Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions
Abstract
:1. Introduction
2. Results
2.1. Contents of Anthocyanin and Total Phenols in the Peel and the Flesh of the Red-fleshed Apple ′QN-5′
2.2. Antioxidant Activity of the Anthocyanin Extract from the Red-fleshed Apple ′QN-5′ in vitro
2.3. Characteristics and Antioxidant Properties of Zein-anthocyanin Hybrid Nanoparticles (ZANPs)
2.4. Stability and Antioxidant Activity of the ZANPs In Vitro
2.4.1. Stability and Antioxidant Activity of the ZANPs under Alkaline Conditions In Vitro
2.4.2. Stability and Antioxidant Activity of the ZANPs under High Temperature in vitro
2.4.3. Stability and Antioxidant Activity of the ZANPs after 7 days of Storage In Vitro
3. Discussion
4. Material and Methods
4.1. Materials
4.2. Determination of Total Anthocyanin Content
4.3. Determination of Total Phenol Content
4.4. Scavenging Capacity of the DPPH Free Radicals
4.5. Scavenging Capacity of ·OH− Free Radicals
4.6. Scavenging Rate of O2− Free Radicals
4.7. Preparation of Zein-Anthocyanin Extract Hybrid Nanoparticle (ZANPs)
4.8. Size and Polydispersity Index of the ZANPs
4.9. Transmission Electron Microscopy (TEM) Analysis
4.10. In vitro Antioxidant Activity of the ZANPs and Its Stability under Stress Conditions
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cooper-Driver, G.A. Contributions of Jeffrey Harborne and coworkers to the study of anthocyanins. Phytochemistry 2001, 56, 229–236. [Google Scholar] [CrossRef]
- Sousa, A.; Araújo, P.; Azevedo, J.; Cruz, L.; Fernandes, I.; Mateus, N.; De Freitas, V. Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chem. 2016, 192, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Nems, A.; Pęksa, A.; Kucharska, A.Z.; Sokol-Letowska, A.; Kita, A.; Drozdz, W.; Hamouz, K. Anthocyanin and antioxidant activity of snacks with colouredpotato. Food Chem. 2015, 172, 175–182. [Google Scholar] [CrossRef]
- Chen, X.S.; Zhang, J.; Liu, D.L.; Ji, X.H.; Zhang, Z.Y.; Zhang, R.; Mao, Z.Q.; Zhang, Y.M.; Wang, L.X.; Li, M. Genetic variation of F1 population between Malussieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains. Sci. Agric. Sin. 2014, 47, 2193–2204. [Google Scholar]
- Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K.P. Eugenia jambolana (java plum) fruit extract exhibits anti-cancer activity against early stage human HTC-116 colon cancer cells and colon cancer stem cells. Cancers 2016, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhao, R.X.; Lai, F.N.; Sun, X.; Sun, X.H.; Dai, H.Y.; Zhang, Y.G. Analysis of flavonoid components and antioxidant activity in peel of red-fleshed apple. Plant Physiol. J. 2016, 52, 1353–1360. [Google Scholar]
- Zhang, Y.G.; Zhu, J.; Dai, H.Y. Morphological characteristics and pollination compatibility of a new red flesh apple, Hongxun No.1. Res. Crops 2013, 14, 199–204. [Google Scholar]
- Xiang, Y.; Lai, F.N.; He, G.F.; Li, Y.P.; Yang, L.L.; Shen, W.; Huo, H.Q.; Zhu, J.; Dai, H.Y.; Zhang, Y.G. Alleviation of Rosup-induced oxidative stress in porcine granulosa cells by anthocyanins from red-fleshed apples. PloS ONE 2017, 12. [Google Scholar] [CrossRef]
- Jiang, M.Y.; Xing, J.H. Generation of hydroxyl radical in plants and its relation to the initiation of lipid peroxidation. Plant Physiol. Commun. 1993, 29, 300–305. [Google Scholar]
- Li, A.L.; Ru, Z.L. Study on ultrasonic extraction method of red pigment in pyracantha fortuneana. Food Res. Develop. 2008, 29, 11–14. [Google Scholar]
- Youdim, K.A.; Shukitthale, B.; Mackinnon, S.; Kalt, W.; Joseph, J.A. Polyphenolics enhance red blood cell resistance to oxidative stress: In vitro and in vivo. Biochim. Biophys. Acta 2000, 1523, 117. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, G.J.; Li, X.S.; Chen, X.L.; Li, W.; Sun, Z. Research on progress of anthocyanin compounds. Modern Food 2017, 10, 21–26. [Google Scholar] [CrossRef]
- Wu, H.Y.; Yang, K.M.; Chiang, P.Y. Roselle anthocyanins: Antioxidant properties and stability to heat and pH. Molecules 2018, 23, 1357. [Google Scholar] [CrossRef]
- Liu, C.Z.; Li, M.; Yang, J.; Xiong, L.; Sun, Q.J. Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocoll. 2017, 73, 74–89. [Google Scholar] [CrossRef]
- Arroyo-Maya, I.J.; McClements, D.J. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Res. Int. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.W. Utilization Technology of By-Products in Grain Processing, 1st ed.; Chemical Industry Publisher: Beijing, China, 2009; p. 86. [Google Scholar]
- Sies, H. Role of reactive oxygen species in biological processes. Klin. Wochenschr. 1991, 69, 965–968. [Google Scholar] [CrossRef]
- Ahan, S.M.; Rao, C.M.; Ahmad, M.F. Nanoparticle-protein interaction: The significance and role of protein corona. Cell. Mol. Toxicol. Nanoparticles 2018, 1048, 175–198. [Google Scholar]
- Sarmphim, P.; Soontaranon, S.; Sirisathitkul, C.; Harding, P.; Kijamnajsuk, S.; Chayasombat, B.; Chingunpitak, J. FePt 3 nanosuspension synthesized from different precursors-a morphological comparison by SAXS, DLS and TEM. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 79–84. [Google Scholar]
- Cornelia, M.K.; Rainer, H.M. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 2004, 113, 151–170. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Current Protocols in Food Analytical Chemistry, 1st ed.; John Wiley and Sons Inc.: New York, NY, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar]
- Cai, W.G.; Wu, W.; Shao, J.F.; Chen, Q.; Wang, Y.B.; Liu, Z.Q. Determination of polyphenol content in Houttuynia cordata Thunb. By Folin-Ciocalteu colorimetric method. Food Sci. 2010, 31, 201–204. [Google Scholar]
- He, X.H.; Xu, L.; Tan, M.J.; Du, F.L.; Zeng, J.G. DPPH radical scavenging effect of penthorum chinese pursh extract. Lishizhen Med. Mater. Med. Res. 2009, 20, 1924–1926. [Google Scholar]
- Ma, T.; Hu, N.; Ding, C.X.; Zhang, Q.L.; Li, W.C.; Suo, Y.R.; Wang, H.L.; Bai, B.; Ding, C.X. In vitro and in vivo biological activities of anthocyanins from Nitraria tangutorun Bobr. Fruits. Food Chem. 2016, 194, 296–303. [Google Scholar] [CrossRef]
- Tsuda, T.; Watanabe, M.; Ohshima, K.; Norinobu, S.; Choi, S.-W.; Kawakishi, S.; Osawa, T. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyanidin. J. Agric. Food Chem. 1994, 42, 2407–2410. [Google Scholar] [CrossRef]
- Om, P.S.; Tej, K.B. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huo, H.; Sun, X.; Zhu, J.; Dai, H.; Zhang, Y. Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions. Molecules 2019, 24, 1421. https://doi.org/10.3390/molecules24071421
Zhang X, Huo H, Sun X, Zhu J, Dai H, Zhang Y. Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions. Molecules. 2019; 24(7):1421. https://doi.org/10.3390/molecules24071421
Chicago/Turabian StyleZhang, Xiang, Heqiang Huo, Xiaohong Sun, Jun Zhu, Hongyi Dai, and Yugang Zhang. 2019. "Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions" Molecules 24, no. 7: 1421. https://doi.org/10.3390/molecules24071421
APA StyleZhang, X., Huo, H., Sun, X., Zhu, J., Dai, H., & Zhang, Y. (2019). Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions. Molecules, 24(7), 1421. https://doi.org/10.3390/molecules24071421