Free Amino Acids Content. J. Agric. Food Chem. 2007, 55, 5960–5965. [Google Scholar] [CrossRef]
- Ekborg-Ott, K.H.; Taylor, A.; Armstrong, D.W. Varietal Differences in the Total and Enantiomeric Composition of Theanine in Tea. J. Agric. Food Chem. 1997, 45, 353–363. [Google Scholar] [CrossRef]
- Ye, N. A Minireview of Analytical Methods for the Geographical Origin Analysis of Teas ( Camellia sinensis ). Crit. Rev. Food Sci. Nutr. 2012, 52, 775–780. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Jelen, H. Food Flavors: Chemical, Sensory and Technological Properties; CRC Press: London, UK, 2012. [Google Scholar]
- Schuh, C.; Schieberle, P. Characterization of the Key Aroma Compounds in the Beverage Prepared from Darjeeling Black Tea: Quantitative Differences between Tea Leaves and Infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Magagna, F.; Cordero, C.E.I.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; Bicchi, C. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography—Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chem. 2017, 225, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Tas, N.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Z.; Ye, G.; Zhao, C.; Lü, X.; Xu, G. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Chin. J. Chromatogr. 2014, 32, 804. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, G.W.; Selvendran, R.R. The organic acids in tea plants. A study of the non-volatile organic acids separated on silica gel. J. Sci. Food Agric. 1965, 16, 251–258. [Google Scholar] [CrossRef]
- Lin, J.-K.; Lin, C.-L.; Liang, Y.-C.; Lin-Shiau, S.-Y.; Juan, I.-M. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-erh, and Black Teas. J. Agric. Food Chem. 1998, 46, 3635–3642. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Cordero, C.E.I.; Salvatore, S.; Pellegrini, N.; Brighenti, F. Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrients 2010, 26, 1110–1116. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Scazzina, F.; Jechiu, L.; Cordero, C.E.I.; Brighenti, F. Bioavailability of catechins from ready-to-drink tea. Nutrients 2010, 26, 528–533. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 2015, 131, 264–272. [Google Scholar] [CrossRef]
- Zuo, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef]
- Dewick, P.M. The Biochemistry of Plant Phenolics. Phytochemistry 1986, 25, 2011–2012. [Google Scholar] [CrossRef]
- Kfoury, N.; Morimoto, J.; Kern, A.; Scott, E.; Orians, C.M.; Ahmed, S.; Griffin, T.; Cash, S.B.; Stepp, J.R.; Xue, D.; et al. Striking changes in tea metabolites due to elevational effects. Food Chem. 2018, 264, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Kowalsick, A.; Kfoury, N.; Robbat, A.J.; Ahmed, S.; Orians, C.; Griffin, T.; Cash, S.B.; Stepp, J.R. Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents. J. Chromatogr. A 2014, 1370, 230–239. [Google Scholar] [CrossRef]
- Lee, J.-E.; Lee, B.-J.; Chung, J.-O.; Hwang, J.-A.; Lee, S.-J.; Lee, C.-H.; Hong, Y.-S. Geographical and Climatic Dependencies of Green Tea (Camellia sinensis) Metabolites: A1H NMR-Based Metabolomics Study. J. Agric. Food Chem. 2010, 58, 10582–10589. [Google Scholar] [CrossRef]
- Qu, X.; Wang, H.; Chen, M.; Liao, J.; Yuan, J.; Niu, G. Drought Stress–induced Physiological and Metabolic Changes in Leaves of Two Oil Tea Cultivars. J. Am. Soc. Hortic. Sci. 2019, 144, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Lin, H.; Liu, Z.; Liu, Z. Metabolomics analysis of Camellia sinensis with respect to harvesting time. Food Res. Int. 2019, 128, 108814. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Panda, S.K. ABIOTIC STRESS RESPONSES IN TEA [Camellia sinensis L (O) Kuntze]: AN OVERVIEW. Rev. Agric. Sci. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhang, J.; Hou, X.; Wang, F.; Xiong, F. Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops. Crit. Rev. Plant Sci. 2014, 33, 225–237. [Google Scholar] [CrossRef]
- Wang, Y.; Frei, M. Stressed food – The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011, 141, 271–286. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Zhang, J.; Bao, J. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Bioresour. Technol. 2016, 219, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Lu, L. Gluconic and Xylonic acid Production from Lignocellulosic Biomass by Gluconobacter oxydans. M.Sc. Thesis, Auburn University, Auburn, AL, USA, 3 August 2013. [Google Scholar]
- Devanathan, S.; Erban, A.; Perez-Torres, R.; Kopka, J.; Makaroff, C. Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth. PLoS ONE 2014, 9, e95971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, E.; Rusilowicz, M.; Dickinson, M.; Charlton, A.J.; Bechtold, U.; Mullineaux, P.; Wilson, J. Integrating transcriptomic techniques and k-means clustering in metabolomics to identify markers of abiotic and biotic stress in Medicago truncatula. Metabolomics 2018, 14, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodziewicz, P.; Swarcewicz, B.; Chmielewska, K.; Wojakowska, A.; Stobiecki, M. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol. Plant. 2013, 36, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Wang, T.; Kang, S.; Pang, D. On the relationship between latitude and altitude temperature effects. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; pp. 55–58. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F.; Walkery, I.R. The Decrease in Summer Surface Water Temperature with Altitude in Swiss Alpine Lakes: A Comparison with Air Temperature Lapse Rates. Arctic, Antarct. Alp. Res. 1999, 31, 341–352. [Google Scholar] [CrossRef]
- Ahmed, S.; Orians, C.M.; Griffin, T.S.; Buckley, S.; Unachukwu, U.; Stratton, A.E.; Stepp, J.R.; Robbat, A.; Cash, S.; Kennelly, E.J. Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB PLANTS 2014, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedula, V.S.P.; Prakash, I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 2011, 5, 2110–2124. [Google Scholar] [CrossRef] [Green Version]
- Citac, E. Quantifying Uncertainty in Analytical Measurement, English. 2nd ed.; 2000; Volume 126, ISBN 978-0-948926-30-3. Available online: https://eurachem.org/images/stories/Guides/pdf/QUAM2000-1.pdf (accessed on 23 May 2020).
- Cordero, C.E.I.; Guglielmetti, A.; Bicchi, C.; Liberto, E.; Baroux, L.; Merle, P.; Tao, Q.; Reichenbach, S.E. Comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry featuring tandem ionization: Challenges and opportunities for accurate fingerprinting studies. J. Chromatogr. A 2019, 1597, 132–141. [Google Scholar] [CrossRef]
- Bressanello, D.; Liberto, E.; Collino, M.; Chiazza, F.; Mastrocola, R.; Reichenbach, S.E.; Bicchi, C.; Cordero, C.E.I. Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures. Anal. Bioanal. Chem. 2018, 410, 2723–2737. [Google Scholar] [CrossRef]
- Reichenbach, S.E.; Zini, C.A.; Nicolli, K.P.; Welke, J.E.; Cordero, C.E.I.; Tao, Q. Benchmarking machine learning methods for comprehensive chemical fingerprinting and pattern recognition. J. Chromatogr. A 2019, 1595, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.C.; Mazzucotelli, M.; Bicchi, C.; Charron, M.; Manini, F.; Menta, R.; Fontana, M.; Reichenbach, S.E.; Cordero, C.E.I. Adding extra-dimensions to hazelnuts primary metabolome fingerprinting by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry featuring tandem ionization: Insights on the aroma potential. J. Chromatogr. A 2020, 1614, 460739. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, S.E.; Carr, P.W.; Stoll, D.R.; Tao, Q. Smart Templates for peak pattern matching with comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2008, 1216, 3458–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIST/EPA/NIH Mass Spectral Library with Search Program Data Version: NIST v17, ver 2.3; National Institute of Standards and Technology: Gaithersburg, MD, USA.
- Nicolotti, L.; Cordero, C.E.I.; Bressanello, D.; Cagliero, C.; Liberto, E.; Magagna, F.; Rubiolo, P.; Sgorbini, B.; Bicchi, C. Parallel dual secondary column-dual detection: A further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography. J. Chromatogr. A 2014, 1360, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Sgorbini, B.; Cagliero, C.; Boggia, L.; Liberto, E.; Reichenbach, S.E.; Rubiolo, P.; Cordero, C.E.I.; Bicchi, C. Parallel dual secondary-column-dual detection comprehensive two-dimensional gas chromatography: A flexible and reliable analytical tool for essential oils quantitative profiling. Flavour Fragr. J. 2015, 30, 366–380. [Google Scholar] [CrossRef]
- Reichenbach, S.E.; Rempe, D.W.; Tao, Q.; Bressanello, D.; Liberto, E.; Bicchi, C.; Balducci, S.; Cordero, C.E.I. Alignment for Comprehensive Two-Dimensional Gas Chromatography with Dual Secondary Columns and Detectors. Anal. Chem. 2015, 87, 10056–10063. [Google Scholar] [CrossRef]
- Hollingsworth, B.V.; E Reichenbach, S.; Tao, Q.; Visvanathan, A. Comparative visualization for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2006, 1105, 51–58. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Chemical Class | Compound Name | 1tR (min) | 2tR (sec) | Exp. IT | Ref. IT |
---|---|---|---|---|---|
Amino acids | Alanine TMS | 10.08 | 1.45 | 1103 | 1110 |
Valine 2TMS | 13.56 | 1.70 | 1212 | 1215 | |
Serine 2TMS | 15.06 | 1.98 | 1260 | 1266 | |
Leucine 2TMS | 15.95 | 1.85 | 1288 | 1294 | |
Threonine 2TMS | 16.22 | 1.95 | 1298 | 1305 | |
Isoleucine 2TMS | 16.23 | 1.77 | 1299 | 1306 | |
Glycine 3TMS | 16.48 | 1.74 | 1305 | 1310 | |
Proline 2TMS | 16.50 | 1.80 | 1305 | 1304 | |
Methionine TMS | 20.25 | 2.36 | 1422 | 1417 | |
Aspartic acid 2TMS | 20.50 | 2.21 | 1430 | 1427 | |
Pyroglutamic acid TMS | 23.25 | 3.44 | 1519 | 1515 | |
Phenylalanine 2TMS | 26.40 | 2.06 | 1626 | 1624 | |
Theanine TMS | 29.05 | 3.44 | 1721 | / | |
Tyrosine 2TMS | 33.53 | 3.33 | 1892 | 1900 | |
Tryptophan TMS | 40.39 | 3.45 | 2180 | 2186 | |
Organic acids | Hexanoic acid TMS | 9.30 | 1.53 | 1075 | 1074 |
Glycolic acid 2TMS | 9.30 | 1.63 | 1075 | 1077 | |
Pyruvic acid 2TMS | 9.63 | 1.60 | 1085 | 1085 | |
Oxalic acid 2TMS | 10.99 | 1.97 | 1129 | 1133 | |
Hydroxybutyric acid TMS | 11.77 | 1.66 | 1156 | 1158 | |
Malonic acid 2TMS | 13.28 | 1.96 | 1204 | 1201 | |
Phosphoric acid 3TMS | 15.41 | 2.22 | 1271 | 1267 | |
Succinic acid 2TMS | 16.87 | 1.99 | 1317 | 1314 | |
Glyceric acid 3TMS | 17.24 | 1.79 | 1328 | 1330 | |
Fumaric acid 2TMS | 18.04 | 1.91 | 1353 | 1353 | |
Nonanoic acid TMS | 18.36 | 1.74 | 1363 | 1368 | |
Ribonic acid TMS | 19.44 | 2.40 | 1396 | 1398 | |
Malic acid 3TMS | 22.29 | 2.01 | 1488 | 1490 | |
Adipic acid 2TMS | 22.95 | 2.05 | 1509 | 1510 | |
Tartaric acid 4TMS | 26.60 | 1.93 | 1633 | 1640 | |
Arabinonic acid TMS | 26.62 | 2.27 | 1634 | / | |
Citric acid 4TMS | 31.60 | 2.05 | 1817 | 1815 | |
Galactonic acid 6TMS | 35.78 | 1.83 | 1981 | 1989 | |
Galactaric acid 6TMS | 36.97 | 1.92 | 2031 | 2024 | |
Linoleic acid TMS | 41.12 | 1.93 | 2214 | 2212 | |
Glucuronic acid 5TMS | 44.31 | 1.93 | 2367 | / | |
Polyalcohols | Glycerol 3TMS | 15.38 | 1.59 | 1270 | 1278 |
Xylitol 5TMS | 28.15 | 1.65 | 1688 | 1692 | |
Arabinitol 5TMS | 28.44 | 1.69 | 1698 | 1702 | |
Ribitol 5TMS | 28.88 | 1.67 | 1714 | 1717 | |
Glucitol 6TMS | 34.21 | 1.72 | 1919 | 1927 | |
Mannitol 6TMS | 34.27 | 1.73 | 1921 | 1925 | |
Myo-Inositol 6TMS | 38.06 | 1.91 | 2078 | 2073 | |
Sugars | Threonic acid 4TMS | 24.35 | 1.80 | 1556 | 1553 |
Arabinose 4TMS | 27.27 | 1.71 | 1657 | / | |
Ribose 4TMS | 27.68 | 1.71 | 1671 | 1668 | |
Xylose 4TMS | 28.06 | 1.78 | 1685 | / | |
Rhamnose 4TMS | 28.83 | 1.77 | 1712 | / | |
Fructose 5TMS (anti) | 33.01 | 1.76 | 1871 | 1867 | |
Fructose 5TMS (syn) | 33.33 | 1.79 | 1882 | 1885 | |
Glucose 5TMS | 33.46 | 1.82 | 1890 | 1898 | |
Mannose 6-phosphate 4TMS | 43.09 | 2.16 | 2309 | / | |
Melibiose 8TMS | 47.03 | 1.90 | 2505 | 2512 | |
Cellobiose 8TMS | 50.40 | 1.90 | 2685 | / | |
Sucrose 8TMS | 51.17 | 3.06 | 2726 | 2730 | |
Maltose 8TMS | 51.47 | 1.93 | 2736 | 2732 | |
Galactinol 9TMS | 55.25 | 2.06 | 2937 | 2943 | |
Methylxanthines | Caffeine TMS | 33.03 | 3.90 | 1872 | 1880 |
Theobromine TMS | 33.81 | 4.05 | 1902 | / | |
Flavan-3-ols | Catechin 5TMS | 53.33 | 2.41 | 2835 | 2840 |
Epicatechin 5TMS | 53.75 | 2.27 | 2863 | / | |
Gallocatechin 6TMS | 54.33 | 2.17 | 2884 | / | |
Epigallocatechin 6TMS | 54.50 | 2.32 | 2897 | 2903 | |
Phenolic acids | Quinic acid TMS | 32.50 | 1.85 | 1852 | 1853 |
Gallic acid 3TMS | 35.09 | 2.01 | 1954 | 1960 | |
Caffeic acid 3TMS | 39.40 | 2.17 | 2136 | 2140 | |
Chlorogenic acid 6TMS | 57.83 | 2.56 | 3074 | 3082 | |
Others | (E)-Erythrono-1,4-lactone 2TMS | 18.76 | 2.55 | 1375 | 1380 |
Xylonic acid lactone TMS | 26.42 | 2.50 | 1627 | 1627 | |
Ribono-1,4-lactone 3TMS | 27.93 | 2.57 | 1680 | 1677 | |
Mannofuranose, 6-deoxy 4TMS | 30.51 | 2.55 | 1776 | / | |
N-Acetyl-D-glucosamine 4TMS | 37.92 | 2.32 | 2072 | / | |
Galactose oxime 6TMS | 38.81 | 1.80 | 2110 | / | |
4-O-Coumaroyl-D-quinic acid, 5TMS | 56.58 | 2.89 | 3008 | 3012 |
Origin | Harvest Year | Season | Elevation | Processing |
---|---|---|---|---|
Yunnan—YUN | 2014 | Spring—S | High elevation—H 1790 m | Pu′erh tea |
2015 | Monsoon—M | Low elevation—L 1180 m | ||
Fujian—FUJ | 2014 | Spring—S | High elevation—H 690 m | Oolong tea |
2015 | Monsoon—M | Low elevation—L 112 m | ||
Bigelow BIG | 2015 | May | - | Black tea |
July | ||||
August | ||||
October |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stilo, F.; Tredici, G.; Bicchi, C.; Robbat, A., Jr.; Morimoto, J.; Cordero, C. Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Molecules 2020, 25, 2447. https://doi.org/10.3390/molecules25102447
Stilo F, Tredici G, Bicchi C, Robbat A Jr., Morimoto J, Cordero C. Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Molecules. 2020; 25(10):2447. https://doi.org/10.3390/molecules25102447
Chicago/Turabian StyleStilo, Federico, Giulia Tredici, Carlo Bicchi, Albert Robbat, Jr., Joshua Morimoto, and Chiara Cordero. 2020. "Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry" Molecules 25, no. 10: 2447. https://doi.org/10.3390/molecules25102447