Next Article in Journal
Photocatalytic Atom Transfer Radical Addition to Olefins Utilizing Novel Photocatalysts
Next Article in Special Issue
Sonochemically-Promoted Preparation of Silica-Anchored Cyclodextrin Derivatives for Efficient Copper Catalysis
Previous Article in Journal
Concentration of EPA and DHA from Refined Salmon Oil by Optimizing the Urea–Fatty Acid Adduction Reaction Conditions Using Response Surface Methodology
Previous Article in Special Issue
Sonochemical Degradation of Benzothiophene (BT) in Deionized Water, Natural Water and Sea Water
Article

Ultrasound-Assisted Heterogeneous Synthesis of Bio-Based Oligo-Isosorbide Glycidyl Ethers: Towards Greener Epoxy Precursors

Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, 145 Avenue Maurice Schumann, MREI 1, 59140 Dunkerque, France
*
Author to whom correspondence should be addressed.
Academic Editor: Gregory Chatel
Molecules 2019, 24(9), 1643; https://doi.org/10.3390/molecules24091643
Received: 10 April 2019 / Revised: 23 April 2019 / Accepted: 24 April 2019 / Published: 26 April 2019
(This article belongs to the Special Issue Sonochemistry and Green Chemistry Applications II)
The substitution of toxic precursors such as bisphenol A by renewable and safer molecules has become a major challenge. To overcome this challenge, the 12 principles of green chemistry should be taken into account in the development of future sustainable chemicals and processes. In this context, this paper reports the highly efficient synthesis of oligo-isosorbide glycidyl ethers from bio-based starting materials by a rapid one-pot heterogeneous ultrasound-assisted synthesis. It was demonstrated that the use of high-power ultrasound in solvent-free conditions with sodium hydroxide microbeads led for the first time to a fully epoxidated prepolymer with excellent epoxy equivalent weight (EEW). The structure of the epoxy precursor was characterized by FT-IR, NMR spectroscopy and high-resolution mass spectrometry (HRMS). The efficiency of the ultrasound-assisted synthesis was attributed to the physical effects caused by micro-jets on the surface of the solid sodium hydroxide microspheres following the asymmetrical collapse of cavitation bubbles. View Full-Text
Keywords: one-pot synthesis; ultrasound; bio-based; epoxy precursor; isosorbide one-pot synthesis; ultrasound; bio-based; epoxy precursor; isosorbide
Show Figures

Graphical abstract

MDPI and ACS Style

Musa, C.; Danjou, P.-E.; Pauwels, A.; Cazier-Dennin, F.; Delattre, F. Ultrasound-Assisted Heterogeneous Synthesis of Bio-Based Oligo-Isosorbide Glycidyl Ethers: Towards Greener Epoxy Precursors. Molecules 2019, 24, 1643. https://doi.org/10.3390/molecules24091643

AMA Style

Musa C, Danjou P-E, Pauwels A, Cazier-Dennin F, Delattre F. Ultrasound-Assisted Heterogeneous Synthesis of Bio-Based Oligo-Isosorbide Glycidyl Ethers: Towards Greener Epoxy Precursors. Molecules. 2019; 24(9):1643. https://doi.org/10.3390/molecules24091643

Chicago/Turabian Style

Musa, Corentin, Pierre-Edouard Danjou, Antoine Pauwels, Francine Cazier-Dennin, and François Delattre. 2019. "Ultrasound-Assisted Heterogeneous Synthesis of Bio-Based Oligo-Isosorbide Glycidyl Ethers: Towards Greener Epoxy Precursors" Molecules 24, no. 9: 1643. https://doi.org/10.3390/molecules24091643

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop